JP2678995B2 - Method for producing tryptophan synthase - Google Patents
Method for producing tryptophan synthaseInfo
- Publication number
- JP2678995B2 JP2678995B2 JP63223399A JP22339988A JP2678995B2 JP 2678995 B2 JP2678995 B2 JP 2678995B2 JP 63223399 A JP63223399 A JP 63223399A JP 22339988 A JP22339988 A JP 22339988A JP 2678995 B2 JP2678995 B2 JP 2678995B2
- Authority
- JP
- Japan
- Prior art keywords
- plasmid
- dna
- tryptophan synthase
- gene
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【発明の詳細な説明】 本発明はトリプトフアンシンターゼの製造法に関し、
更に詳しくは、トリプトフアンシンターゼ遺伝子を含む
DNA領域と、該遺伝子の発現を制御しうるプロモーター
及びオペレーターを含むDNA領域と、コリネ型細菌内で
の自律増殖能及び安定化機能を有するDNA領域から成る
プラスミドで形質転換されたコリネ型細菌を培地で培養
することによりトリプトフアンシンターゼを製造する方
法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing tryptophan synthase,
More specifically, it contains the tryptophan synthase gene.
A coryneform bacterium transformed with a plasmid comprising a DNA region, a DNA region containing a promoter and an operator capable of controlling the expression of the gene, and a DNA region having an autonomous growth ability and a stabilizing function in the coryneform bacterium. It relates to a method for producing tryptophan synthase by culturing in a medium.
ブレビバクテリウム属細菌を含むコリネ型細菌は、ア
ミノ酸、有機酸、プリンヌクレオチド等を生産する工業
的に有用な微生物であるが、組換えDNA技術の導入によ
る菌株の育種改良は、エシエリヒア・コリ等に比べてま
だ遅れており、特に、コリネ型細菌を宿主とする工業的
に有用な安定性に優れたベクターの開発が強く望まれて
いる。Coryneform bacteria including Brevibacterium are industrially useful microorganisms that produce amino acids, organic acids, purine nucleotides, etc., but breeding improvement of strains by the introduction of recombinant DNA technology is performed by Escherichia coli, etc. However, there is a strong demand for the development of an industrially useful vector having excellent stability, which uses a coryneform bacterium as a host.
一般に造成プラスミドの宿主内での安定性に関して、
従来より、培養時に宿主からのプラスミドの脱落や挿入
遺伝子の欠落等種々の遺伝的不安定性が報告されてお
り、その対応策が検討されている。Generally, regarding the stability of the constructed plasmid in the host,
Heretofore, various genetic instability such as loss of plasmid from host and lack of inserted gene during culturing has been reported, and countermeasures against it have been investigated.
例えば、エシエリヒア属のストレプトマイシンに依存
しないという性質をコードする染色体遺伝子DNA断片が
組み込まれたプラスミドを、エシエリヒア属のストレプ
トマイシン依存性変異株に含有せしめて、プラスミドを
含有する微生物の性質を安定化する方法が提案されてい
る(特開昭55−156591号公報参照)。For example, a method of stabilizing a property of a microorganism containing a plasmid by incorporating a plasmid into which a chromosomal gene DNA fragment encoding a property that does not depend on streptomycin of the genus Escherichia is incorporated into a streptomycin-dependent mutant strain of the genus Escherichia Has been proposed (see Japanese Patent Laid-Open No. 55-156591).
しかしながら、かかる方法は経済的に問題があるのみ
ならず、目的のプラスミドに複雑な機能を組み込む必要
があるため、宿主の分裂増殖時にプラスミドが安定に娘
細胞に分配され難いことが予想され、工業的に応用する
にはかなりの問題がある。However, this method is not only economically problematic, but also requires complicated functions to be incorporated into the desired plasmid, and therefore it is expected that the plasmid will not be stably distributed to daughter cells during mitotic growth of the host. There is a considerable problem in applying it to the future.
また、トリプトフアンシンターゼの生合成を司る遺伝
子を含むDNA領域のクローニングについても従来からい
ろいろと研究されているが、トリプトフアンシンターゼ
の生合成を司る遺伝子を含むDNA領域が導入されたベク
タープラスミドは、例えばJournal of General Microbi
ology vol118、p253(1980)に記載されているように、
宿主内での安定性に問題があり、トリプトフアンの工業
的製造に応用するには多くの困難があると考えられてい
る。In addition, various studies have been conducted so far on cloning of a DNA region containing a gene controlling the biosynthesis of tryptophan synthase, but a vector plasmid into which a DNA region containing a gene controlling the biosynthesis of tryptophan synthase is introduced. Is, for example, the Journal of General Microbi
As described in ology vol118, p253 (1980),
There are problems with stability in the host, and it is thought that there are many difficulties in applying it to the industrial production of tryptophan.
本発明者らは、先にコリネ型細菌内で複製増殖しうる
ブレビバクテリウム・スタチオニスIFO12144由来のプラ
スミドpBY503上に安定化機能を担うDNA断片が存在する
ことを発見し、該DNA断片を不安定なプラスミドベクタ
ーに結合させることにより安定化させる方法を提案した
(特願昭63−185428号)。The present inventors previously discovered that a DNA fragment having a stabilizing function was present on a plasmid pBY503 derived from Brevibacterium statinis IFO12144 capable of replicating and propagating in a coryneform bacterium, and the DNA fragment was unstable. We have proposed a method for stabilization by binding to various plasmid vectors (Japanese Patent Application No. 185428/1988).
そこで本発明者らは、上記プラスミドの安定化機能を
担うDNA断片を利用し、トリプトフアンシンターゼ遺伝
子を担うプラスミドを安定化させ、トリプトフアンシン
ターゼを安定かつ大量に製造させる方法を検討した結
果、本発明を完成するに至つた。Therefore, the present inventors have used a DNA fragment responsible for the stabilizing function of the above plasmid, to stabilize the plasmid responsible for the tryptophan synthase gene, the results of examining a method for producing a stable and large amount of tryptophan synthase The present invention has been completed.
かくして、本発明によれば、トリプトフアンシンター
ゼ産生能を有するコリネ型細菌、殊に、少なくともトリ
プトフアンシンターゼの生合成を司る遺伝子を含むDNA
領域と、コリネ型細菌内での自律増殖能及び安定化機能
を有するDNA領域とから成るプラスミドで形質転換され
たコリネ型細菌を培地で培養し、培養物からトリプトフ
アンシンターゼを採取することを特徴とするトリプトフ
アンシンターゼの製造方法が提供される。Thus, according to the present invention, a coryneform bacterium having the ability to produce tryptophan synthase, in particular, a DNA containing a gene controlling at least the biosynthesis of tryptophan synthase.
Region, and a coryneform bacterium transformed with a plasmid comprising a DNA region having an autonomous growth ability and a stabilizing function in the coryneform bacterium, cultivated in a medium, and collecting tryptophan synthase from the culture. A method for producing a characteristic tryptophan synthase is provided.
本発明に従う上記プラスミドを構成する「トリプトフ
アンシンターゼの生合成を司る遺伝子を含むDNA領域」
(以下「T領域」と略称することがあるには、インドー
ルとL−又はDL−セリンからのL−トリプトフアンの生
合成を司る遺伝子を含む領域が包含され、しかして、T
領域には、例えば、トリプトフアンオペロン中のトリプ
ロフアンシンターゼ遺伝子を含むDNA領域(a)、すな
わちtrpA及びtrpBを含むDNA領域に、トリプトフアンオ
ペロン由来の該遺伝子の発現を制御しうるプロモーター
及びオペレーターを含むDNA領域(b)が結合したもの
が挙げられる。これらのT領域として実用的にはエシエ
リヒア・コリ(Escherichia coli)由来のものが好適に
使用され、このT領域の供給源としては例えば、エシエ
リヒア・コリATCC23282、エシエリヒア・コリATCC2343
7、エシエリヒア・コリATCC23461等が有利に使用され
る。"A DNA region containing a gene controlling the biosynthesis of tryptophan synthase" constituting the above-mentioned plasmid according to the present invention
(Hereinafter, the term "T region" may be abbreviated to include a region containing a gene controlling the biosynthesis of L-tryptophan from indole and L- or DL-serine.
The region includes, for example, a DNA region (a) containing the tryptophan synthase gene in the tryptophan operon, that is, a DNA region containing trpA and trpB, and a promoter capable of controlling the expression of the gene derived from the tryptophan operon and An example is one in which the DNA region (b) containing the operator is bound. Practically, those derived from Escherichia coli are preferably used as these T regions, and the source of this T region is, for example, Escherichia coli ATCC23282, Escherichia coli ATCC2343.
7, Escherichia coli ATCC23461 etc. are advantageously used.
これら供給源微生物からT領域を調製するための基本
操作としては、染色体遺伝子中にフアージφ80を感染さ
せた後誘発し、フアージDNA中にトリプトフアンオペロ
ンを取り込んだフアージを大量に調製する。次にフアー
ジDNAを抽出し、制限酵素BamH I、EcoR I等を用いてト
リプトフアンオペロンDNA断片を切り出し、このDNA断片
をさらに制限酵素Hinc IIで部分分解を行なえば、trpA
及びtrpB遺伝子を含むDNA断片が得られる。次に該DNA断
片にSa1 Iリンカーを付与し、プラスミドpDR720(フア
ルマシア製)のSa1 I部位に挿入した後EcoR Iで切り出
し、さらにプラスミドPUC9(フアルマシア製)のEcoR I
部位に挿入した後BamH Iで切り出すことによりtrpA及び
trpBとトリプトフアンプロモーター及びオペレーターと
が結合したDNA断片、すなわちT領域を調製することが
できる。The basic procedure for preparing the T region from these source microorganisms is to infect a chromosomal gene with phage φ80 and then induce it to prepare a large amount of the phage in which the tryptophan operon is incorporated into the phage DNA. Next, the phage DNA is extracted, the tryptophan operon DNA fragment is cut out using restriction enzymes BamH I, EcoR I, etc., and this DNA fragment is further digested with restriction enzyme Hinc II to obtain trpA
And a DNA fragment containing the trpB gene is obtained. Next, a Sa1 I linker was added to the DNA fragment, inserted into the Sa1 I site of plasmid pDR720 (Falmatia), cut out with EcoR I, and then EcoR I of plasmid PUC9 (Falmatia).
After inserting into the site, excision with BamHI
A DNA fragment in which trpB is bound to a tryptophan promoter and an operator, that is, a T region can be prepared.
一方、「コリネ型細菌内での安定化機能を有するDNA
領域」(以下[S領域」と略称することがある)には、
コリネ型細菌内で複製増殖可能なプラスミドを安定化さ
せ得る機能を担う領域が包含され、例えば、ブレビバク
テリウム・スタチオニス(Brevibacterium stationis)
IFO12144(FERM P−10136)が保有するプラスミドpBY
503(このプラスミドの詳細については特願昭62−25379
号出願明細書参照)をKpn Iの如き制限酵素で切り出す
ことにより得られる約7.4kbの大きさのDNA断片が挙げら
れ、該DNA断片の各種制限酵素切断による分子量を下記
表1に示す。On the other hand, "DNA having a stabilizing function in coryneform bacteria
The “region” (hereinafter sometimes abbreviated as “S region”) includes
A region having a function of stabilizing a plasmid capable of replicative growth in a coryneform bacterium is included, and examples thereof include Brevibacterium stationis.
Plasmid pBY carried by IFO12144 (FERM P-10136)
503 (For details of this plasmid, see Japanese Patent Application No. 62-25379).
(See the specification of the Japanese application), and a DNA fragment having a size of about 7.4 kb obtained by cleaving it with a restriction enzyme such as Kpn I can be mentioned. The molecular weights of the DNA fragment obtained by digestion with various restriction enzymes are shown in Table 1 below.
以上に述べたトリプトフアンシンターゼの生合成を司
る遺伝子を含むDNA領域(T領域)と、コリネ型細菌内
での安定化機能を有するDNA領域(S領域)とを組み込
むためのベクタープラスミドとしては、コリネ型殺菌内
で複製増殖可能なものであれば特に制限はなく、例え
ば、以下のものが挙げられるが、代表例としては、特願
昭63−193659号明細書に開示されているプラスミドpCRY
−2、pCRY−3等を例示することができる。 A vector plasmid for incorporating the above-described DNA region (T region) containing a gene that controls the biosynthesis of tryptophan synthase and a DNA region (S region) having a stabilizing function in coryneform bacteria , There is no particular limitation as long as it can be replicated and propagated in a coryneform sterilization, and examples thereof include the following. As a typical example, a plasmid pCRY disclosed in Japanese Patent Application No. 63-193659 is disclosed.
-2, pCRY-3, etc. can be illustrated.
(1) pAM330 特開昭58−67699号公報参照 (2) pAM1519 特開昭58−77895号公報参照 (3) pAJ655 特開昭58−192900号公報参照 (4) pAJ611 同上 (5) pAJ18244 同上 (6) pCG1 特開昭57−134500号公報参照 (7) pCG2 特開昭58−35197号公報参照 (8) pCG4 特開昭47−183799号公報参照 (9) pCG11 同上 (10) pCRY−2 特願昭63−13659号明細書参照 (11) pCRY−3 同上 上記プラスミドベクターpCRY−及びpCRY−3を造成す
る方法としては、ブレビバクテリウム・フラバムMJ233
(FERM P−3068)及びブレビバクテリウム・スタチオ
ニスIFO12144(FERM P−10136)からプラスミドpBY50
2及びpBY5039DNAを抽出し、制限酵素Hind III又はKpn I
処理により4.1kb及び6kbのDAN断片を得る。次に該DNA断
片とプラスミドpHSG398(宝酒造製)を同様の制限酵素
で処理したものと結合させることによりpCRY−2及びpC
RY−3が造成できる(特願昭63−13659号明細書参
照)。(1) pAM330 Refer to JP-A-58-67699 (2) pAM1519 Refer to JP-A-58-77895 (3) pAJ655 Refer to JP-A-58-192900 (4) pAJ611 Same as above (5) pAJ18244 Same as above ( 6) pCG1 Refer to JP-A-57-134500 (7) pCG2 Refer to JP-A-58-35197 (8) pCG4 Refer to JP-A-47-183799 (9) pCG11 Same as above (10) pCRY-2 Special See Japanese Patent Application No. 63-13659 (11) pCRY-3 Id. As a method for constructing the above plasmid vectors pCRY- and pCRY-3, Brevibacterium flavum MJ233
(FERM P-3068) and Brevibacterium statinis IFO12144 (FERM P-10136) plasmid pBY50.
2 and pBY5039 DNA were extracted and the restriction enzymes Hind III or Kpn I
The treatment gives 4.1 kb and 6 kb DAN fragments. Next, the DNA fragment and plasmid pHSG398 (manufactured by Takara Shuzo Co., Ltd.) were ligated with the same restriction enzyme to obtain pCRY-2 and pCRY.
RY-3 can be produced (see Japanese Patent Application No. 63-13659).
「T領域」及び「S領域」のかかるベクタープラスミ
ドへの導入は、例えば、まずベクタープラスミドpCRY−
3を制限酵素Kpn Iで部分分解により開裂させ、そこにp
BY503DNAをKpn Iで完全分解することにより得られる7.4
kbの「S領域」を連結酵素処理により結合させ、次に上
記プラスミドをBamH Iで完全分解により開裂させた後、
そこに前記の「T領域」を連結酵素処理により結合させ
ることにより行うことができる。Introduction of "T region" and "S region" into such vector plasmid is carried out by, for example, first introducing vector plasmid pCRY-
3 is partially cleaved with the restriction enzyme Kpn I, and p
7.4 obtained by complete digestion of BY503 DNA with Kpn I
The "S region" of kb was ligated by ligation enzyme treatment, and then the above plasmid was cleaved by complete digestion with BamHI,
It can be carried out by binding the above-mentioned "T region" thereto by a ligation enzyme treatment.
以上に述べたT領域及びS領域を導入したベクタープ
ラスミドで形質転換しうるコリネ型細菌としては、例え
ばブレビバクテリウム・フラバム(Brevibacterium fla
vum)MJ233由来の菌株が挙げられる。なお、本菌株を宿
主として用いる場合、本菌株が保有するpBY502(特開昭
63−36787号公報参照)により形質転換が困難になる場
合があるので、そのような場合には、本菌株よりpBY502
を除去することが望ましい。そのようなプラスミドを除
去する方法としては、例えば、継代培養を繰り返すこと
により自然に欠失させることも可能であるし、人為的に
除去することも可能である[Bact.Rev.36 p361〜405
(1972)参照]。Examples of the coryneform bacterium that can be transformed with the above-described vector plasmid into which the T region and S region have been introduced include, for example, Brevibacterium flavum.
vum) strains derived from MJ233. When using this strain as a host, pBY502 possessed by this strain (see
63-36787), the transformation may be difficult.
Is desirably removed. As a method for removing such a plasmid, for example, it is possible to spontaneously delete by repeating subculture, or it is possible to artificially remove [Bact. Rev. 36 p361- 405
(1972)].
上記プラスミドを人為的に除去する方法の一例を示せ
ば以下のとおりである。An example of the method for artificially removing the above plasmid is as follows.
宿主ブレビバクテリウム・フラバムMJ233の生育を不
完全に阻害する濃度のアクリジンオレンジ(濃度:0.2〜
50μg/ml)もしくはエチジウムブロミド(濃度:0.2〜50
μg/ml)等を含む培地に、1ml当り約10細胞になるよう
に植菌し、生育を不完全に阻害しながら、約24時間35℃
で培養する。培養液を希釈後寒天培地に塗布し、35℃で
約2日培養する。出現したコロニーから各々独立にプラ
スミド抽出操作を行ない、プラスミドが除去されている
株を選択する。この操作によりpBY502が除去されたブレ
ビバクテリウム・フラバムMJ233由来菌株が得られる。The concentration of acridine orange (concentration: 0.2-) that incompletely inhibits the growth of the host Brevibacterium flavum MJ233
50 μg / ml) or ethidium bromide (concentration: 0.2-50)
(μg / ml) etc., inoculate to a medium containing about 10 cells per ml, and for about 24 hours at 35 ° C while incompletely inhibiting the growth.
Incubate with After diluting the culture solution, apply it on an agar medium and incubate at 35 ° C for about 2 days. Plasmids are extracted from each of the emerged colonies independently to select a strain from which the plasmid has been removed. By this operation, a strain derived from Brevibacterium flavum MJ233 from which pBY502 has been removed can be obtained.
このようにして得られたブレビバクテリウム・フラバ
ムMJ233由来菌株への前記プラスミドの形質転換法とし
ては、エシエリヒア・コリ及びエルビニア・カロトボラ
について知られているように[Calvin,N.M and Hanawa
lt,P.C,Journal of Bacteriology,170、2796(1988);I
to,K.,Nishida.T and Izaki,K、Agricultural and Biol
ogical Chemistry,52、293(1988)]、DNA受容菌にパ
ルス波を通電することによりプラスミドを導入すること
が可能である。As a method for transforming the plasmid into the strain derived from Brevibacterium flavum MJ233 thus obtained, as is known for Escherichia coli and Erwinia carotovora [Calvin, NM and Hanawa
lt, PC, Journal of Bacteriology, 170 , 2796 (1988); I
to, K., Nishida.T and Izaki, K, Agricultural and Biol
ogical Chemistry, 52 , 293 (1988)], and it is possible to introduce a plasmid by applying a pulse wave to a DNA recipient bacterium.
上記の方法で形質転換して得られたトリプトフアンシ
ンターゼ産生能を有するブレビバクテリウム・フラバム
MJ233由来株の培養はそれ自体既知の方法で行なうこと
ができ、例えば以下に述べる如くして行なうことができ
る。Brevibacterium flavum capable of producing tryptophan synthase obtained by transformation by the above method
The culture of the MJ233-derived strain can be carried out by a method known per se, for example, as described below.
まず、培地に用いる炭素源としては例えばグルコー
ス、エタノール、メタノール、廃糖蜜等が、窒素源とし
てはアンモニア、硫酸アンモニウム、塩化アンモニウ
ム、硝酸アンモニウム、尿素等がそれぞれ単独もしくは
混合して用いることができる。First, as the carbon source used in the medium, for example, glucose, ethanol, methanol, molasses, etc. can be used, and as the nitrogen source, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea, etc. can be used alone or in combination.
無機塩としては、リン酸−水素カリウム、リン酸二水
素カリウム、硫酸マグネシウム等が用いられる。この他
にペプトン、肉エキス、酵母エキス、コーンステイープ
リカー、カザミノ酸、ビオチン等の各種ビタミン等の栄
養素を培地に添加して用いることができる。As the inorganic salt, potassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate and the like are used. In addition to this, nutrients such as various vitamins such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, and biotin can be added to the medium and used.
培養は通気撹拌、振とう等の好気的条件下で行ない、
培養温度は20〜40℃、好ましくは25〜35℃で行なう。培
養途中のpHは5〜10、好ましくは7〜8付近にて行な
い、培養中のpHの調整には酸、アルカリを添加して行な
うことができる。Culture is carried out under aerobic conditions such as aeration, shaking, and the like.
The cultivation temperature is 20 to 40 ° C, preferably 25 to 35 ° C. The pH during the culturing is adjusted to 5 to 10, preferably around 7 to 8. The pH during the culturing can be adjusted by adding an acid or an alkali.
培養開始時の炭素源濃度は、好ましくは1〜5容量
%、更に好ましくは2〜3容量%である。培養期間は1
〜7日間、最適期間は1〜3日間である。The carbon source concentration at the start of culture is preferably 1 to 5% by volume, more preferably 2 to 3% by volume. Culture period is 1
~ 7 days, optimal period is 1-3 days.
このようにして得られる培養物から菌体を集め、それ
自体既知の方法で処理することにより、トリプトフアン
シンターゼ画分を得ることができる。The tryptophan synthase fraction can be obtained by collecting the cells from the thus obtained culture and treating them by a method known per se.
以上に本発明の内容を概括的に説明したが次に実施例
によりさらに具体的に説明する。しかしながら下記の実
施例は本発明について具体的な認識を得る一助としての
み挙げたものであり、これによつて本発明の範囲は何ら
限定するものではない。The content of the present invention has been generally described above, but it will be described more concretely by way of examples. However, the following examples are given only as an aid to gain a concrete recognition of the present invention, and the scope of the present invention is not limited thereby.
実施例1 プラスミドPBY503とプラスミドpHSG398とから成る複合
プラスミドpCRY−3の造成と性質 (A) プラスミドpBY503の調製 プラスミドpBY503は、ブレビバクテリウム・スタチオ
ニスIFO12144FERM P−10136から新たに分離された分
子量約10メガダルトンのプラスミドであり、特願昭62−
252379号明細書に記載のプラスミドであり、次のように
して調製した。Example 1 Construction and properties of composite plasmid pCRY-3 consisting of plasmid PBY503 and plasmid pHSG398 (A) Preparation of plasmid pBY503 Plasmid pBY503 is a newly isolated plasmid from Brevibacterium statinis IFO12144FERM P-10136 with a molecular weight of about 10 mega. Dalton's plasmid, Japanese Patent Application No. 62-
The plasmid described in the specification of No. 252379 was prepared as follows.
半合成培地A培地[尿素2g、(NH4)2SO47g、K2HPO
40.5g、KH2PO40.5g、MgSO40.5g、FeSO4・7H2O 6mg、Mn
SO4・4〜6H2O 6mg、酵母エキス2.5g、カザミノ酸5g、
ビオチン200μg、塩酸チアミン200μg、グルコース20
g、純水1]1に、ブレビバクテリウム・スタチオ
ニスIFO12144を対数増殖期後期まで培養し、菌体を集め
た。得られた菌体を10mg/mlの濃度にリゾチームを含む
緩衝液[25mMトリス(ヒドロキシメチル)アミノメタ
ン、10mM EDTA、50mMグルコース]20mlに懸濁し、37℃
で1時間反応させた。反応後にアルカリ−SDS液[0.2N
NaOH、1%(w/v)SDS]40mlを添加し、緩やかに混和
して室温にて15分間静置した。次に、この反応液に酢酸
カリウム溶液[5M酢酸カリウム溶液60ml、酢酸11.5ml、
純水28.5mlの混合液]30mlを添加し、充分混和してから
氷水中に15分間静置した。Semi-synthetic medium A medium [urea 2g, (NH 4 ) 2 SO 4 7g, K 2 HPO
4 0.5g, KH 2 PO 4 0.5g, MgSO 4 0.5g, FeSO 4 / 7H 2 O 6mg, Mn
SO 4・ 4-6H 2 O 6mg, yeast extract 2.5g, casamino acid 5g,
Biotin 200 μg, thiamine hydrochloride 200 μg, glucose 20
g, pure water 1] 1, Brevibacterium stationis IFO12144 was cultured until the late logarithmic growth phase, and the bacterial cells were collected. The obtained cells were suspended in 20 ml of a buffer solution containing 25 mg of lysozyme [25 mM tris (hydroxymethyl) aminomethane, 10 mM EDTA, 50 mM glucose] at 37 ° C.
For 1 hour. After the reaction, alkali-SDS solution [0.2N
40 ml of NaOH, 1% (w / v) SDS] was added, mixed gently and allowed to stand at room temperature for 15 minutes. Next, to this reaction solution, potassium acetate solution [60 ml of 5M potassium acetate solution, 11.5 ml of acetic acid,
30 ml of a mixed solution of 28.5 ml of pure water was added and mixed well, and then allowed to stand in ice water for 15 minutes.
溶菌物全量を遠心管に移し、4℃で10分間、15,000×
gの遠心分離にかけ、上澄液を得た。Transfer the total amount of lysate to a centrifuge tube, 15,000 x for 10 minutes at 4 ℃.
g was centrifuged to obtain a supernatant.
これに等量のフエノール−クロロホルム液(フエノー
ル/クロロホルム1/1混和液)を加え懸濁した後、遠心
管に移し、室温下で5分間、15,000×gの遠心分離にか
け、水層を回収した。水層に2倍量のエタノールを加
え、−20℃で1時間静置後、4℃で10分間、15,000×g
の遠心分離にかけ、沈殿を回収した。An equal volume of phenol-chloroform solution (phenol / chloroform 1/1 mixture solution) was added to the suspension to suspend it, and the suspension was transferred to a centrifuge tube and centrifuged at room temperature for 5 minutes at 15,000 × g to recover an aqueous layer. . Add 2 volumes of ethanol to the aqueous layer, leave at -20 ° C for 1 hour, and then at 4 ° C for 10 minutes, 15,000 xg
And the precipitate was recovered.
沈殿を減圧乾燥後、TE緩衝液[トリス10mM、EDTA 1m
M、HClにてpH=8.0に調整]2mlに溶解した。溶解液に塩
化セシウム溶液[5倍濃度のTE緩衝液100mlに塩化セシ
ウム170gを溶解させた液]15mlと10mg/mlエチジウムブ
ロマイド溶液mlを加えて、密度を1.392g/mlに合わせ
た。この溶液を12℃で42時間、116,000×gの遠心分離
を行なつた。After drying the precipitate under reduced pressure, TE buffer [Tris 10 mM, EDTA 1 m
The pH was adjusted to 8.0 with M and HCl] and dissolved in 2 ml. To the solution, 15 ml of a cesium chloride solution [a solution of 170 g of cesium chloride dissolved in 100 ml of a TE buffer having a concentration of 5 times] and 10 mg / ml of ethidium bromide solution ml were added to adjust the density to 1.392 g / ml. This solution was centrifuged at 126,000 for 42 hours at 116,000 × g.
プラスミドpBY−503は紫外線照射により遠心管内で下
方のバンドとして見い出される。このバンドを注射器で
遠心管の側面から抜きとることにより、プラスミドpBY
−503を含む分画液を得た。Plasmid pBY-503 is found as a lower band in the centrifuge tube by UV irradiation. By removing this band from the side of the centrifuge tube with a syringe, the plasmid pBY
A fraction containing -503 was obtained.
次いでこの分画液を等量のイソアミルアルコールで4
回処理してエチジウムブロマイドを抽出除去し、その後
にTE緩衝液に対して透析を行なつた。このようにして得
られたプラスミドpBY−503を含む透析液に3M酢酸ナトリ
ウム溶液を最終濃度30mMに添加した後、2倍量エタノー
ルを加え、−20℃1時間静置した。この溶液を15,000×
gの遠心分離にかけてDNAを沈降させ、プラスミドpBY−
503を50μg得た。This fraction was then diluted with an equal volume of isoamyl alcohol for 4 hours.
It was treated once to extract and remove ethidium bromide, and then dialyzed against TE buffer. The dialyzing solution containing the plasmid pBY-503 thus obtained was added with a 3M sodium acetate solution to a final concentration of 30 mM, and then 2-fold amount of ethanol was added, and the mixture was allowed to stand at -20 ° C for 1 hour. 15,000 x this solution
DNA was precipitated by centrifugation of g.
50 μg of 503 was obtained.
(B) プラスミドpHSG398の準備 プラスミドpHSG398は、エシエリヒア・コリ内で複製
し、クロラムフエニコール耐性を発現する分子量約1.4
メガダルトンのプラスミドであり、市販品として宝酒造
より購入が可能である。(B) Preparation of plasmid pHSG398 The plasmid pHSG398 replicates in Escherichia coli and expresses chloramphenicol resistance with a molecular weight of about 1.4.
It is a mega dalton plasmid and can be purchased from Takara Shuzo as a commercial product.
(C) 複合プラスミドpCRY−3の造成 プラスミドpHSG398(宝酒造製)0.5μgに制限酵素Kp
n I(5units)を37℃1時間反応させ、プラスミドDNAを
完全に分解した。(C) Construction of composite plasmid pCRY-3 0.5 μg of plasmid pHSG398 (Takara Shuzo) was digested with restriction enzyme Kp
The plasmid DNA was completely decomposed by reacting n I (5 units) at 37 ° C. for 1 hour.
前記(A)項で調製したプラスミドpBY503 2μgに
制限酵素Kpn I(1unit)を37℃で30分間反応させ、プラ
スミドDNAを部分分解した。2 μg of the plasmid pBY503 prepared in the above (A) was reacted with the restriction enzyme Kpn I (1 unit) at 37 ° C. for 30 minutes to partially decompose the plasmid DNA.
両者のプラスミドDNA分解物を混合し、制限酵素を不
活化するために65℃で10分間加熱処理した後、該失活溶
液中の成分が最終濃度として各々50mMトリス緩衝液pH7.
6、10mM MgCl2、10mMジチオスレイトール、1mM ATP及
びT4リガーゼ1unitになるように各成分を強化し、16℃
で15時間保温した。この溶液を用いてエシエリヒア・コ
リJM109コンピテントセル(宝酒造製)を形質転換し
た。Both plasmid DNA degradation products were mixed and heat-treated at 65 ° C. for 10 minutes to inactivate the restriction enzyme, and then the components in the inactivation solution were each brought to a final concentration of 50 mM Tris buffer pH 7.
6, 10mM MgCl 2 , 10mM dithiothreitol, 1mM ATP and T 4 ligase Each unit was strengthened to 1unit, 16 ℃
It was kept warm for 15 hours. This solution was used to transform Escherichia coli JM109 competent cells (Takara Shuzo).
形質転換株は30μg/ml(最終濃度)のクロラムフエニ
コール4100μg/ml(最終濃度)IPTG(イソプロピル−β
−D−チオガラクトピラノシド)、100μg/ml(最終濃
度)X−gal(5−ブロモ−4−クロロ−3インドリル
−β−D−ガラクトピラノシド)を含むl培地(トリプ
トン10g、酵母エキス5g、NaCl5g、純水1、pH7.2)で
37℃にて24時間培養し、生育株として得られた。これら
生育株のうち、白いコロニーで生育してきたものを選択
し、各々プラスミドをアルカリ−SDS法[T.Maniatis、
E.F.Fritsch、J.Sambrook、“Molecular cloning"(198
2)p90〜91参照]により抽出した。The transformants were 30 μg / ml (final concentration) chloramphenicol 4 100 μg / ml (final concentration) IPTG (isopropyl-β
-D-thiogalactopyranoside), 100 μg / ml (final concentration) X-gal (5-bromo-4-chloro-3indolyl-β-D-galactopyranoside) in 1 medium (tryptone 10 g, yeast) Extract 5g, NaCl 5g, pure water 1, pH7.2)
It was cultured at 37 ° C. for 24 hours and obtained as a growing strain. Of these growing strains, those that had grown in white colonies were selected, and the plasmids were subjected to the alkaline-SDS method [T. Maniatis,
EFFritsch, J. Sambrook, "Molecular cloning" (198
2) See p90-91].
(D) 複合プラスミドのコリネ型細菌への形質転換 形質転換は電気パルス法を用いて行なつた。ブレビバ
クテリウム・フラバムMJ233(FERM P−3068)プラス
ミド除去株を100mlの前記A培地で対数増殖期初期まで
培養し、ペニシリンGを1ユニツト/mlになるように添
加しさらに2時間振盪培養し、遠心分離により菌体を集
め、菌体を20mlのパルス用溶液(272mM Sucrose、7mM
KH2PO4、1mM MgCl2:pH7.4)にて洗浄する。さらに菌
体を遠心分離にて集め、5mlのパルス用溶液に懸濁し、
0.75mlの細胞と前記(C)項で得られたDNA溶液50mlと
を混合し、氷中にて20分間静置する。ジーンパルサー
(バイオラド社製)を用いて、2500ボルト、25μFDに設
定し、パルスを印加後氷中に20分間静置する。全量を3m
lの前記A培地に移し30℃にて1時間培養後、クロラム
フエニコール3μg/ml(最終濃度)を含む前記A寒天培
地に植菌し30℃で2〜3日間培養する。出現したクロラ
ムフエニコール耐性株より、上記(A)項に記載の方法
を用いてプラスミドを得た。このプラスミドを各種制限
酵素で分子量を測定した。結果を下記の表2に示す。(D) Transformation of composite plasmid into coryneform bacterium Transformation was performed using the electric pulse method. Brevibacterium flavum MJ233 (FERM P-3068) plasmid-free strain was cultivated in 100 ml of the above medium A until the early logarithmic growth phase, penicillin G was added to 1 unit / ml, and the mixture was further cultivated with shaking for 2 hours. Collect the cells by centrifugation and collect the cells in a 20 ml pulse solution (272 mM Sucrose, 7 mM).
Wash with KH 2 PO 4 , 1 mM MgCl 2 : pH 7.4). The bacterial cells were collected by centrifugation and suspended in 5 ml of the pulse solution,
0.75 ml of cells and 50 ml of the DNA solution obtained in the above (C) are mixed and left standing on ice for 20 minutes. Using Gene Pulser (manufactured by Bio-Rad), it is set to 2500 V and 25 μFD, and after application of a pulse, it is allowed to stand in ice for 20 minutes. The total amount is 3m
1 of the above-mentioned A medium and after culturing at 30 ° C. for 1 hour, the cells are inoculated into the A agar medium containing 3 μg / ml (final concentration) of chloramphenicol and cultured at 30 ° C. for 2 to 3 days. From the emerged chloramphenicol resistant strain, a plasmid was obtained using the method described in the above item (A). The molecular weight of this plasmid was measured with various restriction enzymes. The results are shown in Table 2 below.
上記制限酵素により特徴づけられるプラスミドを“pC
RY−3"と命名した。 The plasmid characterized by the above restriction enzymes was designated as "pC
It was named RY-3 ".
なお、複合プラスミドpCRY−3により形質転換された
ブレビバクテリウム・フラバムMJ233GE102は、茨城県筑
波郡谷田部町東1丁目1番地3号の工業技術院微生物工
業技術研究所に、昭和63年1月8日付で受託番号:微工
研菌寄第9802号(FERM P−9802)として寄託されてい
る。Brevibacterium flavum MJ233GE102 transformed with the composite plasmid pCRY-3 was transferred to the Institute of Microbial Technology, Institute of Industrial Science and Technology, 1-3-1 East, Yatabe-cho, Tsukuba-gun, Ibaraki Prefecture, dated January 8, 1988. Deposited under the number: Microindustrial Research Institute No. 9802 (FERM P-9802).
実施例2 プラスミドpCRY−3への安定化機能を担うDNA断片のク
ローニング (a) 安定化機能を担うDNA断片の調製 プラスミドpBY503は、ブレビバクテリウム・スタチオ
ニスIFO12144から実施例1の(A)項に記載の方法によ
り調製した。このプラスミドDNA20μgに制限酵素Kpn I
(20units)を37℃で2時間反応させ、プラスミドDNAを
完全に分解した。該分解物を0.8%のアガロースゲル電
気泳動にて分離させ、約7kbのDNA断片画分をゲルから切
り出した。該画分からDNAを抽出、精製し約5μgのDNA
を得た。Example 2 Cloning of DNA Fragment Responsible for Stabilizing Function into Plasmid pCRY-3 (a) Preparation of DNA Fragment Responsible for Stabilizing Function Plasmid pBY503 was prepared from Brevibacterium statinis IFO12144 in the section (A) of Example 1. Prepared by the method described. The restriction enzyme Kpn I was added to 20 μg of this plasmid DNA.
(20 units) was reacted at 37 ° C. for 2 hours to completely decompose the plasmid DNA. The degraded product was separated by 0.8% agarose gel electrophoresis, and a DNA fragment fraction of about 7 kb was cut out from the gel. About 5 μg of DNA extracted and purified from the fraction
I got
(B) プラスミドpCRY−3への安定化機能を担うDNA
断片のクローニング 実施例1で得たプラスミドpCRY−3DNA1μgに制限酵
素Kpn I(5units)を37℃で15分間反応させプラスミドD
NAを部分分解し、前記(A)項で調製したDNA断片2μ
gと混合し、制限酵素を不活化するために65℃で10分間
加熱処理した後、該失活溶液中の節分が最終濃度として
各々50mMトリス緩衝液pH7.6、10mM MgCl2、10mMジチオ
スレイトール、1mM ATP及びT4リガーゼ(1unit)にな
るように各成分を強化し、16℃で15分間保温した。該溶
液を用いてエシエリヒア・コリHB101コンピテントセル
(宝酒造製)を形質転換した。(B) DNA having a stabilizing function for plasmid pCRY-3
Cloning of fragment 1 μg of plasmid pCRY-3DNA obtained in Example 1 was allowed to react with restriction enzyme Kpn I (5 units) at 37 ° C. for 15 minutes to obtain plasmid D.
2μ of the DNA fragment prepared in (A) above by partially degrading NA
g, and heat treated at 65 ° C. for 10 minutes to inactivate the restriction enzyme, and the final concentration of the nodes in the inactivating solution was 50 mM Tris buffer pH 7.6, 10 mM MgCl 2 , 10 mM dithiothreath, respectively. Each component was fortified so that it became tall, 1 mM ATP and T 4 ligase (1 unit), and incubated at 16 ° C for 15 minutes. The solution was used to transform Escherichia coli HB101 competent cells (Takara Shuzo).
形質転換株は30μg/ml(最終濃度)のクロラムフエニ
コールを含むL培地(トリプトン10g、酵母エキス5g、N
aCl5g、純水1、pH7.2)で37℃にて24時間培養し、生
育株として得られた。得られた生育株から各々プラスミ
ドをアルカリ−SDS法[T.Maniatis、E.F.Fritsch、.Jsa
mbrook、“Molecular clonig"(1982)p90〜91参照]に
より抽出した。The transformant was L medium (trypton 10 g, yeast extract 5 g, N) containing 30 μg / ml (final concentration) of chloramphenicol.
The cells were cultured in aCl5g, pure water 1, pH 7.2) at 37 ° C for 24 hours to obtain a growing strain. From each of the grown strains, the plasmid was added to the alkaline-SDS method [T. Maniatis, EFFritsch, .Jsa.
mbrook, "Molecular clonig" (1982) p90-91].
(C) プラスミドのコリネ型殺菌への形質転換 形質転換は実施例1の(D)項記載の電気パルス法を
用いて行なつた。出現したクロラムフェニコール耐性株
より上記方法を用いてプラスミドを得た。このプラスミ
ドを各種制限酵素で分子量を測定した結果を下記の表3
に示す。(C) Transformation of plasmid into coryneform sterilization Transformation was carried out using the electric pulse method described in item (D) of Example 1. From the emerged chloramphenicol resistant strain, a plasmid was obtained using the above method. The results of measuring the molecular weight of this plasmid with various restriction enzymes are shown in Table 3 below.
Shown in
上記制限酵素で特徴づけられるプラスミドを“pCRY−
31"と命名した。 The plasmid characterized by the above restriction enzymes was designated as "pCRY-
I named it 31 ".
実施例3 トリプトフアンシンターゼ遺伝子の生合成を司るDNA領
域の調製 (A) フアージφ80ptの調製 大腸菌(E.coli)K−12株(IFO3301)を100mlのL培
地(組成は前記と同じ)に接種し、37℃で約4時間振盪
した培養物0.2mlと、フアージφ80(ATCC11456a−B1)
水溶液(105ケ/ml)の0.1mlとを、L培地軟寒天(L培
地+寒天沫)中に混合したのち、L培地寒天プレート上
に重層する。該プレートを37℃にて約5時間培養すると
プラーク(溶菌斑)を生じ、さらに2〜3日間37℃にて
培養を継続すると、プラーク中にフアージφ80溶原菌の
生育コロニーを生ずる。該溶原菌をL培地にて37℃で4
時間培養後、上記と同じL培地寒天プレート上に塗抹し
たのち、紫外線照射(400〜800ergs/mm2、10〜20秒)に
よる溶原フアージの誘発によりフアージφ80pt(トリプ
トフアンオペロンを含むフアージDNA)を調製する。Example 3 Preparation of DNA Region Controlling Biosynthesis of Tryptophan Synthase Gene (A) Preparation of Phage φ80pt E. coli K-12 strain (IFO3301) was added to 100 ml of L medium (the composition is the same as above). Inoculated and shaken at 37 ° C for about 4 hours with 0.2 ml of culture and Phage φ80 (ATCC11456a-B1)
0.1 ml of the aqueous solution (10 5 / ml) is mixed with L medium soft agar (L medium + agar) and then overlaid on the L medium agar plate. When the plate is cultured at 37 ° C. for about 5 hours, plaque (bacteriolytic plaque) is generated, and when the culture is continued at 37 ° C. for 2 to 3 days, a growing colony of Phage φ80 lysogen is generated in the plaque. The lysogens were mixed with L medium at 37 ° C for 4
After culturing for a period of time, spread it on the same L medium agar plate as above, and then induce lysogen pharage by UV irradiation (400 to 800 ergs / mm 2 , 10 to 20 seconds) to generate Φ80pt (forge DNA containing tryptophan operon). ) Is prepared.
(B) トリプトフアンオペロン画分の調製 大腸菌(E.coli)K−12株(IFO3301)を1の培地
(組成は前記と同じ)に接種し、約37℃で約3時間振盪
培養し、対数増殖期に25%(w/v)グルコース溶液10ml
と上記で調製したフアージφ80pt溶液を1011ケ/mlの濃
度で添加し(moi20)、5時間振盪を継続後常法通りク
ロロホルムの添加により、フアージφ80ptを大量に調製
した[T.Maniatis、E.F.Fritsch、Sambroom;“Molecula
r clonig"(1982)p.76〜80 Cold Spring Harbor Labor
atory参照]。(B) Preparation of tryptophan operon fraction E. coli K-12 strain (IFO3301) was inoculated into 1 medium (the composition is the same as above), and cultured at 37 ° C. for about 3 hours with shaking. 10 ml of 25% (w / v) glucose solution in logarithmic growth phase
And, the Φ80pt solution was added at a concentration of 10 11 / ml (moi20), and the mixture was shaken for 5 hours, and then chloroform was added in a standard manner to prepare a large amount of Φ80pt [T.Maniatis, EFFritsch , Sambroom; “Molecula
r clonig "(1982) p.76-80 Cold Spring Harbor Labor
see atory].
次に取得したフアージφ80pt溶液をトリス緩衝液(pH
7.8)にて透析後、フエノール法により、DNA抽出法[上
記“Molecular cloning"p.85参照]によつてフアージDN
Aを抽出精製し、これに制限酵素BamH Iを与え30℃で30
分間反応させ、トリプトフアンオペロン遺伝子画分を得
た。Next, add the obtained φ80pt solution to Tris buffer (pH
After dialysis with 7.8), the DNA is extracted by the phenol method [see "Molecular cloning" p.85 above].
Extract and purify A, add BamHI restriction enzyme to
After reacting for minutes, a tryptophan operon gene fraction was obtained.
(C) pBR322trpの調製 前記(B)項で得たトリプトフアンオペロン画分に制
限酵素Sa1 I及びXho Iを37℃にて1時間反応させ、次い
で65℃で5分間熱処理して制限酵素を失活させた後、同
様に制限酵素Sa1 Iで処理したプラスミドpBR322を添加
混合した。次いで該失活溶液中の成分が最終濃度として
各々50mMトリス緩衝液pH7.6、10mM MgCl2、10mMジチオ
スレイトール、1mM ATP及びT4リガーゼ1unitになるよ
うに各成分を強化し、16℃で15時間保温することによつ
てDNAを結合させた。(C) Preparation of pBR322trp The tryptophan operon fraction obtained in the above (B) was reacted with restriction enzymes Sa1 I and Xho I at 37 ° C. for 1 hour and then heat-treated at 65 ° C. for 5 minutes to remove the restriction enzyme. After inactivation, the plasmid pBR322 similarly treated with the restriction enzyme Sa1 I was added and mixed. Then, each component in the inactivating solution was strengthened so that the final concentration of each component was 50 mM Tris buffer pH 7.6, 10 mM MgCl 2 , 10 mM dithiothreitol, 1 mM ATP and 1 unit of T 4 ligase, and at 16 ° C. DNA was bound by incubating for 15 hours.
再結合後のDNAを用いて大腸菌K−12株(トリプトフ
アン要求性変異株、ATCC23718)を常法に従い形質転換
させ、形質転換株[Trp要求性の消失、すなわちプラス
ミド上のtrpA、trpB遺伝子により生合成可能となり、最
少培地(K2HPO4 7g、KH2PO4 2g、MgSO4・7H2O 0.1
g、(NH4)2SO4 1g、グルコース2g、純水1)上にて
生育可能となつた菌株]を得た。この菌株を常法に従い
液体培養し、培養液よりプラスミドpBR322trpを分離精
製した。The E. coli K-12 strain (tryptophan-requiring mutant strain, ATCC23718) was transformed by the conventional method using the recombined DNA, and the transformant [Trp-requiring loss, that is, the trpA and trpB genes on the plasmid were used to produce Synthesizable, minimal medium (K 2 HPO 4 7g, KH 2 PO 4 2g, MgSO 4 7H 2 O 0.1g
g, (NH 4 ) 2 SO 4 1 g, glucose 2 g, pure water 1). This strain was liquid-cultured according to a conventional method, and the plasmid pBR322trp was separated and purified from the culture solution.
(D) trpAB画分のクローニング 上記(C)項で得られたプラスミドpBR322trpを制限
酵素Sac IIとSa1 Iで37℃で1時間切断し、trpAB遺伝子
を含む画分を得た。次いで制限酵素Hinc IIを用いて37
℃で部分的に分解し、trpABを含む最小画分を得た。こ
の断片にSa1 Iリンカーを混合し、T4DNAリガーゼで結合
させて、両末端にSa1 I部位をもつtrpAB画分を得た。(D) Cloning of trpAB fraction The plasmid pBR322trp obtained in the above (C) was digested with restriction enzymes Sac II and Sa1 I at 37 ° C. for 1 hour to obtain a fraction containing the trpAB gene. Then, using the restriction enzyme Hinc II, 37
Partial digestion at ℃ gave the minimum fraction containing trpAB. This fragment was mixed with Sa1 I linker, are bonded through T 4 DNA ligase to obtain a trpAB fraction with Sa1 I sites at both ends.
次いでpDR720(フアルマシア製)を制限酵素Sa1 Iに
て37℃1時間反応させて、65℃で5分間加熱処理して制
限酵素を失活させた後、上記trpAB画分を添加混合し
た。Then, pDR720 (manufactured by Pharmacia) was reacted with a restriction enzyme Sa1 I at 37 ° C. for 1 hour and heat-treated at 65 ° C. for 5 minutes to inactivate the restriction enzyme, and then the above trpAB fraction was added and mixed.
該失活溶液中の成分が最終濃度として各々50mMトリス
緩衝液pH7.6、10mM MgCl2、10mMジチオスレイトール、
1mM ATP及びT4リガーゼ1unitになるように各成分を強
化し、16℃で15時間保温することによつて、DNAを結合
させた。The final concentration of the components in the inactivating solution was 50 mM Tris buffer pH 7.6, 10 mM MgCl 2 , 10 mM dithiothreitol,
DNA was bound by strengthening each component so as to be 1 unit of 1 mM ATP and T 4 ligase and incubating at 16 ° C. for 15 hours.
再結合後のDNAを用いて大腸菌K−12株(トリプトフ
アン要求性変異株、ATCC23718)を常法に従い形質転換
させ、形質転換株[Trp要求性の消失、すなわちプラス
ミド上のtrpA、trpB遺伝子により生合成可能となり、最
少培地(K2HPO4 7g、KH2PO4 2g、MgSO4・7H2O 0.1
g、(NH4)2SO4 1g、グルコース2g、純水1)上にて
生育可能となつた菌株]を得た。この菌株を常法に従い
液体培養し、培養液よりプラスミドpDR720−trpABを分
離精製した。The E. coli K-12 strain (tryptophan-requiring mutant strain, ATCC23718) was transformed by the conventional method using the recombined DNA, and the transformant [Trp-requiring loss, that is, the trpA and trpB genes on the plasmid were used to produce Synthesizable, minimal medium (K 2 HPO 4 7g, KH 2 PO 4 2g, MgSO 4 7H 2 O 0.1g
g, (NH 4 ) 2 SO 4 1 g, glucose 2 g, pure water 1). This strain was liquid-cultured according to a conventional method, and the plasmid pDR720-trpAB was separated and purified from the culture solution.
(E) pUC−9へのtrpAB遺伝子のリクローニング 前(D)項で得たpDR720−trpAB画分を制限酵素Eco I
Iで37℃1時間反応させ、65℃5分間熱処理して失活さ
せた。同様にしてpUC−9(フアルマシア性)を制限酵
素EcoR Iで処理し、前記と同様にして結合させた。再結
合後のDNAを前記と同様にして形質変換させた。得られ
た菌株の中からpUC−9にtrpAB画分の挿入されたものを
選択し、常法に従いプラスミドpUC−9trpABを抽出し
た。(E) Recloning of trpAB gene into pUC-9 The pDR720-trpAB fraction obtained in the above (D) was used as a restriction enzyme Eco I.
The reaction was carried out at 37 ° C for 1 hour at I and heat treatment at 65 ° C for 5 minutes to inactivate. Similarly, pUC-9 (Pharmacia) was treated with the restriction enzyme EcoRI and ligated in the same manner as above. The re-ligated DNA was transformed as described above. From the obtained strains, the one in which the trpAB fraction was inserted into pUC-9 was selected, and the plasmid pUC-9trpAB was extracted according to a conventional method.
実施例4 プラスミドpCRY−31−trp1の作成 (A) プラスミドpCRY−31trp1の調製 実施例3で調製したプラスミドpUC−9trpAB10μgお
よび実施例1で調製したプラスミドpCRY31 3μgを制
限酵素BamH Iを用いて37℃1時間反応させることにより
切断し、65℃で10分間加温することにより制限酵素を失
活させた後、該失活溶液中の成分が最終濃度として各々
50mMトリス緩衝液pH7.6、10mM MgCl2、10mMジチオスレ
イトール、1mM ATP及びT4リガーゼ1unitになるように
各成分を強化し、16℃で15時間保温することによつて、
DNAを結合させ、この溶液を用いてエシエリヒリア・コ
リHB101コンピテントセル(宝酒造製)を形質転換し
た。Example 4 Construction of plasmid pCRY-31-trp1 (A) Preparation of plasmid pCRY-31trp1 10 μg of plasmid pUC-9trpAB prepared in Example 3 and 3 μg of plasmid pCRY31 prepared in Example 1 were used at 37 ° C. with a restriction enzyme BamHI. Cleavage is carried out by reacting for 1 hour, and the restriction enzyme is deactivated by heating at 65 ° C. for 10 minutes.
50mM Tris buffer pH 7.6, 10mM MgCl 2 , 10mM dithiothreitol, 1mM ATP and T 4 ligase Each unit was strengthened to be 1unit, and kept at 16 ° C for 15 hours.
DNA was bound, and this solution was used to transform Escherichia coli HB101 competent cells (Takara Shuzo).
形質転換株は30μg/ml(最終濃度)のクロラムフエニ
コールを含むL培地(トリプトン10g、酵母エキス5g、N
aCl5g、純水1、pH7.2)で37℃にて24時間培養し、生
育株として得られた。得られた生育株から各々プラスミ
ドをアルカリ−SDS法[T.Maniatis、E.F.Fritsch、J.Sa
mbrook,“Molecular cloning"(1982)p.90〜91参照]
により抽出した。The transformant was L medium (trypton 10 g, yeast extract 5 g, N) containing 30 μg / ml (final concentration) of chloramphenicol.
The cells were cultured in aCl5g, pure water 1, pH 7.2) at 37 ° C for 24 hours to obtain a growing strain. From each of the grown strains, the plasmid was added to the alkaline-SDS method [T. Maniatis, EFFritsch, J. Sa.
mbrook, "Molecular cloning" (1982) p.90-91]
Extracted.
(B) プラスミドのコリネ型細菌への形質転換 形質転換は実施例1(D)項記載の電気パルス法を用
いて行なつた。出現したクロラムフエニコール耐性株よ
り、上記(A)項記載の方法を用いてプラスミドを得
た。該プラスミドを各種制限酵素で分子量を測定した結
果を下記の表4に示す。(B) Transformation of plasmid into coryneform bacterium Transformation was performed using the electric pulse method described in Example 1 (D). From the emerged chloramphenicol resistant strain, a plasmid was obtained by the method described in the above (A). The results of measuring the molecular weight of the plasmid with various restriction enzymes are shown in Table 4 below.
上記制限酵素で特徴づけられるプラスミドを“pCRY−
31−trp1"と命名した。なお、プラスミドpCRY−31−trp
1により形質転換されたブレビバクテリウム・フラバムM
J233GE1004は、茨城県筑波郡谷田部町東1丁目1番地3
号の工業技術院微生物工業技術研究所に、昭和63年5月
26日付で受託番号:微工研菌寄第10035号(FERM P−1
0035)として寄託されている。 The plasmid characterized by the above restriction enzymes was designated as "pCRY-
31-trp1 ". The plasmid pCRY-31-trp
Brevibacterium flavum M transformed with 1
J233GE1004 is located at 1-1, Higashi 1-chome, Yatabe-cho, Tsukuba-gun, Ibaraki prefecture.
May, 1988, at the Institute of Microbial Technology, Institute of Industrial Science and Technology.
Contract number on the 26th: Micro Engineering Research Institute, No. 10035 (FERM P-1
0035) has been deposited.
実施例5 プラスミドpCRY−31 trp1の安定性 前記のA培地100mlを500ml容三角フラスコに分注し、
120℃で15分間滅菌処理したものに、実施例4(B)項
で得た形質転換株を植菌し、30℃にて24時間振盪培養を
行なつた後、同様にして調製したA培地100mlを500ml容
三角フラスコに分注し120℃で15分間滅菌したものに1ml
当たり50cellsの割合になるように植継し、同じく30℃
にて24時間振盪培養を行なつた。次に遠心分離を用いて
集菌し、菌体を洗浄後、クロラムフエニコール5μg/ml
の割合で添加したA培地および無添加のA培地として調
製した平板培地に一定量塗抹し、30℃にて1日培養後後
生育コロニーをカウントする。Example 5 Stability of plasmid pCRY-31 trp1 100 ml of the above-mentioned A medium was dispensed into a 500 ml Erlenmeyer flask,
A strain sterilized at 120 ° C for 15 minutes was inoculated with the transformant obtained in Example 4 (B), shake-cultured at 30 ° C for 24 hours, and then similarly prepared as A medium. Dispense 100 ml into a 500 ml Erlenmeyer flask and sterilize at 120 ° C for 15 minutes.
Transplant at a rate of 50 cells per cell at the same temperature of 30 ℃
At 24 hours, shaking culture was performed. Then, the cells were collected by centrifugation and the cells were washed, and then chloramphenicol 5 μg / ml
A fixed amount of the medium A added and the plate medium prepared as an A medium without addition are smeared, and after culturing at 30 ° C. for 1 day, growing colonies are counted.
この結果、クロラムフエニコール添加および無添加培
地に生育したコロニーは同数であること、さらにA培地
生育コロニーは全てクロラムフエニコール添加培地に生
育すること、すなわち該プラスミドの高度の安定性を確
認した。As a result, it was confirmed that the number of colonies grown on the medium with and without chloramphenicol was the same, and that all the colonies growing on medium A were able to grow on the medium with chloramphenicol, that is, the high stability of the plasmid was confirmed. did.
実施例6 トリプトフアンシンターゼの製造法及び本菌体を用いる
L−トリプトフアンの生産 培地(尿素0.4%、硫酸アンモニウム1.4%、KH2PO40.
5%、K2HPO40.05%、MgSO4・7H2O 0.05%、CaCl2・2H2
O 2ppm、FeSO4・7H2O 2ppm、MnSO4・4〜6H2O 2pp
m、ZnSO4・7H2O 2ppm、NaCl2ppm、ビオチン200μg/
、チアミン・HCl100μg/、トリプトン0.1%、酵母
エキス0.1%)100mlを500ml容三角フラスコに分注、滅
菌(滅菌後pH7.0)した後、本発明のプラスミドpCRY−3
1−trp1を保持する菌株(FERM P−10035)を植菌し無
菌的にグルコースを最終濃度2%(w/v)となるように
加え30℃にて15時間振とう培養を行なつた。Example 6 Method for producing tryptophan synthase and production of L-tryptophan using this bacterium Medium (0.4% urea, 1.4% ammonium sulfate, KH 2 PO 40 .
5%, K 2 HPO 4 0.05%, MgSO 4 / 7H 2 O 0.05%, CaCl 2 / 2H 2
O 2ppm, FeSO 4 · 7H 2 O 2ppm, MnSO 4 · 4~6H 2 O 2pp
m, ZnSO 4 · 7H 2 O 2ppm, NaCl2ppm, biotin 200 [mu] g /
, Thiamine / HCl 100 μg /, tryptone 0.1%, yeast extract 0.1%) 100 ml was dispensed into a 500 ml Erlenmeyer flask and sterilized (pH 7.0 after sterilization), and then the plasmid pCRY-3 of the present invention.
A strain (FERM P-10035) retaining 1-trp1 was inoculated, glucose was aseptically added to a final concentration of 2% (w / v), and shake culture was carried out at 30 ° C. for 15 hours.
次に、本培養培地(硫酸アンモニウム2.3%、KH2PO
40.05%、K2HPO40.05%、MgSO4・7H2O 0.05%、FeSO4
・7H2O 20ppm、MnSO4・nH2O 20ppm、ビオチン200μg/
、チアミン・HCl100μg/、トリプトン0.3%、酵母
エキス0.3%)の1000mlを2容通気撹拌槽に仕込み、
滅菌(120℃、20分間)後、無菌的にグルコースを最終
濃度2%(w/v)となるように加え、さらに前記培養物
を20ml添加して、回転数1000rpm、通気量1vvm、温度33
℃pH7.6にて18時間培養を行つた。Next, the main culture medium (ammonium sulfate 2.3%, KH 2 PO
4 0.05%, K 2 HPO 4 0.05%, MgSO 4 · 7H 2 O 0.05%, FeSO 4
・ 7H 2 O 20ppm, MnSO 4・ nH 2 O 20ppm, biotin 200μg /
, Thiamin / HCl 100 μg /, tryptone 0.3%, yeast extract 0.3%) in a 2-volume aeration stirring tank,
After sterilization (120 ° C., 20 minutes), glucose was aseptically added so that the final concentration was 2% (w / v), and 20 ml of the culture was further added, and the rotation speed was 1000 rpm, the aeration rate was 1 vvm, and the temperature was 33.
Culturing was performed at pH 7.6 for 18 hours.
尚、グルコースは、培養中培地の濃度が2重量%を越
えないように、約1〜2時間ごと断続的に添加した。Glucose was intermittently added about every 1 to 2 hours so that the concentration of the culture medium did not exceed 2% by weight.
培養終了後、培養物400mlから遠心分離にて集菌後、
脱塩蒸留水にて2度洗浄した菌体を反応液[インドール
5g、DL−セリン20g、ピリドキサール−5′−リン酸10m
g、KCl2g、蒸留水1000ml(pH8.0に5N−KOHにて調整)]
の1000mlに懸濁後、該懸濁液を2容通気撹拌槽に仕込
み、回転数300rpm、温度37℃、pH8.0で10時間反応させ
た。反応終了後、反応液から遠心分離(6000rpm、15分
間、4℃)により上澄液を調製し、該上澄液中のL−ト
リプトフアンを液体クロマトグラフイーにより測定し
た。After culturing, collect the cells by centrifugation from 400 ml of the culture,
The bacterial cells washed twice with demineralized distilled water were added to the reaction mixture [Indole
5g, DL-serine 20g, pyridoxal-5'-phosphate 10m
g, KCl2g, distilled water 1000ml (adjusted to pH8.0 with 5N-KOH)]
After being suspended in 1000 ml of the above, the suspension was charged into a 2-volume aeration and stirring tank, and reacted at a rotation speed of 300 rpm, a temperature of 37 ° C., and a pH of 8.0 for 10 hours. After completion of the reaction, a supernatant was prepared from the reaction solution by centrifugation (6000 rpm, 15 minutes, 4 ° C.), and L-tryptophan in the supernatant was measured by liquid chromatography.
また、反応終了液500mlをアンモニア型強酸性イオン
交換樹脂(「ダイヤイオンSK−1B」、三菱化成社製)の
カラムを通したのち、アルカリ溶液で溶出後、濃縮しL
−トリプトフアンの粗結晶を析出させた。In addition, 500 ml of the reaction completed liquid was passed through a column of an ammonia type strongly acidic ion exchange resin (“Diaion SK-1B”, manufactured by Mitsubishi Kasei Co.), then eluted with an alkaline solution and concentrated to L.
-Precipitated crude crystals of tryptophan.
その結果、L−トリプトフアンの生成濃度は、3g/
で、精製量は1gであつた。また比較としてプラスミドpC
RY−31−trp1を保持しない宿主菌体を用いて上記方法で
反応を実施例した結果、L−トリプトフアンの生成濃度
は0.05g/であつた。As a result, the production concentration of L-tryptophan was 3 g /
The purified amount was 1 g. For comparison, plasmid pC
As a result of carrying out the reaction by the above-mentioned method using the host cells that do not retain RY-31-trp1, the production concentration of L-tryptophan was 0.05 g /.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 1/21 C12R 1:13) (C12N 15/09 C12R 1:13) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication (C12N 1/21 C12R 1:13) (C12N 15/09 C12R 1:13)
Claims (7)
子を含むDNA領域(a)と、該遺伝子の発現を制御しう
るプロモーター及びオペレーターを含むDNA領域(b)
と、ブレビバクテリウム・スタチオニス(Brevibacteri
um stationis)IFO12144(FERM P−10136)が保有す
るプラスミドpBY503をKpn Iで切り出すことにより得ら
れる約7.4kbの大きさのDNA断片を含むコリネ型細菌細胞
内での自律増殖能及び安定化機能を有するDNA領域
(c)とから成るプラスミドで形質転換されたトリプト
フアンシンターゼ産生能を有するコリネ型細菌を培地で
培養し、培養物からトリプトフアンシンターゼを採取す
ることを特徴とするトリプトフアンシンターゼの製造
法。1. A DNA region (a) containing at least a tryptophan synthase gene and a DNA region (b) containing a promoter and an operator capable of controlling the expression of the gene.
And Brevibacterium stationis (Brevibacteri
um stationis) IFO12144 (FERM P-10136) possesses an autonomous growth ability and a stabilizing function in coryneform bacterial cells containing a DNA fragment of about 7.4 kb obtained by excising the plasmid pBY503 possessed by Kpn I. A tryptophan synthase obtained by culturing a coryneform bacterium capable of producing tryptophan synthase transformed with a plasmid comprising a DNA region (c), in a medium, and collecting tryptophan synthase from the culture. Method for producing synthase.
A領域(a)が、エシエリヒア・コリ染色体由来のtrpA
及びtrpBを含むDNA領域である特許請求の範囲第1項記
載の方法。2. A DN containing a tryptophan synthase gene.
A region (a) is trpA derived from Escherichia coli chromosome
The method according to claim 1, which is a DNA region containing trpB and trpB.
御しうるプロモーター及びオペレーターを含むDNA領域
(b)が、トリプトフアンオペロン由来である特許請求
の範囲第1項記載の方法。3. The method according to claim 1, wherein the DNA region (b) containing a promoter and an operator capable of controlling the expression of the tryptophan synthase gene is derived from the tryptophan operon.
バム(Brevibacterium flavum)MJ233GE1004(FERM P
−10035)が保有するプラスミドpCRY−31 trp1である
特許請求の範囲第1項記載の方法。4. The plasmid is Brevibacterium flavum MJ233GE1004 (FERM P
-10035) is the plasmid pCRY-31 trp1 carried by the method according to claim 1.
バムMJ233由来の菌株である特許請求の範囲第1項記載
の方法。5. The method according to claim 1, wherein the coryneform bacterium is a strain derived from Brevibacterium flavum MJ233.
子を含むDNA領域(a)と、該遺伝子の発現を制御しう
るプロモーター及びオペレーターを含むDNA領域(b)
と、ブレビバクテリウム・スタチオニス(Brevibacteri
um stationis)IFO12144(FERM P−10136)が保有す
るプラスミドpBY503をKpn Iで切り出すことにより得ら
れる約7.4kbの大きさのDNA断片を含むコリネ型細菌細胞
内での自律増殖能及び安定化機能を有するDNA領域
(c)とから成るプラスミドで形質転換されたトリプト
フアンシンターゼ産生能を有するコリネ型細菌。6. A DNA region (a) containing at least a tryptophan synthase gene and a DNA region (b) containing a promoter and an operator capable of controlling the expression of the gene.
And Brevibacterium stationis (Brevibacteri
um stationis) IFO12144 (FERM P-10136) possesses an autonomous growth ability and a stabilizing function in coryneform bacterial cells containing a DNA fragment of about 7.4 kb obtained by excising the plasmid pBY503 possessed by Kpn I. A coryneform bacterium capable of producing tryptophan synthase, which is transformed with a plasmid comprising a DNA region (c).
子を含むDNA領域(a)と、該遺伝子の発現を制御しう
るプロモーター及びオペレーターを含むDAN領域(b)
と、ブレビバクテリウム・スタチオニス(Brevibacteri
um stationis)IFO12144(FERM P−10136)が保有す
るプラスミドpBY503をKpn Iで切り出すことにより得ら
れる約7.4kbの大きさのDNA断片を含むコリネ型細菌細胞
内での自律増殖能及び安定化機能を有するDNA領域
(c)とから成るプラスミドで形質転換されたブレビバ
クテリウム・フラバムMJ233GE1004(FERM P−1003
5)。7. A DNA region (a) containing at least a tryptophan synthase gene, and a DAN region (b) containing a promoter and an operator capable of controlling the expression of the gene.
And Brevibacterium stationis (Brevibacteri
um stationis) IFO12144 (FERM P-10136) possesses an autonomous growth ability and a stabilizing function in coryneform bacterial cells containing a DNA fragment of about 7.4 kb obtained by excising the plasmid pBY503 possessed by Kpn I. Brevibacterium flavum MJ233GE1004 (FERM P-1003 transformed with a plasmid comprising a DNA region (c)
Five).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63223399A JP2678995B2 (en) | 1988-09-08 | 1988-09-08 | Method for producing tryptophan synthase |
EP19890113775 EP0352763B1 (en) | 1988-07-27 | 1989-07-26 | DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism |
DE1989616872 DE68916872T2 (en) | 1988-07-27 | 1989-07-26 | DNA fragment containing a gene encoding the stabilizing function of a plasmid in a host microorganism. |
US07/473,396 US5185262A (en) | 1988-07-27 | 1990-02-01 | DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63223399A JP2678995B2 (en) | 1988-09-08 | 1988-09-08 | Method for producing tryptophan synthase |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0272876A JPH0272876A (en) | 1990-03-13 |
JP2678995B2 true JP2678995B2 (en) | 1997-11-19 |
Family
ID=16797541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63223399A Expired - Lifetime JP2678995B2 (en) | 1988-07-27 | 1988-09-08 | Method for producing tryptophan synthase |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2678995B2 (en) |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4469568B2 (en) | 2003-07-09 | 2010-05-26 | 三菱化学株式会社 | Method for producing organic acid |
BRPI0413403A (en) | 2003-08-28 | 2006-10-17 | Mitsubishi Chem Corp | method to produce succinic acid |
WO2005113744A1 (en) | 2004-05-20 | 2005-12-01 | Ajinomoto Co., Inc. | Succinic acid-producing bacterium and process for producing succinic acid |
AU2005320486B2 (en) | 2004-12-28 | 2009-08-13 | Ajinomoto Co., Inc. | L-glutamic acid-producing microorganism and a method for producing L-glutamic acid |
BRPI0617491B1 (en) | 2005-10-18 | 2021-04-27 | Ajinomoto Co., Inc | PROCESS FOR THE PRODUCTION OF SUCCINIC ACID |
JP5180060B2 (en) | 2006-02-24 | 2013-04-10 | 三菱化学株式会社 | Organic acid producing bacteria and method for producing organic acid |
JP5493854B2 (en) | 2007-04-10 | 2014-05-14 | 味の素株式会社 | Method for producing organic acid |
WO2008133131A1 (en) | 2007-04-16 | 2008-11-06 | Ajinomoto Co., Inc. | Method for production of organic acid |
JP2009065972A (en) | 2007-08-23 | 2009-04-02 | Mitsubishi Chemicals Corp | Method for production of succinic acid |
JP2012223091A (en) | 2009-08-25 | 2012-11-15 | Ajinomoto Co Inc | Method for producing l-amino acid |
WO2012128231A1 (en) | 2011-03-18 | 2012-09-27 | 三菱化学株式会社 | Method for producing polymer, method for producing organic acid, and organic acid-producing microorganism |
WO2013062029A1 (en) | 2011-10-25 | 2013-05-02 | 味の素株式会社 | Secretion production method for protein |
WO2013065772A1 (en) | 2011-11-02 | 2013-05-10 | 味の素株式会社 | Method for secreting and producing proteins |
JP6020581B2 (en) | 2011-11-02 | 2016-11-02 | 味の素株式会社 | Protein secretory production |
WO2013179711A1 (en) | 2012-05-29 | 2013-12-05 | 味の素株式会社 | Method for producing 3-acetylamino-4-hydroxybenzoic acid |
JP5673986B1 (en) | 2013-02-18 | 2015-02-18 | 味の素株式会社 | Production method by protein precipitation |
RU2013119826A (en) | 2013-04-29 | 2014-11-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") | CORINEFORM BACTERIA AND METHOD FOR PRODUCING HETEROLOGICAL HYBRID PROTEINS |
PE20150681A1 (en) | 2013-05-13 | 2015-05-15 | Ajinomoto Kk | METHOD TO PRODUCE L-AMINO ACIDS |
JP2016165225A (en) | 2013-07-09 | 2016-09-15 | 味の素株式会社 | Method for producing useful substance |
JP2016192903A (en) | 2013-09-17 | 2016-11-17 | 味の素株式会社 | Method for manufacturing l-amino acid from biomass derived from seaweed |
WO2015060391A1 (en) | 2013-10-23 | 2015-04-30 | 味の素株式会社 | Method for producing target substance |
JP6582997B2 (en) | 2014-01-31 | 2019-10-02 | 味の素株式会社 | Method for producing mutant glutamate-cysteine ligase and γ-glutamylvalylglycine |
JP2017216881A (en) | 2014-12-26 | 2017-12-14 | 味の素株式会社 | Method for producing dicarboxylate |
WO2017073701A2 (en) | 2015-10-27 | 2017-05-04 | Ajinomoto Co., Inc. | Method for producing aldehyde |
JP6623690B2 (en) | 2015-10-30 | 2019-12-25 | 味の素株式会社 | Method for producing glutamic acid-based L-amino acid |
WO2017122747A1 (en) | 2016-01-12 | 2017-07-20 | Ajinomoto Co., Inc. | Method for producing benzaldehyde |
CN110312807B (en) | 2016-10-21 | 2023-11-17 | 味之素株式会社 | Method for producing protein by secretion |
CN109937258B (en) | 2016-10-21 | 2023-06-23 | 味之素株式会社 | Method for producing protein by secretion |
EP3532627A1 (en) | 2016-10-26 | 2019-09-04 | Ajinomoto Co., Inc. | Method for producing objective substance |
WO2018079684A1 (en) | 2016-10-26 | 2018-05-03 | Ajinomoto Co., Inc. | Method for producing objective substance |
EP3532631A1 (en) | 2016-10-26 | 2019-09-04 | Ajinomoto Co., Inc. | Method for producing l-methionine or metabolites requiring s-adenosylmethionine for synthesis |
JP7063332B2 (en) | 2016-10-26 | 2022-05-09 | 味の素株式会社 | Manufacturing method of target substance |
WO2018079685A1 (en) | 2016-10-26 | 2018-05-03 | Ajinomoto Co., Inc. | Method for producing objective substance |
JP2019536450A (en) | 2016-10-27 | 2019-12-19 | 味の素株式会社 | Method for producing aldehyde |
WO2018179834A1 (en) | 2017-03-28 | 2018-10-04 | Ajinomoto Co., Inc. | Method for producing rna |
JP7066977B2 (en) | 2017-04-03 | 2022-05-16 | 味の素株式会社 | Manufacturing method of L-amino acid |
US10858676B2 (en) | 2017-05-22 | 2020-12-08 | Ajinomoto Co., Inc. | Method for producing objective substance |
JP7384035B2 (en) | 2017-09-25 | 2023-11-21 | 味の素株式会社 | Protein production method and disaccharide production method |
WO2019078095A1 (en) | 2017-10-16 | 2019-04-25 | Ajinomoto Co., Inc. | A method for production of a protein having peptidylglycine alpha-hydroxylating monooxygenase activity |
US11680279B2 (en) | 2017-11-29 | 2023-06-20 | Ajinomoto Co., Inc. | Method for producing objective substance |
EP3732298A1 (en) | 2017-12-26 | 2020-11-04 | Ajinomoto Co., Inc. | Method of producing glycine by fermentation |
EP3756466A4 (en) | 2018-02-20 | 2021-11-24 | Ajinomoto Co., Inc. | Method for inducing rna silencing |
JP7124338B2 (en) | 2018-02-27 | 2022-08-24 | 味の素株式会社 | Method for producing mutant glutathione synthase and γ-glutamylvalylglycine |
KR102744950B1 (en) | 2018-04-20 | 2024-12-20 | 아지노모토 가부시키가이샤 | Secretory production of proteins |
WO2020027251A1 (en) | 2018-08-03 | 2020-02-06 | Ajinomoto Co., Inc. | Method for producing objective substance |
AU2019364829A1 (en) | 2018-10-25 | 2021-06-03 | Ajinomoto Co., Inc. | Method for secretory production of protein |
EP3960870A4 (en) | 2019-03-29 | 2023-06-07 | Ajinomoto Co., Inc. | Method for producing allolactose |
EP3967676A4 (en) | 2019-05-08 | 2023-02-08 | Ajinomoto Co., Inc. | Vanillin production method |
WO2021085405A1 (en) | 2019-10-28 | 2021-05-06 | 味の素株式会社 | Benzaldehyde production method |
BR112022017430A2 (en) | 2020-03-04 | 2022-10-18 | Ajinomoto Kk | METHOD AND COMPOSITION TO PRODUCE A FOOD, MUTANT TRANSGLUTAMINASE, GENE, VECTOR, AND, MICROORGANISM |
CN116456832A (en) | 2020-09-29 | 2023-07-18 | 味之素株式会社 | variant transglutaminase |
PE20231508A1 (en) | 2020-10-28 | 2023-09-26 | Ajinomoto Kk | L-AMINO ACID PRODUCTION METHOD |
EP4368722A1 (en) | 2021-07-07 | 2024-05-15 | Ajinomoto Co., Inc. | Method for secretory production of unnatural-amino-acid-containing protein |
WO2023200008A1 (en) | 2022-04-15 | 2023-10-19 | 味の素株式会社 | Method for producing cultured meat |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59156292A (en) * | 1983-02-17 | 1984-09-05 | Kyowa Hakko Kogyo Co Ltd | Preparation of tryptophan |
-
1988
- 1988-09-08 JP JP63223399A patent/JP2678995B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0272876A (en) | 1990-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2678995B2 (en) | Method for producing tryptophan synthase | |
US5185262A (en) | DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism | |
JP2973446B2 (en) | New plasmid vector | |
JPH09285294A (en) | Production of l-glutamic acid by fermentation | |
JPH0783714B2 (en) | Fermentation method for producing L-amino acid | |
JPS6394985A (en) | Production of l-tyrosine | |
KR970001238B1 (en) | Manufacturing Method of L-Tryptophan | |
US5426050A (en) | Plasmid vectors for expression of genes in coryneform bacteria | |
JP3009257B2 (en) | Genetic DNA encoding aspartase and use thereof | |
JPH05184366A (en) | Gene DNA encoding aspartokinase and use thereof | |
JPH06277067A (en) | Gene dna coding acetohydroxy acid isomeroreductase | |
JPH05344893A (en) | Gene DNA encoding acetohydroxy acid synthase and use thereof | |
US5279951A (en) | Cultivation of transformed microorganisms | |
JPH0775579A (en) | Dna fragment containing gene coding diaminopimeric acid decarboxylase and utilization thereof | |
US5153123A (en) | Method for producing l-threonine, and plasmid and microorganism employed in the same | |
JPH06327480A (en) | DNA fragment containing a gene involved in the function of autonomous replication of plasmid | |
EP0180192B1 (en) | Novel plasmids | |
JPH05284970A (en) | Gene DNA encoding diaminopimelate dehydrogenase and use thereof | |
JPH05184371A (en) | Gene DNA encoding dihydrodipicolinate synthetase and use thereof | |
JPH05284972A (en) | Gene DNA encoding threonine synthase and use thereof | |
JPH06169780A (en) | Gene dna participating in integration of membraneous protein to membrane | |
JPH0775578A (en) | Dna fragment containing gene coding dihyrodipicolinic acid reductase and utilization thereof | |
JPS61260892A (en) | Production of l-phenylalanine | |
EP0352763B1 (en) | DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism | |
JP2858460B2 (en) | DNA fragment containing gene responsible for stabilizing plasmid in host microorganism |