JP2679236B2 - Non-contact type shape measuring device - Google Patents
Non-contact type shape measuring deviceInfo
- Publication number
- JP2679236B2 JP2679236B2 JP9548189A JP9548189A JP2679236B2 JP 2679236 B2 JP2679236 B2 JP 2679236B2 JP 9548189 A JP9548189 A JP 9548189A JP 9548189 A JP9548189 A JP 9548189A JP 2679236 B2 JP2679236 B2 JP 2679236B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- contact type
- optical sensor
- light receiving
- type shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 60
- 238000005259 measurement Methods 0.000 claims description 24
- 239000004065 semiconductor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定面に接触せずに被測定物の形状を測
定する装置に関するものである。The present invention relates to an apparatus for measuring the shape of an object to be measured without contacting the surface to be measured.
従来、プレス成形品や樹脂金型等の被測定物の形状測
定には、その被測定面に直接計測針を接触させ、位置を
読取るといった接触式の形状測定装置が広く用いられて
いるが、この装置では上記計測針が摩耗するといった不
都合があった。そこで、近年、非接触式の形状測定装置
が開発されており、そのうちの一つとして三角測量法を
利用した装置が提案されている。Conventionally, in measuring the shape of an object to be measured such as a press-molded product or a resin mold, a contact-type shape measuring device in which a measuring needle is brought into direct contact with the surface to be measured and the position is read is widely used. This device has a disadvantage that the measuring needle is worn. Therefore, in recent years, a non-contact type shape measuring device has been developed, and as one of them, a device using a triangulation method has been proposed.
この装置を第8図に基づいて説明する。図において、
80は発光および受光手段を備えた光センサであり、受光
手段は図のW軸方向に広がる受光可能領域を有してい
る。この光センサ80は、被測定面S上に照射光Aを照射
するとともに、その反射光Bを上記受光手段で受光し、
その受光位置(W軸方向に関する受光位置)から被測定
面Sとの距離を求めるようになっている。This device will be described with reference to FIG. In the figure,
Reference numeral 80 is an optical sensor having light emitting and light receiving means, and the light receiving means has a light receiving area that extends in the W axis direction in the drawing. The optical sensor 80 irradiates the surface S to be measured with the irradiation light A, and the reflected light B is received by the light receiving means.
The distance from the surface S to be measured is calculated from the light receiving position (light receiving position in the W axis direction).
ところが、同図に示されるように、被測定面Sが大き
な曲率で内側に湾曲していると、測定点Pから最短距離
で入射される正規の反射光Bだけでなく、他の点で二次
反射された反射光B′までが受光手段に入射され、正確
な測定が妨げられる場合がある。また第9図に示される
ように、照射光Aの光軸に対する被測定面Sの傾斜角度
が大きいと、被測定物自身が障害となって反射光が弱め
られ、あるいは完全に遮光されて受光手段に到達せず、
測定不可能になる場合がある。However, as shown in the figure, when the surface S to be measured is curved inward with a large curvature, not only the regular reflected light B incident at the shortest distance from the measurement point P but also other points at other points. Up to the reflected light B ', which is subsequently reflected, may be incident on the light receiving means, which hinders accurate measurement. Further, as shown in FIG. 9, when the inclination angle of the surface S to be measured with respect to the optical axis of the irradiation light A is large, the object to be measured itself becomes an obstacle to weaken the reflected light, or the light is completely shielded and received. Without reaching the means,
It may become impossible to measure.
そこで本発明は、被測定面の形状によって生じる問題
を解決し、精度良く測定することができる非接触式形状
測定装置を提供することを目的とする。Therefore, it is an object of the present invention to solve the problem caused by the shape of the surface to be measured and to provide a non-contact type shape measuring apparatus capable of performing accurate measurement.
本発明は、発光手段および受光手段を有する光センサ
を備え、上記発光手段により被測定面上の測定点に光を
照射し、その反射光を受けた上記受光手段の受光出力か
ら被測定物の形状を測定する非接触式形状測定装置にお
いて、上記光センサを上記発光手段による照射光の光軸
を中心に旋回可能に支持する支持手段と、既に測定され
た形状データから、上記光軸に対する測定点での被測定
面の傾きを算出する演算手段と、この演算結果に基づい
て上記光センサを旋回駆動し、発光手段及び受光手段が
上記光軸及び被測定面の法線ベクトルを含む平面に対し
て略直交する方向に並ぶように設定する設定手段と、を
備えたものである。The present invention comprises an optical sensor having a light emitting means and a light receiving means, irradiating light to a measurement point on a surface to be measured by the light emitting means, and receiving the reflected light from the light reception output of the light receiving means to measure the object to be measured. In a non-contact type shape measuring device for measuring a shape, a support means for supporting the optical sensor so as to be rotatable around the optical axis of the light emitted by the light emitting means, and a measurement for the optical axis from the shape data already measured. Calculating means for calculating the inclination of the surface to be measured at a point, and the optical sensor is driven to rotate based on the result of the calculation, and the light emitting means and the light receiving means form a plane including the optical axis and the normal vector of the surface to be measured. And a setting means for setting them so as to be aligned in a direction substantially orthogonal to each other.
上記構成によれば、既算出データに基づいて演算され
た被測定面の傾きに基づき、光センサの発光手段および
受光手段が照射光の光軸と被測定面の法線ベクトルとを
含む平面に直交する方向に並ぶように光センサが旋回駆
動されるので、上記発光手段から発せられ被測定面で反
射された光は、短い幅をもって確実に受光手段に入射さ
れる。According to the above configuration, the light emitting means and the light receiving means of the optical sensor are arranged on the plane including the optical axis of the irradiation light and the normal vector of the measured surface based on the inclination of the measured surface calculated based on the already calculated data. Since the optical sensors are driven to rotate so as to be arranged in the direction orthogonal to each other, the light emitted from the light emitting means and reflected on the surface to be measured is reliably incident on the light receiving means with a short width.
さらに、上記被測定面の傾きと予め設定された傾きと
を比較するものによれば、上記光軸に対する被測定面の
傾斜が定められた基準を超えた場合にのみ光センサが旋
回駆動される。Further, according to the method of comparing the inclination of the measured surface with a preset inclination, the optical sensor is driven to rotate only when the inclination of the measured surface with respect to the optical axis exceeds a predetermined reference. .
第2図は、本発明の一実施例における形状測定装置の
全体構成を示したものである。FIG. 2 shows the overall configuration of the shape measuring apparatus in one embodiment of the present invention.
図において、20はアーチであり、このアーチ20の下方
に被測定物移送装置22が設置されている。この被測定物
移送装置22は、X,Y,Zの各軸方向にスライド可能なX軸
スライド部材241、Y軸スライド部材242、およびZ軸ス
ライド部材243を備え、各スライド部材241〜243は、X
軸駆動モータ261、Y軸駆動モータ262、Z軸駆動モータ
263(後記第4図参照)、および各モータの駆動軸に連
結されたボールスクリュー27によってスライド駆動され
るようになっている。In the figure, reference numeral 20 is an arch, and an object transfer device 22 is installed below the arch 20. The object transfer device 22 includes an X-axis slide member 241, a Y-axis slide member 242, and a Z-axis slide member 243 that are slidable in the X-, Y-, and Z-axis directions. , X
Axis drive motor 261, Y-axis drive motor 262, Z-axis drive motor
263 (see FIG. 4 described below) and a ball screw 27 connected to the drive shaft of each motor are slidably driven.
Z軸スライド部材243の上部には、被測定物が載置さ
れるテーブル28が固定され、このテーブル28の上方に光
センサ30が設けられている。この光センサ30は、アーチ
20の上部に固定されたセンサ旋回駆動モータ32に図外の
減速機および旋回軸31を介して連結され、この旋回軸31
回り(Z軸回り)に旋回可能となっている。A table 28 on which an object to be measured is placed is fixed to the upper portion of the Z-axis slide member 243, and an optical sensor 30 is provided above the table 28. This light sensor 30
A sensor swivel drive motor 32 fixed to the upper part of 20 is connected via a speed reducer and a swivel shaft 31 (not shown).
It is possible to turn around (around the Z axis).
第3図に示されるように、上記光センサ30のハウジン
グ34内に半導体レーザ(発光手段)36および位置読取り
センサ(受光手段)37が設けられ、ハウジング34の下部
に形成された傾斜壁341には集光レンズ38が固定されて
いる。半導体レーザ36は、その照射光Aの光軸が上記旋
回軸31と合致する位置に配設されており、上記位置読取
りセンサ37は、Z軸に対して所定の角度をもつW軸方向
に広がる受光可能領域を有している。この光センサ30
は、上記半導体レーザ36により被測定面S上に照射光A
を照射するとともに、その反射光Bを集光レンズ38を介
して位置読取りセンサ37で受光し、その受光位置(詳し
くはW軸方向に関する受光位置)を読取るように構成さ
れている。As shown in FIG. 3, a semiconductor laser (light emitting means) 36 and a position reading sensor (light receiving means) 37 are provided in a housing 34 of the optical sensor 30, and an inclined wall 341 formed in a lower portion of the housing 34 is provided. The condenser lens 38 is fixed. The semiconductor laser 36 is arranged at a position where the optical axis of the irradiation light A coincides with the turning axis 31, and the position reading sensor 37 spreads in the W axis direction having a predetermined angle with respect to the Z axis. It has a light receiving area. This optical sensor 30
Is the irradiation light A on the surface S to be measured by the semiconductor laser 36.
The position reading sensor 37 receives the reflected light B through the condenser lens 38, and reads the light receiving position (specifically, the light receiving position in the W-axis direction).
第4図は、この形状測定装置に備えられた演算制御装
置40を示したものである。この演算制御装置40には、上
記位置読取りセンサ37、および各軸方向の被測定物の移
送距離を測定する測長器421〜423の検出信号が入力さ
れ、同演算制御装置40からは、表示装置44、データ記録
装置46、上記センサ旋回駆動モータ32、およびX,Y,Z各
軸の駆動モータ261〜263に対して制御信号が出力される
ようになっており、演算制御装置40自身は、上記第1図
に示される演算手段12、制御手段14、および比較手段16
に各々対応する機能を備えている。なお、上記表示装置
44は、測定された形状データを表示するものであり、デ
ータ記録装置46は算出データを磁気ディスクに記録する
ものである。FIG. 4 shows an arithmetic and control unit 40 provided in this shape measuring apparatus. The position detection sensor 37 and the detection signals of the length measuring devices 421 to 423 for measuring the transfer distance of the measured object in each axial direction are input to the arithmetic and control unit 40. A control signal is output to the device 44, the data recording device 46, the sensor rotation drive motor 32, and the drive motors 261 to 263 for the X, Y, and Z axes. , The calculation means 12, the control means 14, and the comparison means 16 shown in FIG.
It has the function corresponding to each. The above display device
Reference numeral 44 indicates the measured shape data, and the data recording device 46 records the calculated data on the magnetic disk.
次に、この装置の行う形状測定動作を説明する。 Next, the shape measuring operation performed by this apparatus will be described.
まず、テーブル28上に被測定物が載置された状態で、
この被測定物の測定が可能となる位置までZ軸スライド
部材243が昇降駆動される。通常は、この段階でテーブ
ル28の高さが固定されるが、被測定物の被測定面Sの起
伏が大きい場合には、測定中にも演算制御装置40の制御
の下でZ軸スライド部材28が適宜駆動され、被測定物が
常に測定可能な高さ位置に保たれる。First, with the object to be measured placed on the table 28,
The Z-axis slide member 243 is driven up and down to a position where the measurement of the measured object is possible. Normally, the height of the table 28 is fixed at this stage, but when the undulation of the surface S to be measured of the object to be measured is large, the Z-axis slide member is controlled even during measurement under the control of the arithmetic and control unit 40. 28 is appropriately driven so that the object to be measured is always kept at a measurable height position.
この位置で、第3図に示されるように、光センサ30内
の半導体レーザ36から被測定面S上へ照射光Aが照射さ
れる。この照射光Aは、上記被測定面Sで反射された
後、集光レンズ38を通って位置読取りセンサ37で受光さ
れ、その受光位置(W軸方向に関する受光位置)に関す
る信号が演算制御装置40に入力される。演算制御装置40
は、この情報信号に基づいて半導体レーザ36から測定点
Pに至るまでの距離を演算し、表示装置44およびデータ
記録装置46にデータを出力する。At this position, as shown in FIG. 3, the irradiation light A is emitted from the semiconductor laser 36 in the optical sensor 30 onto the surface S to be measured. The irradiation light A is reflected by the surface S to be measured, passes through a condenser lens 38, and is received by a position reading sensor 37. A signal relating to the light receiving position (light receiving position in the W-axis direction) is given to the arithmetic and control unit 40. Entered in. Arithmetic control device 40
Calculates the distance from the semiconductor laser 36 to the measuring point P based on this information signal, and outputs the data to the display device 44 and the data recording device 46.
一方、この演算制御装置40の制御信号によってX軸駆
動モータ261およびY軸駆動モータ262が適宜作動するこ
とにより、X軸スライド部材241およびY軸スライド部
材242が各軸方向に駆動され、光センサ30に対して被測
定物が相対的に移送される。これによって、被測定物に
対する光センサ30の主走査および副走査が行われ、この
ような走査と上記測定動作とが並行して行われることに
より、被測定面S上の各点の高さ位置が順次読取られ、
結果として全体の形状が測定される。On the other hand, the X-axis drive motor 261 and the Y-axis drive motor 262 are appropriately operated by the control signal of the arithmetic and control unit 40, whereby the X-axis slide member 241 and the Y-axis slide member 242 are driven in the respective axial directions, and the optical sensor The object to be measured is transferred relative to 30. As a result, the main scanning and the sub-scanning of the optical sensor 30 with respect to the object to be measured are performed, and by performing such scanning and the measuring operation in parallel, the height position of each point on the surface to be measured S is measured. Are sequentially read,
As a result, the overall shape is measured.
さらに、この装置では、上記演算制御装置40からセン
サ旋回駆動モータ32に制御信号が出力されることによ
り、各測定点で光センサ30の向きが調節されるようにな
っている。次に、その具体的な制御内容を説明する。Furthermore, in this device, the orientation of the optical sensor 30 is adjusted at each measurement point by outputting a control signal from the arithmetic and control unit 40 to the sensor turning drive motor 32. Next, the specific control content will be described.
第5図において、51は被測定面上で未だ測定されてい
ない未測定領域(図の無地領域)、52は既に測定された
既測定領域(図の斜線領域)であるが、演算制御装置40
は、上記既測定領域52のうち今回の測定点Pの近傍の領
域(図の網目領域)53で算出された距離データを抽出
し、これらのデータに基づいて測定点Pでの被測定面S
の傾きを算出する。この装置では、測定点P近傍の9つ
の既測定点についてのデータが抽出され、これらのデー
タに基づいて最小二乗法により第6図に示されるような
被測定面Sの測定点Pにおける接平面Qの傾きが算出さ
れるようになっている。この実施例では、上記傾きとし
て第7図に示されるような接平面Qの測定点Pにおける
法線ベクトルηが算出される。In FIG. 5, reference numeral 51 denotes an unmeasured area that has not yet been measured on the surface to be measured (a plain area in the figure), and 52 denotes a measured area that has already been measured (a shaded area in the figure).
The distance data calculated in the area (mesh area in the figure) 53 in the vicinity of the current measurement point P among the previously measured areas 52 is extracted, and the measured surface S at the measurement point P is extracted based on these data.
Calculate the slope of. In this device, data on nine existing measurement points near the measurement point P are extracted, and based on these data, the tangent plane at the measurement point P of the measured surface S as shown in FIG. The slope of Q is calculated. In this embodiment, a normal vector η at the measurement point P on the tangent plane Q as shown in FIG. 7 is calculated as the inclination.
演算制御装置40は、上記法線ベクトルηと照射光Aの
光軸とのなす角度φを算出し、この角度φと予め設定さ
れた設定角度(この実施例では10゜)とを比較する。角
度φが設定角度以下である場合には光センサ30を旋回さ
せないが、角度φが設定角度を上回る場合には、上記接
平面QとXY平面との交線(すなわち等高線)Lを求める
とともに該交線LとX軸とのなす角度θを求め、この交
線Lと同方向に半導体レーザ36と位置読取りセンサ37が
並ぶように光センサ30を旋回させる。The arithmetic and control unit 40 calculates an angle φ formed by the normal vector η and the optical axis of the irradiation light A, and compares this angle φ with a preset setting angle (10 ° in this embodiment). When the angle φ is less than or equal to the set angle, the optical sensor 30 is not rotated, but when the angle φ is greater than the set angle, the intersection line (that is, the contour line) L between the tangent plane Q and the XY plane is obtained and The angle θ formed by the line of intersection L and the X axis is obtained, and the optical sensor 30 is turned so that the semiconductor laser 36 and the position reading sensor 37 are aligned in the same direction as the line of intersection L.
このような装置によれば、照射光Aの光軸に対して被
測定面Sが一定以上傾いている場合、その法線ベクトル
ηと照射光Aの光軸とを含む平面に直交する方向、すな
わち被測定面Sの等高線の方向に半導体レーザ36と位置
読取りセンサ37が並ぶように光センサ30が旋回駆動され
るので、上記第8図や第9図に示されるように被測定面
Sの起伏が反射光Bに影響することがなく、各測定点で
常に良好な測定を行うことができる。According to such a device, when the surface S to be measured is tilted by a certain amount or more with respect to the optical axis of the irradiation light A, a direction orthogonal to a plane including its normal vector η and the optical axis of the irradiation light A, That is, since the optical sensor 30 is driven to rotate so that the semiconductor laser 36 and the position reading sensor 37 are aligned in the direction of the contour line of the surface S to be measured, the surface S to be measured of the surface S to be measured as shown in FIGS. The undulation does not affect the reflected light B, and good measurement can always be performed at each measurement point.
さらに、上記のように、法線ベクトルηと光軸のなす
角度φが一定値以上の場合、すなわち被測定面Sの形状
が測定精度に影響を及ぼす場合にのみ光センサ30を旋回
させるようにすれば、光センサ30の旋回に要する時間を
最小限に抑えることができ、測定能率の向上を図ること
ができる。Further, as described above, the optical sensor 30 is rotated only when the angle φ formed by the normal vector η and the optical axis is a certain value or more, that is, when the shape of the surface S to be measured affects the measurement accuracy. By doing so, the time required for turning the optical sensor 30 can be minimized, and the measurement efficiency can be improved.
なお、本発明はこの実施例に限定されず、例として次
のような態様をとることも可能である。It should be noted that the present invention is not limited to this embodiment, and the following aspects can be taken as an example.
(1) 本発明では、照射光の光軸と光センサの旋回軸
が合致していればよく、両軸の具体的な方向は問わな
い。例えば、被測定面に対してX軸方向に光が照射され
る場合には、同方向に光センサの旋回軸を設定すればよ
い。(1) In the present invention, it suffices that the optical axis of the irradiation light and the turning axis of the optical sensor match, and the specific directions of both axes do not matter. For example, when light is applied to the surface to be measured in the X-axis direction, the turning axis of the optical sensor may be set in the same direction.
(2) 本発明では、光センサの方向が光軸と法線ベク
トルとを含む平面に直交する方向に厳密に一致していな
くてもよく、測定精度に影響を与えない範囲で両者に多
少の差があってもよい。また、実際に法線ベクトルを算
出する必要はなく、結果として上記方向に光センサが向
くように制御すれば本発明の目的は達せられる。(2) In the present invention, the direction of the optical sensor does not have to be exactly the same as the direction orthogonal to the plane including the optical axis and the normal vector, and there is a slight difference between the two in a range that does not affect the measurement accuracy. There may be a difference. Further, it is not necessary to actually calculate the normal vector, and as a result, the object of the present invention can be achieved by controlling so that the optical sensor faces the above direction.
(3) 本発明は発光手段および受光手段の種類を問わ
ず、被測定物の形状に対しセンサの方向を変化させた時
に測定精度が変わるような測定装置に適用することがで
きる。(3) The present invention can be applied to a measuring device in which the measurement accuracy changes when the direction of the sensor is changed with respect to the shape of the object to be measured, regardless of the types of the light emitting means and the light receiving means.
以上のように本発明は、光センサにより既に検出され
たデータから照射光の光軸に対する被測定面の傾きを算
出し、上記光センサの発光手段および受光手段が上記光
軸および被測定面の法線ベクトルを含む平面に対して略
直交する方向に並ぶように、光センサを上記光軸回りに
旋回させるようにしたものであるので、簡単な機構およ
び制御によって、被測定面の形状に拘らず常に高精度で
反射光の受光位置を読取ることができる効果がある。As described above, the present invention calculates the inclination of the surface to be measured with respect to the optical axis of the irradiation light from the data already detected by the optical sensor, and the light emitting means and the light receiving means of the optical sensor include the optical axis and the surface to be measured. Since the optical sensors are rotated around the optical axis so that they are aligned in a direction substantially orthogonal to the plane including the normal vector, the shape of the surface to be measured can be controlled by a simple mechanism and control. Therefore, it is possible to always read the light receiving position of the reflected light with high accuracy.
さらに、被測定面の法線ベクトルと上記光軸とが形成
する角度と予め設定された角度とを比較し、前者が後者
を上回る場合にのみ光センサを旋回させるようにすれ
ば、光センサを旋回させるための時間を最小限に抑える
ことにより、測定能率の向上を図ることができる効果が
ある。Furthermore, by comparing the angle formed by the normal vector of the surface to be measured and the optical axis with a preset angle, and turning the optical sensor only when the former exceeds the latter, the optical sensor There is an effect that the measurement efficiency can be improved by minimizing the time for turning.
第1図は本発明の非接触式形状測定装置の主要部の機能
構成図、第2図は同発明の一実施例における非接触式形
状測定装置の全体構成図、第3図は同装置に備えられた
光センサの内部構造図、第4図は同装置に備えられた演
算制御装置等のハード構成図、第5図は被測定面におけ
る未測定領域および既測定領域を示す説明図、第6図は
同被測定面の測定点における接平面を示す斜視図、第7
図は同接平面および同接平面の法線ベクトルを示す斜視
図、第8図および第9図は被測定面の形状と光センサに
入射される反射光との関係を示す説明図である。 10……駆動手段、12……演算手段、14……制御手段、16
……比較手段、30……光センサ、32……センサ旋回駆動
モータ(駆動手段)、36……半導体レーザ(発光手
段)、37……位置読取りセンサ(受光手段)、40……演
算制御装置(演算手段、制御手段、および比較手段)、
A……照射光、B……反射光、P……測定点、S……被
測定面、η……法線ベクトル、φ……法線ベクトルと光
軸とのなす角度。FIG. 1 is a functional configuration diagram of a main part of a non-contact type shape measuring device of the present invention, FIG. 2 is an overall configuration diagram of a non-contact type shape measuring device in an embodiment of the present invention, and FIG. FIG. 4 is an internal structure diagram of an optical sensor provided, FIG. 4 is a hardware configuration diagram of an arithmetic control device and the like provided in the device, FIG. 5 is an explanatory diagram showing an unmeasured region and an already measured region on a surface to be measured, FIG. 6 is a perspective view showing a tangent plane at a measurement point on the surface to be measured, FIG.
The figure is a perspective view showing the tangent plane and a normal vector of the tangent plane, and FIGS. 8 and 9 are explanatory views showing the relationship between the shape of the surface to be measured and the reflected light incident on the optical sensor. 10 ... Driving means, 12 ... Computing means, 14 ... Control means, 16
...... Comparison means, 30 ...... Optical sensor, 32 ...... Sensor rotation drive motor (driving means), 36 …… Semiconductor laser (light emitting means), 37 …… Position reading sensor (light receiving means), 40 …… Computational control device (Arithmetic means, control means, and comparison means),
A: irradiation light, B: reflected light, P: measurement point, S: surface to be measured, η: normal vector, φ: angle between normal vector and optical axis.
Claims (4)
備え、上記発光手段により被測定面上の測定点に光を照
射し、その反射光を受けた上記受光手段の受光出力から
被測定物の形状を測定する非接触式形状測定装置におい
て、 上記光センサを上記発光手段による照射光の光軸を中心
に旋回可能に支持する支持手段と、 既に測定された形状データから、上記光軸に対する測定
点での被測定面の傾きを算出する演算手段と、 この演算結果に基づいて上記光センサを旋回駆動し、発
光手段及び受光手段が上記光軸及び被測定面の法線ベク
トルを含む平面に対して略直交する方向に並ぶように設
定する設定手段と、 を備えたことを特徴とする非接触式形状測定装置。1. An object to be measured is provided with an optical sensor having a light emitting means and a light receiving means, the light emitting means irradiates a measuring point on a surface to be measured with light, and the light receiving output of the light receiving means receives the reflected light. In the non-contact type shape measuring device for measuring the shape of, the supporting means for supporting the optical sensor so as to be rotatable around the optical axis of the irradiation light by the light emitting means, and the shape data already measured, with respect to the optical axis Computation means for calculating the inclination of the surface to be measured at the measurement point, and the optical sensor is driven to rotate based on the result of the computation, and the light emitting means and the light receiving means are planes including the optical axis and the normal vector of the surface to be measured. A non-contact type shape measuring device, comprising: a setting unit configured to be arranged in a direction substantially orthogonal to the above.
いて、上記光センサを上記光軸を中心に旋回駆動する駆
動手段を備え、上記設定手段は、上記演算手段の演算結
果に基づいて発光手段及び受光手段が上記方向に並ぶよ
うに上記駆動手段を制御する制御手段を有することを特
徴とする非接触式形状測定装置。2. The non-contact type shape measuring apparatus according to claim 1, further comprising drive means for driving the optical sensor to rotate about the optical axis, wherein the setting means is based on a calculation result of the calculation means. A non-contact type shape measuring device comprising a control means for controlling the driving means so that the light emitting means and the light receiving means are arranged in the above direction.
いて、上記受光手段の受光出力から被測定面上の測定点
と光センサとの距離データを順次測定する測距手段を備
え、この順次測定される距離データに基づいて被測定物
の形状を測定することを特徴とする非接触式形状測定装
置。3. The non-contact type shape measuring device according to claim 1, further comprising a distance measuring means for sequentially measuring distance data between a measuring point on a surface to be measured and an optical sensor from a light receiving output of the light receiving means. A non-contact type shape measuring device, characterized in that the shape of an object to be measured is measured based on sequentially measured distance data.
いて、上記演算手段によって算出された被測定面の傾き
と予め設定された傾きとを比較する比較手段を備え、上
記設定手段は前者が後者を上回る場合にのみ光センサを
旋回駆動することを特徴とする非接触式形状測定装置。4. The non-contact type shape measuring apparatus according to claim 1, further comprising a comparing means for comparing the inclination of the surface to be measured calculated by the calculating means with a preset inclination, wherein the setting means is the former. A non-contact type shape measuring device characterized in that the optical sensor is driven to rotate only when is larger than the latter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9548189A JP2679236B2 (en) | 1989-04-14 | 1989-04-14 | Non-contact type shape measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9548189A JP2679236B2 (en) | 1989-04-14 | 1989-04-14 | Non-contact type shape measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02272308A JPH02272308A (en) | 1990-11-07 |
JP2679236B2 true JP2679236B2 (en) | 1997-11-19 |
Family
ID=14138806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9548189A Expired - Lifetime JP2679236B2 (en) | 1989-04-14 | 1989-04-14 | Non-contact type shape measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2679236B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04189452A (en) * | 1990-11-20 | 1992-07-07 | Fanuc Ltd | Digitizing control device |
JPH08101018A (en) * | 1994-09-30 | 1996-04-16 | Sintokogio Ltd | Method for measuring dimension of mold and mold-related parts by using laser length measuring instrument |
US5771100A (en) * | 1995-09-27 | 1998-06-23 | Sintokogio, Ltd. | Method of measuring dimension of mold or mold-associated component by laser measuring instrument |
-
1989
- 1989-04-14 JP JP9548189A patent/JP2679236B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02272308A (en) | 1990-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4972090A (en) | Method and apparatus for measuring and inspecting articles of manufacture for configuration | |
JP2542631B2 (en) | Non-contact tracing method | |
US5760906A (en) | Shape measurement apparatus and method | |
US5456020A (en) | Method and sensor for the determination of the position of a position-control element relative to a reference body | |
JP2679236B2 (en) | Non-contact type shape measuring device | |
JP2594578B2 (en) | Non-contact profile control device | |
JPH0914921A (en) | Non-contact three-dimensional measuring instrument | |
JP2542653B2 (en) | Non-contact copying method | |
JPH03264804A (en) | Surface-shape measuring apparatus | |
US5017013A (en) | Method of determining the position of a reference point of a scanner relative to an incremental scale as well as a reference point communicator | |
JPH09178439A (en) | Three-dimensional shape measuring device | |
JPH01188254A (en) | Noncontact copying digitizing | |
JP3607821B2 (en) | Inclination angle measuring machine | |
JPH0621767B2 (en) | Curved surface shape measuring method and apparatus | |
JP2758810B2 (en) | Shape measurement method | |
JP2579726B2 (en) | Contact probe | |
JPS59154308A (en) | Automatic measuring method of object shape | |
JP2572936B2 (en) | Shape measuring instruments | |
JPH09178440A (en) | Three-dimensional shape measuring device | |
JPS61189405A (en) | Non-contact shape measuring device | |
JP2006064555A (en) | Method and apparatus for detecting sensitivity of angular velocity sensor | |
JPH09178438A (en) | Three-dimensional shape measuring device | |
JPS63187103A (en) | Non-contact measurement method for three-dimensional shapes | |
JPH0843041A (en) | Method and apparatus for measuring three-dimensional shape | |
JPH09243304A (en) | Shape measuring device, and method of positioning surface to be measured using it |