[go: up one dir, main page]

JP2680712B2 - Vibration control device malfunction detection method - Google Patents

Vibration control device malfunction detection method

Info

Publication number
JP2680712B2
JP2680712B2 JP2037800A JP3780090A JP2680712B2 JP 2680712 B2 JP2680712 B2 JP 2680712B2 JP 2037800 A JP2037800 A JP 2037800A JP 3780090 A JP3780090 A JP 3780090A JP 2680712 B2 JP2680712 B2 JP 2680712B2
Authority
JP
Japan
Prior art keywords
vibration
correlation function
damping device
vibration damping
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2037800A
Other languages
Japanese (ja)
Other versions
JPH03239835A (en
Inventor
久徳 阿比留
秀秋 原田
一美 田村
学 藤城
潤 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2037800A priority Critical patent/JP2680712B2/en
Priority to NZ235423A priority patent/NZ235423A/en
Priority to CA002188959A priority patent/CA2188959C/en
Priority to CA002026351A priority patent/CA2026351C/en
Priority to AU63713/90A priority patent/AU629405B2/en
Priority to US07/591,554 priority patent/US5168967A/en
Priority to EP90250252A priority patent/EP0428239B1/en
Priority to DE69018774T priority patent/DE69018774T2/en
Publication of JPH03239835A publication Critical patent/JPH03239835A/en
Priority to HK12897A priority patent/HK12897A/en
Application granted granted Critical
Publication of JP2680712B2 publication Critical patent/JP2680712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、構造物等に使用する制振装置の誤動作を検
知する制振装置誤動作検知方法に関する。
The present invention relates to a vibration damping device malfunction detection method for detecting malfunction of a vibration damping device used for a structure or the like.

〔従来の技術〕[Conventional technology]

制振装置の誤動作を検知するには、従来、制御回路を
2系列あるいは3系列に並列的に設けて、どれかが他の
系列とは違う指令を出すと、その系列の故障と判断する
か、あるいは、多数決で指令を採用するなどの方法が採
られている。
In order to detect a malfunction of the vibration damping device, conventionally, if the control circuits are provided in parallel in two series or three series, and one of them issues a command different from the other series, is it judged as a failure of that series? Or, a method such as adopting a directive by majority decision is adopted.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、このような方法では、いずれもコスト
が嵩むので不経済である。本発明は、このような事情に
鑑みて提案されたもので、安価で、しかも場合によって
は常設せずに、点検時のみ一時的に実施することのでき
る経済的な制振装置誤動作検知方法を提供することを目
的とする。
However, these methods are uneconomical because they are costly. The present invention has been proposed in view of such circumstances, and provides an economical vibration damping device malfunction detection method that is inexpensive and can be temporarily implemented only during inspection without being permanently installed in some cases. The purpose is to provide.

〔課題を解決するための手段〕[Means for solving the problem]

そのために本発明は、被制振構造物の随時の振動を表
す関数と、制振装置による上記被制振構造物の随時の振
動に対する駆動力の時間的な変動を表す関数との随時の
相関関数を求め、上記制振装置が正常に作動していると
きの相関関数を基準の相関関数として、上記随時の相関
関数のタイムラグSがS=0のときの同随時の相関関数
の値と上記基準の相関関数のタイムラグSがS=0のと
きの同基準の相関関数の値との差、および上記随時の相
関関数が極小値となるときのタイムラグSの大きさと、
上記基準の相関関数が極小値となるときのタイムラグS
の大きさとの差のうち少なくとも一方の差の値の大きさ
を検出して上記制振装置の誤動作の発生を検知すること
を特徴とする。
To this end, the present invention provides an occasional correlation between a function representing an occasional vibration of the vibration-damped structure and a function representing a temporal variation of the driving force with respect to the occasional vibration of the vibration-damped structure by the vibration damping device. The function is obtained, and the value of the occasional correlation function when the time lag S of the occasional correlation function is S = 0 and the correlation function when the vibration damping device is normally operating are used as a reference correlation function and the above A difference from the value of the reference correlation function when the reference correlation function time lag S is S = 0, and the magnitude of the time lag S when the above-mentioned occasional correlation function has a minimum value;
Time lag S when the correlation function of the above reference has a minimum value
It is characterized in that the magnitude of the value of at least one of the differences from the magnitude is detected to detect the occurrence of a malfunction of the vibration damping device.

〔作用〕[Action]

このような構成によれば、制振装置の動きが対象構造
物の振動を抑制するように動いているのか、又はコンピ
ューターの故障等で対象構造物を加振するように動いて
いるのかの別が判る。
According to such a configuration, it is determined whether the motion of the vibration damping device is moving so as to suppress the vibration of the target structure or the target structure is vibrated due to a computer failure or the like. I understand.

〔実施例〕〔Example〕

本発明を建造物の風速変動によるバフェッチング振動
の制振に適用した一実施例を図面について説明すると、
第1図は建造物加速度とモータートルクとの相関関数Rx
yの正常な関数を示す線図、第2図は制振装置の性能が
若干低下した場合の線図、第3図は制振装置が異常動作
した場合の線図である。
An embodiment in which the present invention is applied to the damping of the fetching vibration due to the wind speed fluctuation of a building will be described with reference to the drawings.
Figure 1 shows the correlation function Rx between building acceleration and motor torque.
FIG. 2 is a diagram showing a normal function of y, FIG. 2 is a diagram when the performance of the vibration damping device is slightly degraded, and FIG. 3 is a diagram when the vibration damping device operates abnormally.

ここで、相関関数Rxyは、 Rxy(τ)=(1/T)∫-T/2 -T/2X(t)・Y(t+τ)
dt として、被制振構造物としての建造物の加速度X
(t)、制振装置による被制振構造物の随時の振動に対
する駆動力としてのモータートルクY(t)により求め
られ、まず第1図に示すように制振装置が正常な場合
は、建物の加速度の最大応答値は、制振しないときに例
えば17.0galであったものが、7.2galに低減する。
Here, the correlation function Rxy is Rxy (τ) = (1 / T) ∫ -T / 2 -T / 2 X (t) · Y (t + τ)
dt is the acceleration X of the building as a structure to be damped
(T), which is obtained by the motor torque Y (t) as a driving force for the vibration of the structure to be damped by the vibration damping device at any time. First, when the vibration damping device is normal as shown in FIG. The maximum response value of the acceleration of, for example, was 17.0 gal when vibration was not damped, but decreased to 7.2 gal.

しかしながら、第2図に示すように制振装置の性能が
やや低下した場合は、建物加速度の最小値は、例えば1
1.1galである。
However, when the performance of the vibration damping device is slightly degraded as shown in FIG. 2, the minimum value of the building acceleration is, for example, 1
It is 1.1 gal.

もし、制振装置が誤動作をして逆に加振機として作用
した場合、建物加速度の最大値は、例えば19.1galとな
り、制振しないときの17.0galに比べて増加する。
If the vibration control device malfunctions and acts as an exciter on the contrary, the maximum value of the building acceleration becomes, for example, 19.1 gal, which is higher than 17.0 gal when the vibration control is not performed.

タイムラグ(S)=0における相関Rxyを見ると、第
1図ではRxy≒−0.75、第2図ではRxy≒−0.15、第3図
ではRxy≒0.5であり、S=0の相関が正常時の相関より
も+側に増加すれば、装置の状態が異常になったものと
判断することができる。
Looking at the correlation Rxy at the time lag (S) = 0, Rxy≈−0.75 in FIG. 1, Rxy≈−0.15 in FIG. 2, Rxy≈0.5 in FIG. 3, and the correlation of S = 0 when the correlation is normal. If it increases to the + side of the correlation, it can be determined that the state of the device has become abnormal.

また、相関Rxyが極小値となるタイムラグ(S)の値
をみると、第1図では、S≒0.0、第2図では、S≒−
1.0sec、第3図では、S≒−3.5secであり、この例では
S=−1.5〜−2.0sec以下になると、装置に異常が生じ
たと判断できる。
Looking at the value of the time lag (S) at which the correlation Rxy has a minimum value, S≈0.0 in FIG. 1 and S≈− in FIG.
1.0 sec, S≈−3.5 sec in FIG. 3, and in this example, when S = −1.5 to −2.0 sec or less, it can be determined that an abnormality has occurred in the device.

上記の方法の実施のための必要な機器は、建物の振動
を検出するピックアップと、モーターのトルクメーター
とアナライザーだけであるから、これらの機器は常設し
ておく必要はなく、点検時のみセットして点検すること
も可能であり、複数台の制振装置がある場合でも、1組
用意するだけで、点検ができ、安価である。
The only equipment required to implement the above method is a pickup that detects building vibrations, a motor torque meter, and an analyzer.Therefore, these equipments do not need to be installed permanently, and should be set only during inspection. It is also possible to perform an inspection by using one set even if there are a plurality of vibration damping devices.

また、本発明方法は制御回路とは全く別に独立した点
検方法であるため、安全性が高い。
Further, the method of the present invention is highly independent since it is an inspection method completely independent of the control circuit.

〔発明の効果〕〔The invention's effect〕

要するに本発明によれば、被制振構造物の随時の振動
を表す関数と、制振装置による上記被制振構造物の随時
の振動に対する駆動力の時間的な変動を表す関数との随
時の相関関数を求め、上記制振装置が正常に作動してい
るときの相関関数を基準の相関関数として、上記随時の
相関関数のタイムラグSがS=0のときの同随時の相関
関数の値と上記基準の相関関数のタイムラグS=0のと
きの同基準の相関関数の値との差、および上記随時の相
関関数が極小値となるときのタイムラグSの大きさと、
上記基準の相関関数が極小値となるときのタイムラグS
の大きさとの差のうち少なくとも一方の差の値の大きさ
を検出して上記制振装置の誤動作の発生を検知するよう
にしたので、例えば絶えず不規則に変動する風速変動
等によって不規則に振動し、定常振動とはならない被制
振構造物の随時の振動と、制振装置による被制振構造物
の随時の振動に対する駆動力の時間的な変動との位相関
係を、被制振構造物の随時の振動を表す関数と、制振装
置による上記被制振構造物の随時の振動に対する駆動力
の時間的な変動を表す関数との随時の相関関数により監
視し、同相関関数の時々刻々と変動するタイムラグに着
目して制振装置の誤動作の発生を検知することとなり、
制振装置の誤動作が発生したか否かの判断にある程度の
融通性を持たせて、短時間内に制振装置の誤動作の発生
を検知することができ、制振装置の誤動作を検知する
際には、大掛かりな装置を用いることなく、構造が簡素
で安価に製作することができる制振装置誤動作検知手段
を用いて制振装置の誤動作を検知することができ、制
振装置誤動作検知手段を、常設しなくても点検時におい
てのみ一時的に設置して使用することができる。
In short, according to the present invention, a function that represents the vibration of the vibration-damped structure at any time and a function that represents the temporal variation of the driving force with respect to the vibration of the vibration-damped structure by the vibration damping device at any time The correlation function is obtained, and the correlation function when the vibration damping device is normally operating is used as a reference correlation function, and the correlation function value at the same time when the time lag S of the correlation function at any time is S = 0 and A difference from the value of the correlation function of the same reference when the time lag S = 0 of the reference correlation function, and the magnitude of the time lag S when the correlation function of the above occasion has a minimum value;
Time lag S when the correlation function of the above reference has a minimum value
Since the occurrence of malfunction of the vibration damping device is detected by detecting the magnitude of the difference value of at least one of the differences with the magnitude of the difference, for example, the wind speed that constantly fluctuates irregularly, etc. The phase relationship between the occasional vibration of the controlled structure that vibrates and does not become a steady vibration and the temporal change of the driving force with respect to the occasional vibration of the controlled structure by the vibration control device The function that represents the vibration of the object at any time and the function that represents the temporal variation of the driving force with respect to the vibration at any time of the vibration-damped structure by the vibration damping device are monitored by the correlation function at any time. Focusing on the ever-changing time lag, it will detect the occurrence of malfunction of the vibration damping device,
When the malfunction of the vibration damping device is detected, it is possible to detect the malfunction of the vibration damping device within a short time by allowing some flexibility in determining whether or not the malfunction of the vibration damping device has occurred. In addition, it is possible to detect a malfunction of the vibration damping device by using the vibration damping device malfunction detection means that has a simple structure and can be manufactured at low cost without using a large-scale device. Even if it is not installed permanently, it can be temporarily installed and used only at the time of inspection.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を建造物の風速変動によるバフェッチン
グ振動の制振に適用した一実施例で建造物加速度とモー
タートルクとの正常な関係を示す線図、第2図は制振装
置の性能が若干低下した場合の線図、第3図は制振装置
が異常動作した場合の線図である。
FIG. 1 is a diagram showing a normal relationship between a building acceleration and a motor torque in an embodiment in which the present invention is applied to the damping of the fetching vibration due to the wind speed fluctuation of the building, and FIG. 2 is the performance of the damping device. Is a diagram when the vibration is slightly decreased, and FIG. 3 is a diagram when the vibration damping device operates abnormally.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤城 学 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社広島研究所内 (72)発明者 平井 潤 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社広島研究所内 (56)参考文献 特開 平2−221725(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Manabu Fujishiro 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Jun Hirai 4-chome, Kannon Shinmachi, Nishi-ku, Hiroshima Prefecture 6-22 No. 22 Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (56) Reference JP-A-2-221725 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被制振構造物の随時の振動を表す関数と、
制振装置による上記被制振構造物の随時の振動に対する
駆動力の時間的な変動を表す関数との随時の相関関数を
求め、上記制振装置が正常に作動しているときの相関関
数を基準の相関関数として、上記随時の相関関数のタイ
ムラグSがS=0のときの同随時の相関関数の値と上記
基準の相関関数のタイムラグSがS=0のときの同基準
の相関関数の値との差、および上記随時の相関関数が極
小値となるときのタイムラグSの大きさと、上記基準の
相関関数が極小値となるときのタイムラグSの大きさと
の差のうち少なくとも一方の差の値の大きさを検出して
上記制振装置の誤動作の発生を検知することを特徴とす
る、制振装置誤動作検知方法。
1. A function that represents vibration of a structure to be damped at any time,
Obtain a correlation function at any time with a function that represents the temporal variation of the driving force with respect to the occasional vibration of the vibration-damped structure by the vibration damping device, and obtain the correlation function when the vibration damping device is operating normally. As the reference correlation function, the value of the correlation function at any time when the time lag S of the above correlation function is S = 0 and the correlation function of the same reference when the time lag S of the above correlation function is S = 0 At least one of the difference between the value and the magnitude of the time lag S when the correlation function at any time has a minimum value and the magnitude of the time lag S when the reference correlation function has a minimum value. A method for detecting malfunction of a vibration damping device, comprising detecting the occurrence of malfunction of the vibration damping device by detecting the magnitude of the value.
JP2037800A 1989-10-18 1990-02-19 Vibration control device malfunction detection method Expired - Fee Related JP2680712B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2037800A JP2680712B2 (en) 1990-02-19 1990-02-19 Vibration control device malfunction detection method
NZ235423A NZ235423A (en) 1989-10-18 1990-09-24 Dynamic damper which absorbs building vibration in any horizontal direction
CA002026351A CA2026351C (en) 1989-10-18 1990-09-27 Dynamic damper and method for detecting malfunction of a dynamic damper
CA002188959A CA2188959C (en) 1989-10-18 1990-09-27 Dynamic damper and method for detecting malfunction of a dynamic damper
AU63713/90A AU629405B2 (en) 1989-10-18 1990-09-28 Dynamic damper and method for detecting malfunction of a dynamic damper
US07/591,554 US5168967A (en) 1989-10-18 1990-10-01 Dynamic damper and method for detecting malfunction of dynamic damper
EP90250252A EP0428239B1 (en) 1989-10-18 1990-10-04 Dynamic damper and method for detecting malfunction of a dynamic damper
DE69018774T DE69018774T2 (en) 1989-10-18 1990-10-04 Dynamic damper and method for determining the malfunction of a dynamic damper.
HK12897A HK12897A (en) 1989-10-18 1997-02-05 Dynamic damper and method for detecting malfuntion of a dynamic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037800A JP2680712B2 (en) 1990-02-19 1990-02-19 Vibration control device malfunction detection method

Publications (2)

Publication Number Publication Date
JPH03239835A JPH03239835A (en) 1991-10-25
JP2680712B2 true JP2680712B2 (en) 1997-11-19

Family

ID=12507585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037800A Expired - Fee Related JP2680712B2 (en) 1989-10-18 1990-02-19 Vibration control device malfunction detection method

Country Status (1)

Country Link
JP (1) JP2680712B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508241B2 (en) * 1989-02-23 1996-06-19 鹿島建設株式会社 Safety monitoring device for active seismic control and wind control devices

Also Published As

Publication number Publication date
JPH03239835A (en) 1991-10-25

Similar Documents

Publication Publication Date Title
KR101083858B1 (en) Controller for electric vehicle
US5959422A (en) Device for and method of controlling vibrations of a two-inertial resonant system
JP2001524884A (en) Method of monitoring manipulator motion control
KR970703461A (en) Energy Effi-cient Washer with Inertia Based Method for Determining Goad
US7719221B2 (en) Servo control apparatus
JPH02221725A (en) Safety monitoring device for active vibration damping and wind control equipment
JP2680712B2 (en) Vibration control device malfunction detection method
KR940007400A (en) Vibration reduction device of vehicle
GB2368400A (en) Acceleration sensor fault detector
JPH06336199A (en) Member damage detecting device for aircraft
JP2880364B2 (en) Automotive engine control device
JP2020145547A (en) Unauthorized transmission data detection device
JP4446156B2 (en) Apparatus and method for detecting belt cutting in motor drive system
US20100280794A1 (en) Sensor device
JP2500602B2 (en) Cooling device for multiprocessor system
JP2730668B2 (en) Control devices for flying objects
JPH04157260A (en) Controller for automatic transmission
JP2021196319A (en) Encoder and control system
JP2000043359A (en) Vibration preventing method for printer and printer utilizing that method
KR100207111B1 (en) Can control device and its method for countermeasure in case of electronic control device failure of automobile
JPH02287890A (en) One-chip microcomputer
JP4240912B2 (en) Motor control device with diagnostic function
JP3055814B2 (en) Monitoring mechanism for vibration suppression device
JP2023069059A (en) Information processing device, vehicle, and information processing method
JPS60218276A (en) Method of controlling elevator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees