[go: up one dir, main page]

JP2680446B2 - Solid phase peptide synthesis - Google Patents

Solid phase peptide synthesis

Info

Publication number
JP2680446B2
JP2680446B2 JP27523289A JP27523289A JP2680446B2 JP 2680446 B2 JP2680446 B2 JP 2680446B2 JP 27523289 A JP27523289 A JP 27523289A JP 27523289 A JP27523289 A JP 27523289A JP 2680446 B2 JP2680446 B2 JP 2680446B2
Authority
JP
Japan
Prior art keywords
reaction
peptide
resin
peptide synthesis
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27523289A
Other languages
Japanese (ja)
Other versions
JPH03135996A (en
Inventor
光章 成田
由久 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP27523289A priority Critical patent/JP2680446B2/en
Publication of JPH03135996A publication Critical patent/JPH03135996A/en
Application granted granted Critical
Publication of JP2680446B2 publication Critical patent/JP2680446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ヘプチド性医薬品、合成ワクチンの開発あ
るいはタンパク質の抗原部位の決定や抗体の調製等にお
いて有用なペプチド合成、特に固相法でのペプチド合成
法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to peptide synthesis useful in the development of a heptid drug, a synthetic vaccine, the determination of the antigenic site of a protein, the preparation of an antibody, etc., particularly in the solid phase method. The present invention relates to improvements in peptide synthesis methods.

[従来技術] 天然のポリペプチドは特異な生理活性を有するものが
多く、重要な医薬として機能するものも知られている。
しかし、これを天然から得る場合には含有量の少なさと
抽出の効率の悪さから大量の取得は極めて困難であり、
ポリペプチドの化学合成が盛んにおこなわれている。ポ
リペプチドの化学合成には「液相法」と「固相法」とが
あり、近年、各反応ステップ終了後の精製操作が、樹脂
の洗浄のみでよいという簡便さから固相法が主流となっ
ている。
[Prior Art] Many natural polypeptides have a specific physiological activity, and some of them function as important drugs.
However, when it is obtained from nature, it is extremely difficult to obtain a large amount because of its low content and inefficient extraction.
Chemical synthesis of polypeptides has been actively carried out. There are “liquid phase method” and “solid phase method” in the chemical synthesis of polypeptide, and in recent years, the solid phase method has become the mainstream because of the simplicity that the purification operation after each reaction step only requires washing of the resin. Has become.

固相ペプチド合成は、一般に次の方法によりおこなわ
れる。まずN末端を保護基により保護したアミノ酸また
はペプチドを取り出しこのC末端を樹脂に固定する。次
いで酸もしくはアルカリで処理することにより保護基を
取り除き洗浄する。さらにN末端を保護したアミノ酸ま
たはペプチドと縮合させる。次いでニンヒドリンテスト
をおこない縮合が完了したかどうかをチェックしこのテ
ストが陰性になるまで縮合を繰り返し、洗浄をおこなっ
たのち順次縮合を繰り返す。このサイクルの繰り返しに
よってn個のアミノ酸を合成してゆく。すべてのペプチ
ド鎖を導入したのち樹脂との結合を解裂させ樹脂と分離
して目的のポリペプチドを得るものである。
Solid phase peptide synthesis is generally performed by the following method. First, an amino acid or peptide whose N-terminal is protected by a protecting group is taken out and this C-terminal is fixed to a resin. Then, the protective group is removed by washing with an acid or an alkali. Furthermore, it is condensed with an amino acid or peptide whose N-terminus is protected. Then, a ninhydrin test is performed to check whether the condensation is completed, the condensation is repeated until the test becomes negative, washing is performed, and then the condensation is sequentially repeated. By repeating this cycle, n amino acids are synthesized. After introducing all the peptide chains, the bond with the resin is cleaved and separated from the resin to obtain the desired polypeptide.

この方法での大きな問題は、反応の回数が多くなると
1回の反応後の収率が不十分な場合、未反応のポリペプ
チドが残っていると次の反応により別のペプチド鎖が成
長してしまう。その繰り返しによって最後には純度の悪
いペプチド鎖が得られてしまう。この場合不純物となる
ペプチド鎖は期待するペプチド鎖と構造が似てくること
により精製は非常に困難となる。
The major problem with this method is that if the number of reactions increases and the yield after one reaction is insufficient, if unreacted polypeptide remains, another peptide chain will grow due to the next reaction. I will end up. By repeating this process, a poorly pure peptide chain is finally obtained. In this case, the peptide chain as an impurity has a structure similar to that of the expected peptide chain, which makes purification very difficult.

そこで純度の高いポリペプチドを得ようとすれば、1
回の反応を完結させることが必要であり、反応条件、縮
合剤等について種々検討がなされているが、これまで特
にポリペプチド合成の系では縮合を完結させることが困
難で純粋なポリペプチドを得ることが容易でなかった。
Therefore, in order to obtain a highly pure polypeptide, 1
It is necessary to complete the reaction once, and various studies have been made on the reaction conditions, condensing agent, etc., but until now, it has been difficult to complete the condensation particularly in the polypeptide synthesis system, and a pure polypeptide is obtained. It wasn't easy.

[問題点を解決するための手段] 本発明者らはかかる従来の方法における問題点に鑑み
鋭意検討の結果、特定の反応溶媒を用いて反応系に組み
込むことにより、この目的を達成できることを見出し本
発明に到達した。すなわち本発明は、C末端のアミノ酸
を不溶性の樹脂上に固定し、その樹脂上で順次アミノ酸
またはペプチドを縮合してペプチド鎖を延長させる固相
ペプチド合成法において、縮合反応をおこなったのち反
応溶媒に対して1〜5体積%の範囲のヘキサフルオロイ
ソプロピルアルコールを添加して反応を完結することを
特徴とする固相ペプチド合成法である。
[Means for Solving Problems] As a result of intensive studies made by the present inventors in view of the problems in the conventional methods, they found that this object can be achieved by incorporating a specific reaction solvent into a reaction system. The present invention has been reached. That is, in the present invention, a C-terminal amino acid is immobilized on an insoluble resin, and in the solid-phase peptide synthesis method in which the amino acid or peptide is sequentially condensed on the resin to extend the peptide chain, a condensation reaction is performed and then a reaction solvent is used. To 1 to 5% by volume of hexafluoroisopropyl alcohol to complete the reaction.

本発明の方法はt−Boc法、Fmoc法のいずれにも適用
できるものであり、反応で用いる不溶性の樹脂としては
市販の各種樹脂を用いることができ、目的ポリペプチド
に応じて選択すればよい。反応にあたっては通常おこな
われるようにペプチド樹脂をTFA/CH2Cl2等の溶液で脱保
護をおこない、洗浄し、必要に応じてEt3N等の塩基によ
り中和し、さらに次に付加すべきアミノ酸またはペプチ
ドのカルボキシ活性化体との反応をおこなう。この反応
で用いる反応溶媒としては塩基メチレンが最も好適に用
いられる。あるいは、塩化メチレンに不溶のペプチドを
反応させるか、はじめから1〜5体積%の範囲のヘキサ
フルオロイソプロピルアルコール(以下HFIPという)を
添加してペプチドを溶解させ反応をおこなう。縮合反応
が完結したかどうかニンヒドリンテストによりチェック
し、陰性でない場合にHFIPと塩素化炭化水素係の溶媒と
の混合溶媒を反応溶媒として用いてさらに縮合反応をお
こなうものである。HFIPの量はHFIPが1〜5体積%とな
るように選ばれる。この範囲以下では縮合反応の完結に
寄与せず、この範囲を越えると副反応が進行するため好
ましくない。
The method of the present invention can be applied to both the t-Boc method and the Fmoc method, and various commercially available resins can be used as the insoluble resin used in the reaction, and may be selected according to the target polypeptide. . In the reaction, the peptide resin should be deprotected with a solution such as TFA / CH 2 Cl 2 as usual, washed, neutralized with a base such as Et 3 N, if necessary, and then added. Reacts with carboxy-activators of amino acids or peptides. As the reaction solvent used in this reaction, the base methylene is most preferably used. Alternatively, the peptide insoluble in methylene chloride is reacted, or hexafluoroisopropyl alcohol (hereinafter referred to as HFIP) in the range of 1 to 5% by volume from the beginning is added to dissolve the peptide to carry out the reaction. Whether or not the condensation reaction is completed is checked by a ninhydrin test, and if not negative, the condensation reaction is further carried out using a mixed solvent of HFIP and a chlorinated hydrocarbon solvent as a reaction solvent. The amount of HFIP is chosen to be 1-5% by volume of HFIP. Below this range, it does not contribute to completion of the condensation reaction, and above this range, side reactions proceed, which is not preferable.

本発明の方法では縮合反応の開始時にHFIPの混合溶媒
を用いることはペプチド塩化がメチレンに不溶の場合を
除いて好ましくない。反応開始時にHFIP混合溶媒を用い
ると、HFIPの水酸基がカルボン酸と反応してエステルの
副生が起こるためである。一方、縮合反応の終盤におい
て本発明の混合溶媒を加えた場合にも上記のエステル化
も進行するが縮合反応の完結には特に支障はないが、こ
の場合にはカルボン酸等を新たに添加することも有効で
ある。
In the method of the present invention, it is not preferable to use a mixed solvent of HFIP at the start of the condensation reaction except when the peptide chloride is insoluble in methylene. This is because if a HFIP mixed solvent is used at the start of the reaction, the hydroxyl group of HFIP reacts with the carboxylic acid to generate an ester byproduct. On the other hand, when the mixed solvent of the present invention is added in the final stage of the condensation reaction, the above esterification also proceeds, but there is no particular problem in completing the condensation reaction, but in this case, a carboxylic acid or the like is newly added. That is also effective.

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 (架橋ポリスチレン支持台)0.8g(ペプチド含量0.094m
mol)をTFA/CH2Cl2(2:3)混合溶媒15mlに膨潤させ、室
温で2時間撹拌し、脱保護した。樹脂をガラスフィルタ
ーを用いてロ過し、メタノールとCH2CL2で交互に洗浄
し、最後にCH2Cl2で十分に洗浄したあと、樹脂を反応容
器に移し、CH2Cl220mlに膨潤させEt3N0.19g(20eq)を
加え10分間撹拌し中和した。樹脂をガラスフィルターを
用いてロ過し、メタノールとCH2Cl2で交互に洗浄し、最
後にCH2Cl2で十分に洗浄したあと樹脂と反応容器に移
し、CH2Cl214mlに膨潤させ、これにBoc−X−OH(0.094
mmol×3)、1−ヒドロキシベンゾトリアゾール(0.09
4mmol×3)、およびジシクロヘキシルカルボジイミド
(0.094mmol×3)を加えて室温で15時間反応させた。
ニンヒドリンテストが陽性の場合さらに同様の反応を繰
り返したのち反応溶媒であるCH2Cl2に対して1〜5%
(体積比)のヘキサフルオロイソプロパノールを添加す
ると縮合反応が終結し、ニンヒドリンテストが陰性とな
り、Boc−X2−Val−Ile−NH−CH2が得られた、さらにBo
c−X2−Val−Ile−NH−CH2に対してBoc−X−OHのかわ
りにBoc−Val−Ile−OHを反応させることにより が得られ、さらにBoc−X−OHとの反応操作を2回おこ
なうことにより、 が得られた。得られた樹脂のアミノ酸分析値は理論値と
よく一致した。なお、アミノ酸残基XとしてはAla、Arg
(Tos)、Asn、AsP(OBz1)、Cys(Bz1)、、G1n、G1u
(OBz1)、G1y、His(Tos)、I1e、Leu、Lys(Z)、Me
t(0)、Phe、Ser(Bz1)、Thr(Bz1)、Trp(CHO)、
Tyr(Bz1)、Va1が用いられた。
Example 1 (Crosslinked polystyrene support) 0.8g (Peptide content 0.094m
Mol) was swollen in a mixed solvent of TFA / CH 2 Cl 2 (2: 3) 15 ml, stirred at room temperature for 2 hours, and deprotected. The resin was filtered through a glass filter, washed with methanol and CH 2 CL 2 alternately, and finally with CH 2 Cl 2 thoroughly, then the resin was transferred to a reaction vessel and swollen with 20 ml of CH 2 Cl 2. Et 3 N 0.19 g (20 eq) was added and the mixture was stirred for 10 minutes for neutralization. The resin was filtered through a glass filter, washed alternately with methanol and CH 2 Cl 2 , and finally thoroughly washed with CH 2 Cl 2 before being transferred to the resin and reaction vessel and swollen in 14 ml of CH 2 Cl 2. , To which Boc-X-OH (0.094
mmol × 3), 1-hydroxybenzotriazole (0.09
4 mmol × 3) and dicyclohexylcarbodiimide (0.094 mmol × 3) were added and reacted at room temperature for 15 hours.
When the ninhydrin test is positive, the same reaction is repeated, and then 1 to 5% with respect to the reaction solvent CH 2 Cl 2 .
(Volume ratio) The addition of hexafluoroisopropanol condensation reaction is terminated, the ninhydrin test becomes negative, Boc-X 2 -Val-Ile -NH-CH 2 are obtained, further Bo
instead of Boc-X-OH relative to c-X 2 -Val-Ile- NH-CH 2 by reacting Boc-Val-Ile-OH Was obtained, and the reaction operation with Boc-X-OH was performed twice, was gotten. The amino acid analysis value of the obtained resin was in good agreement with the theoretical value. The amino acid residue X is Ala or Arg.
(Tos), Asn, AsP (OBz1), Cys (Bz1), G1n, G1u
(OBz1), G1y, His (Tos), I1e, Leu, Lys (Z), Me
t (0), Phe, Ser (Bz1), Thr (Bz1), Trp (CHO),
Tyr (Bz1) and Va1 were used.

比較例1 実施例1と同様にして反応溶媒としてCH2C12を用いて
反応をおこなったがいつまでもニンヒドリンテストは陰
性にならなかった。
Comparative Example 1 CH 2 C 12 was used as the reaction solvent in the same manner as in Example 1, but the ninhydrin test did not become negative forever.

[発明の効果] 本発明の方法によれば各種のポリペプチドが容易かつ
収率よく純度よく得ることができるものである。
[Effect of the Invention] According to the method of the present invention, various polypeptides can be easily obtained with high yield and high purity.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C末端のアミノ酸を不溶性の樹脂上に固定
し、その樹脂上で順次アミノ酸またはペプチドを縮合し
てペプチド鎖を延長させる固相ペプチド合成法におい
て、縮合反応をおこなったのち反応溶媒に対して1〜5
体積%の範囲のヘキサフルオロイソプロピルアルコール
を添加して反応を完結することを特徴とする固相ペプチ
ド合成法。
1. A solid phase peptide synthesis method in which a C-terminal amino acid is immobilized on an insoluble resin, and the amino acid or peptide is sequentially condensed on the resin to extend the peptide chain, and a condensation reaction is carried out, followed by a reaction solvent. For 1 to 5
A solid-phase peptide synthesis method, which comprises adding hexafluoroisopropyl alcohol in a volume range to complete the reaction.
JP27523289A 1989-10-23 1989-10-23 Solid phase peptide synthesis Expired - Lifetime JP2680446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27523289A JP2680446B2 (en) 1989-10-23 1989-10-23 Solid phase peptide synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27523289A JP2680446B2 (en) 1989-10-23 1989-10-23 Solid phase peptide synthesis

Publications (2)

Publication Number Publication Date
JPH03135996A JPH03135996A (en) 1991-06-10
JP2680446B2 true JP2680446B2 (en) 1997-11-19

Family

ID=17552542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27523289A Expired - Lifetime JP2680446B2 (en) 1989-10-23 1989-10-23 Solid phase peptide synthesis

Country Status (1)

Country Link
JP (1) JP2680446B2 (en)

Also Published As

Publication number Publication date
JPH03135996A (en) 1991-06-10

Similar Documents

Publication Publication Date Title
Merrifield Solid phase synthesis (Nobel lecture)
US6031073A (en) Cyclic polypeptides comprising a thioether linkage and methods for their preparation
EP0458841B1 (en) Method for the use and synthesis of peptides
CA1106360A (en) Antigenically active polypeptide and a process for its preparation
EP2611825B1 (en) Solid phase synthesis of h(gly2)glp-2
JPH0236197A (en) Solid phase method for synthesis of thymosin alpha 1
KR100237126B1 (en) Rapid Synthesis and Search of Peptide Analogs
CN112110981B (en) Preparation method of polypeptide containing long-chain fatty diacid side chain
Limal et al. Solid‐phase synthesis and on‐resin cyclization of a disulfide bond peptide and lactam analogues corresponding to the major antigenic site of HIV gp41 protein
EP0273895A2 (en) Solid phase peptide synthesis
EP0606816A1 (en) Procedure for preparing salmon calcitonin
US5175254A (en) Solid phase peptide synthesis using a polyacrylic support in aqueous solution
JP2680446B2 (en) Solid phase peptide synthesis
US4327075A (en) Synthetic antigenically-active polypeptide and a process for its preparation
JPH01503390A (en) (N-alpha-acyl, 8-glycine, des-19-leucine)-calcitonin
NO148332B (en) PROCEDURE FOR PREPARING A PEPTIME.
US4764595A (en) Resin support for solid phase peptide synthesis
CN100357313C (en) Peptides having protected amines of untargeted sites, methods for production thereof and of specifically conjugated PEG peptides using the same
EP0618219A1 (en) Procedure for obtaining carbocalcitonin
EP0370165B1 (en) Novel calcitonin derivative and salt thereof
Cavallaro et al. Solid‐phase synthesis of a dendritic peptide related to a retinoblastoma protein fragment utilizing a combined boc‐and fmoc‐chemistry approach
EP0288058A2 (en) Analogs of (1,7-di-alanine, des-19-leucine) calcitonine
JP3294695B2 (en) Shaking stabilizer of elcatonin aqueous solution.
JP3323305B2 (en) Elcatonin stabilizer
EP0288057A2 (en) Des-19-leucine, 20-glutamine, 21-threonine, 22-tyrosine-calcitonin