[go: up one dir, main page]

JP2673352B2 - Memory input device - Google Patents

Memory input device

Info

Publication number
JP2673352B2
JP2673352B2 JP62253157A JP25315787A JP2673352B2 JP 2673352 B2 JP2673352 B2 JP 2673352B2 JP 62253157 A JP62253157 A JP 62253157A JP 25315787 A JP25315787 A JP 25315787A JP 2673352 B2 JP2673352 B2 JP 2673352B2
Authority
JP
Japan
Prior art keywords
memory
needle
tip
voltage
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62253157A
Other languages
Japanese (ja)
Other versions
JPH0196841A (en
Inventor
学 大海
寿彦 作原
龍明 安宅
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP62253157A priority Critical patent/JP2673352B2/en
Priority to EP19880308324 priority patent/EP0307210A3/en
Priority to US07/243,512 priority patent/US4945515A/en
Publication of JPH0196841A publication Critical patent/JPH0196841A/en
Application granted granted Critical
Publication of JP2673352B2 publication Critical patent/JP2673352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • G11B21/20Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier
    • G11B21/21Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier with provision for maintaining desired spacing of head from record carrier, e.g. fluid-dynamic spacing, slider
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • G11B9/149Record carriers for recording or reproduction involving the use of microscopic probe means characterised by the memorising material or structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Position Input By Displaying (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非接触式で原子レベル、分子レベルの記録が
可能なメモリー入力装置に関するものである。 〔従来の技術〕 従来、メモリー入力装置は磁気記録方式としては一般
に針状Co−γFe2O3のような磁性粉末を支持体に塗着し
たメモリー部を用いてその面内長手方向に磁化する方式
による装置や、メモリー部の垂直方向の磁化を用いる垂
直磁化記録方式による装置があり、光磁気記録方式とし
ては、膜面を一定の方向に磁化しておき、記録すべき位
置にレーザービームを照射する事によってその位置の温
度を上昇せしめ、磁化の方向を反転させる方式による装
置がある。 〔発明が解決しようとする問題点〕 しかし、これらの方式による装置では、メモリー部に
入力装置の一部が物理的に接触する事によってメモリー
部が長期間使用に耐えられなかったり、単位メモリー部
が一定の原子数以上の原子より成る領域になる事によっ
て高密度化に限界があった。 〔問題点を解決するための手段〕 そこでこの発明は、メモリー部に記録するための入力
部分を制御する手段を有し、この制御手段によってメモ
リー部に対する入力を行うメモリー入力装置において、
制御手段が微細な先端部を有する針状デバイスと、メモ
リー部の表面を針状デバイスの先端部に接近させて位置
づけさせるための手段と、針状デバイスの先端部がメモ
リー部の表面を走査させるための手段と、針状デバイス
の先端部とメモリー部の表面との間の距離を制御するた
めの手段と、針状デバイスの先端部に印加する電圧を制
御するための手段を有するメモリー入力装置とした。ま
た針状デバイスは1つあるいは多数の針で形成され、ま
た半導体加工技術により形成した。 〔作用〕 上記のように構成されたメモリー入力装置を用いて、
先端部が原子1個から数十個という微細な針状デバイス
をメモリー部表面に、トンネル効果が生じる程度まで近
接させ所定の電圧を印加することによって、メモリー部
の物性状態を変化させて情報を入力し保持するものであ
り、このメモリー入力装置を用いることによって、従来
は実現困難であった非接触で、かつ単位メモリー部が単
原子あるいは単分子レベルの情報記録が可能となる。ま
た針状デバイスを多数の針で形成し、各針とメモリー部
表面との距離あるいは各針に印加する電圧をそれぞれ独
立に制御することにより、並列入力あるいは広い範囲へ
の入力が可能となる。 〔実施例〕 以下に本発明の実施例を図面に基づいて説明する。 (実施例1) 第1図に本発明によるメモリー出力装置を示す。防震
台1上に乗せられた定盤2に固定されたアーム3に針状
デバイス操作部7が取り付けられており、ダイヤル6を
回すことにより、針状デバイス操作部を垂直方向に移動
する事が可能であり、メモリー部5と針状デバイス8の
Z軸方向の粗い位置決めを行うのに用いることができ
る。面内方向(X−Y軸)の粗位置決め用としてX−Y
ステージ3と粗動制御部11により制御を行う。また、取
り付けられている光学顕微鏡25は、針状デバイス8とメ
モリー部5との粗位置合わせの際に用いる事ができる。
面内方向の走査は針状デバイス操作部7内に組み込まれ
た三次元圧電素子をX,Y軸制御部13で制御することで行
う。メモリー部5と針状デバイス8との間に1〜100mV
の範囲の一定電圧を印加する事によってメモリー部5へ
の入力を行う。針状デバイスは導電性を有する単一、あ
るいは多数の針で形成されるが、本実施例の針状デバイ
ス8は半導体基板上に導電性部と絶縁性部が交互に平面
上に設置しており、導電性部には先端が原子1個〜数個
よりなる導電性針が接続されている。この導電性針はエ
ッチング加工によって半導体基板上に成長させた導電性
層を微細化する事によって製造する事も可能である。各
々の導電性部に印加する電圧は、各々独立に制御するこ
とができる。粗動制御部11,Z軸制御部12,XY軸制御部13,
電圧制御部10はいずれもコンピュータ14により制御され
る。電源,制御部(10〜13),コンピュータ14を除いた
装置は、シールドボックス24内で設置されている。 (実施例2) 本実施例では実施例1の装置を用い、メモリー部5と
して誘電体を用いて記録したものについて述べる。第2
図は本実施例の針状デバイス8の先端部とメモリー部5
の一部の拡大図である。メモリー部5の表面にある誘電
体物質(15〜19)の一原子ずつに対して、針状デバイス
8の各々の導電性部上に接続された微細な導電性先端部
(26〜30)を近づけ、電圧を印加する事によって分極さ
せる。電圧を印加しなかった導電性先端部(27,30)の
下にある部分の原子(18,15)は分極しない。次に針状
デバイス8をXY平面上のX軸方向あるいはY軸方向に移
動し、同様に入力が必要な位置の上にある導電先端部の
みに電圧を印加する事によって、その位置の原子のみを
分極させる。こうする事により、原子レベルでのメモリ
ー入力が実現される。 (実施例3) 本実施例では実施例1の装置を用い、メモリー部5に
極性を持った化合物を用いて記録したものについ述べ
る。第3図は本実施例の装置の針状デバイス8の先端部
とメモリー部5の一部の拡大図である。極性を持った化
合物(31〜35)がメモリー部5にあると、電圧を印加す
る事によって該化合物は電界の向きに沿って回転する。
メモリー部の表面にある極性化合物分子(31〜35)の一
分子ずつに対して、針状デバイス8の各々の導電性部上
に接続された微細な先端部(26〜30)を近づけ、電圧を
印加する事によって、極性化合物分子を回転させる。電
圧を印加しなかった先端部(27,30)の下にある分子(3
4,31)は回転しない。次に針状デバイス8をXY平面上の
X軸方向あるいはY軸方向に移動し、同様に入力が必要
な位置の上にある先端部のみに電圧を印加する事によっ
て、その位置の分子のみを回転させる。こうする事によ
り、分子レベルでのメモリー入力が実現される。 (実施例4) 本実施例では、実施例1の装置を用い、メモリー部5
に液晶物質を用いたものについて述べる。第4図は本実
施例の装置の針状デバイス8の先端部とメモリー部5の
一部の拡大図である。液晶は電圧が印加されると分子の
向きが変化する。メモリー部5の液晶物質(36〜40)の
一分子ずつに対して、針状デバイス8の各々の導電性部
上に接続された微細な先端部(26〜30)を近づけ、電圧
を印加する事によって液晶分子の向きを変える。電圧を
印加しなかった先端部(27,30)の下にある液晶分子(3
9,36)は向きを変えない。次に針状デバイス8をXY平面
上のX軸あるいはY軸方向に移動し、同様に入力が必要
な位置の上にある先端部のみに電圧を印加する事によっ
て、その位置の液晶分子のみ向きを変える。こうする事
によって、分子レベルでのメモリー入力が実現される。 (実施例5) 本実施例では、実施例1の装置を用い、針状デバイス
8の先端部として導電性先端部を用い、メモリー部5に
多価元素原子を用いたものについて述べる。第5図は、
本実施例の装置の針状デバイス8の先端部とメモリー部
5の一部の拡大図である。多価元素原子は電圧を印加さ
れると、持つ電子数が変化する。メモリー部5の多価元
素原子(41〜45)の一つずつに対して、針状デバイス8
の各々の導電性部上に接続された微細な導電性先端部
(26〜30)を近づけ、電圧を印加する事によってトンネ
ル効果を生ぜしめ、その原子が持つ電子数を変化させ
る。電圧を印加しなかった導電性先端部(27,30)の下
にある原子(44,41)の電子数は変化しない。次に針状
デバイス8をXY平面上のX軸あるいはY軸方向に移動
し、上と同様にして入力が必要な位置の上にある導電性
先端部のみに電圧を印加する事によってトンネル効果を
生ぜしめ、その位置の原子の持つ電子数を変化させる。
こうする事により、原子レベルでのメモリー入力が実現
される。 (実施例6) 本実施例では、実施例1の装置を用い、メモリー部5
にエレクトロクロミック分子を用いたものについて述べ
る。第6図は本実施例の装置の針状デバイス8の先端部
とメモリー部5の一部の拡大図である。エレクトロクロ
ミック分子は電圧を印加されると吸収光波長が変化す
る。このような分子(46〜50)の一つずつに対して、針
状デバイス8の各々の導電性部上に接続された微細な先
端部(26〜30)を近づけ、電圧を印加する事によってト
ンネル効果を生じせしめ、メモリー入力を行う。電圧を
印加しなかった先端部(27,30)の下にある分子(49,4
6)の吸収光波長は変化しない。次に針状デバイス8をX
Y平面上のX軸あるいはY軸方向に移動し、上と同様に
して入力が必要な位置の上にある先端部のみに電圧を印
加する事によってトンネル効果を生ぜしめ、その位置の
分子の吸収光波長を変化させる。こうする事により、分
子レベルでのメモリー入力が実現される。 (実施例7) 本実施例では、実施例1の装置を用い、メモリー部5
に極性溶媒に浸した極性物質を用い、針状デバイス8の
先端部として多数の導電性針を用いたものについて述べ
る。極性溶媒中に置かれた極性物質より成るメモリー部
5表面は弱く帯電していると言えるが、この物質の分子
一つずつに針状デバイスの各々の導電性部上に接続され
た微細な導電性先端部を近づけ、電圧を印加する事によ
ってトンネル効果を生ぜしめ、メモリー入力を行う。電
圧を印加しなかった導電性先端部の下にある極性分子の
電荷は変化しない。次に針状デバイス8をXY平面上のX
軸あるいはY軸方向に移動し、上と同様にして入力が必
要な位置の上にある導電性先端部のみに電圧を印加する
事によってトンネル効果を生ぜしめ、分子レベルでのメ
モリー入力を実現する。 〔発明の効果〕 本発明は以上説明したように、先端部が原子1個から
数十個という微細な針状デバイスを用いてメモリー部表
面に、トンネル効果が生じる程度まで近接させ所定の電
圧を印加することによって、メモリー部の物性状態例え
ば、誘電体の分極状態、極性化合物の分子の回転状態、
液晶物質の分子の向き、多価元素原子の電子数、エレク
トロクロミック分子の吸収光波長あるいは極性溶媒に浸
した極性物質の電荷等を変化させることにより、情報を
入力し保持できるものであり、このメモリー入力装置を
用いることによって、従来は実現困難であった非接触
で、かつ単位メモリー部が単原子あるいは単分子レベル
の情報記録が可能となった。また針状デバイスを多数の
針で形成し、各針とメモリー部表面との距離あるいは各
針に印加する電圧をそれぞれ独立に制御することによ
り、並列入力あるいは広い範囲への入力が可能となる。
The present invention relates to a non-contact type memory input device capable of recording at the atomic level and the molecular level. [Prior Art] Conventionally, as a magnetic recording method, a memory input device is generally magnetized in a longitudinal direction in a plane by using a memory part in which a magnetic powder such as acicular Co-γFe 2 O 3 is applied to a support. There is a device by the method and a device by the perpendicular magnetization recording method that uses the magnetization in the vertical direction of the memory section.As the magneto-optical recording method, the film surface is magnetized in a certain direction and the laser beam is applied to the position to be recorded. There is a device in which the temperature of the position is raised by irradiation and the direction of magnetization is reversed. [Problems to be Solved by the Invention] However, in devices using these methods, the memory part cannot be used for a long period of time due to physical contact of a part of the input device with the memory part, or the unit memory part There was a limit to the densification because the region was composed of more than a certain number of atoms. [Means for Solving Problems] Therefore, the present invention has a means for controlling an input portion for recording in a memory portion, and in the memory input device for performing input to the memory portion by the control means,
The control means includes a needle-shaped device having a fine tip portion, a means for positioning the surface of the memory portion close to the tip portion of the needle-shaped device, and the tip portion of the needle-shaped device scans the surface of the memory portion. Input device having means for controlling the distance between the tip of the needle device and the surface of the memory portion, and means for controlling the voltage applied to the tip of the needle device. And The needle-like device is formed by one or many needles and is formed by semiconductor processing technology. [Operation] By using the memory input device configured as described above,
By changing the physical state of the memory part by applying a predetermined voltage to the surface of the memory part, a minute needle-shaped device with 1 to several tens of atoms is brought close to the surface of the memory part until a tunnel effect occurs, and information is transferred. By inputting and holding the information, by using this memory input device, it is possible to record information at a single atom or single molecule level in a unit memory unit in a non-contact manner, which has been difficult to realize in the past. Further, by forming the needle-like device with a large number of needles and independently controlling the distance between each needle and the surface of the memory section or the voltage applied to each needle, parallel input or input in a wide range becomes possible. Embodiment An embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 shows a memory output device according to the present invention. The needle-shaped device operating portion 7 is attached to the arm 3 fixed to the surface plate 2 placed on the earthquake-proof table 1. By rotating the dial 6, the needle-shaped device operating portion can be moved in the vertical direction. It is possible and can be used for rough positioning of the memory unit 5 and the needle-shaped device 8 in the Z-axis direction. XY for rough positioning in the in-plane direction (XY axis)
Control is performed by the stage 3 and the coarse motion control unit 11. Further, the attached optical microscope 25 can be used for rough alignment between the needle-shaped device 8 and the memory unit 5.
The scanning in the in-plane direction is performed by controlling the three-dimensional piezoelectric element incorporated in the needle-shaped device operation unit 7 by the X and Y axis control unit 13. 1-100 mV between the memory unit 5 and the needle device 8
Input to the memory unit 5 is performed by applying a constant voltage within the range. The needle-like device is formed of a single needle or a large number of needles having conductivity. In the needle-like device 8 of this embodiment, conductive portions and insulating portions are alternately arranged on a plane on a semiconductor substrate. In addition, a conductive needle having one to several atoms at its tip is connected to the conductive portion. This conductive needle can also be manufactured by miniaturizing a conductive layer grown on a semiconductor substrate by etching. The voltage applied to each conductive portion can be controlled independently. Coarse control unit 11, Z-axis control unit 12, XY-axis control unit 13,
The voltage control unit 10 is controlled by the computer 14. The devices other than the power supply, the control units (10 to 13), and the computer 14 are installed in the shield box 24. (Embodiment 2) In this embodiment, the apparatus of Embodiment 1 is used, and what is recorded by using a dielectric as the memory unit 5 will be described. Second
The figure shows the tip portion of the needle-shaped device 8 and the memory portion 5 of this embodiment.
FIG. For each atom of the dielectric substance (15 to 19) on the surface of the memory section 5, the fine conductive tips (26 to 30) connected to the conductive sections of the needle-shaped device 8 are attached. Polarize by bringing them close and applying a voltage. The atoms (18,15) in the portion below the conductive tip (27,30) to which no voltage is applied are not polarized. Next, by moving the needle-shaped device 8 in the X-axis direction or the Y-axis direction on the XY plane, and similarly applying a voltage only to the conductive tip portion above the position where input is required, only the atom at that position is To polarize. By doing this, memory input at the atomic level is realized. (Embodiment 3) In this embodiment, the apparatus of Embodiment 1 is used, and what is recorded in the memory section 5 by using a compound having a polarity will be described. FIG. 3 is an enlarged view of a tip portion of the needle-shaped device 8 and a part of the memory portion 5 of the apparatus of this embodiment. When a compound (31 to 35) having polarity is present in the memory section 5, the compound is rotated along the direction of the electric field by applying a voltage.
With respect to each molecule of the polar compound molecules (31 to 35) on the surface of the memory part, the fine tip part (26 to 30) connected on each conductive part of the needle-shaped device 8 is brought close to By applying, the polar compound molecule is rotated. Molecules under the tip (27,30) (3
4,31) does not rotate. Next, the needle-shaped device 8 is moved in the X-axis direction or the Y-axis direction on the XY plane, and similarly, a voltage is applied only to the tip portion above the position where input is required, so that only the molecule at that position is detected. Rotate. By doing this, the memory input at the molecular level is realized. (Embodiment 4) In this embodiment, the device of Embodiment 1 is used and the memory unit 5 is used.
The one using a liquid crystal substance is described in. FIG. 4 is an enlarged view of the tip portion of the needle-shaped device 8 and a part of the memory portion 5 of the device of this embodiment. The orientation of the molecules of the liquid crystal changes when a voltage is applied. A minute tip portion (26 to 30) connected to each conductive portion of the needle-shaped device 8 is brought close to each molecule of the liquid crystal substance (36 to 40) of the memory portion 5 and a voltage is applied. The direction of the liquid crystal molecule is changed by things. Liquid crystal molecules under the tip (27,30) where no voltage is applied (3
9,36) does not turn. Next, the needle-shaped device 8 is moved in the X-axis or Y-axis direction on the XY plane, and a voltage is applied only to the tip portion above the position where input is required, so that only the liquid crystal molecules at that position are oriented. change. By doing so, memory input at the molecular level is realized. Example 5 In this example, the device of Example 1 is used, a conductive tip is used as the tip of the needle-shaped device 8, and a polyvalent element atom is used for the memory section 5. FIG.
FIG. 3 is an enlarged view of a tip portion of a needle-shaped device 8 and a part of a memory unit 5 of the apparatus of this embodiment. When a voltage is applied to the polyvalent element atom, the number of electrons it has changes. Needle-like device 8 for each polyvalent element atom (41 to 45) of memory unit 5
The fine conductive tips (26 to 30) connected to the respective conductive portions are brought close to each other, and a tunnel effect is produced by applying a voltage, and the number of electrons of the atom is changed. The number of electrons of the atoms (44, 41) under the conductive tip (27, 30) to which no voltage is applied does not change. Next, by moving the needle-shaped device 8 in the X-axis direction or the Y-axis direction on the XY plane and applying a voltage only to the conductive tip portion above the position where input is required in the same manner as above, the tunnel effect is produced. Produce and change the number of electrons of the atom at that position.
By doing this, memory input at the atomic level is realized. (Embodiment 6) In this embodiment, the device of Embodiment 1 is used and the memory unit 5 is used.
The one using an electrochromic molecule is described in. FIG. 6 is an enlarged view of the tip portion of the needle-shaped device 8 and a part of the memory portion 5 of the apparatus of this embodiment. The wavelength of absorbed light of the electrochromic molecule changes when a voltage is applied. By bringing fine tips (26 to 30) connected to each conductive portion of the needle-shaped device 8 close to each of these molecules (46 to 50) and applying a voltage It causes a tunnel effect and makes a memory input. Molecules (49,4) underneath the tip (27,30) where no voltage is applied
The absorption wavelength of 6) does not change. Next, the needle device 8
It moves in the X-axis or Y-axis direction on the Y-plane, and in the same way as above, applying a voltage only to the tip above the position where input is required creates a tunnel effect and absorbs the molecule at that position. Change the light wavelength. By doing this, the memory input at the molecular level is realized. (Embodiment 7) In this embodiment, the device of Embodiment 1 is used and the memory unit 5 is used.
In the following, a polar substance immersed in a polar solvent is used and a large number of conductive needles are used as the tip of the needle-shaped device 8. It can be said that the surface of the memory part 5 made of a polar substance placed in a polar solvent is weakly charged, but one molecule of this substance is connected to each conductive part of the needle-shaped device to form a fine conductive film. The memory effect is performed by bringing the tip of the sex closer and applying a voltage to produce the tunnel effect. The charge of the polar molecules underneath the conductive tip that has not been applied a voltage is unchanged. Next, set the needle device 8 to X on the XY plane.
Move in the axis or Y-axis direction, and apply a voltage only to the conductive tip located above the position where input is required in the same manner as above, thereby creating a tunnel effect and realizing memory input at the molecular level. . [Effects of the Invention] As described above, the present invention uses a fine needle-shaped device having a tip of one atom to several tens of atoms to bring it close to the surface of the memory portion to the extent that a tunnel effect occurs, and to apply a predetermined voltage. By applying, the physical state of the memory part, for example, the polarization state of the dielectric, the rotation state of the molecule of the polar compound,
Information can be input and held by changing the orientation of the molecules of the liquid crystal substance, the number of electrons of the polyvalent element atom, the absorption light wavelength of the electrochromic molecule, or the charge of the polar substance immersed in the polar solvent. By using a memory input device, it has become possible to record information on a single atom or single molecule level in the unit memory unit without contact, which was difficult to achieve in the past. Further, by forming the needle-shaped device with a large number of needles and independently controlling the distance between each needle and the surface of the memory portion or the voltage applied to each needle, parallel input or wide range input is possible.

【図面の簡単な説明】 第1図は本発明によるメモリー入力装置の概略系統図、
第2図〜第6図はそれぞれ実施例2〜実施例6による装
置の針状デバイスの先端部とメモリー部の一部の拡大平
面図である。 3……X−Yステージ 5……メモリー部 6……ダイヤル 7……針状デバイス操作部 8……針状デバイス 10……電圧制御部 11……粗動制御部 12……Z軸制御部 13……X,Y軸制御部 14……コンピュータ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic system diagram of a memory input device according to the present invention,
FIG. 2 to FIG. 6 are enlarged plan views of the tip portion of the needle-like device and a part of the memory portion of the apparatus according to Embodiments 2 to 6, respectively. 3 XY stage 5 memory 6 dial 7 needle device operation unit 8 needle device 10 voltage control unit 11 coarse movement control unit 12 Z axis control unit 13 …… X, Y axis control unit 14 …… Computer

Claims (1)

(57)【特許請求の範囲】 1.メモリー部に記録するための入力部を制御する手段
を有し、該制御手段によって前記メモリー部に対する入
力を行うメモリー入力装置において、前記制御手段が、
多数の導電性部とそれらの間に挟まった絶縁部よりなる
微細な先端部を有する針状デバイスと、前記メモリー部
の表面を前記針状デバイスの先端に接近させて位置づけ
させるための手段と、前記針状デバイスの先端部が前記
メモリー部の表面を走査させるための手段と、前記針状
デバイスの先端部と前記メモリー部の表面との間の距離
を制御するための手段と、前記針状デバイスの先端部に
印加する電圧を制御するための手段を有する事を特徴と
するメモリー入力装置。 2.前記距離を制御するための手段は、前記電圧を制御
するための手段により前記針状デバイスの先端に電圧を
印加したとき、前記メモリー部の表面と前記針状デバイ
スの先端部との距離を、前記針状デバイスの先端部と前
記メモリー部の表面の間にトンネル効果が生じる程度ま
で近接制御するものである事を特徴とする特許請求の範
囲第1項記載のメモリー入力装置。
(57) [Claims] In a memory input device having means for controlling an input section for recording in the memory section, wherein the control section inputs data to the memory section,
A needle-like device having a fine tip portion consisting of a large number of conductive portions and an insulating portion sandwiched between them; a means for positioning the surface of the memory portion close to the tip of the needle-like device; Means for causing the tip of the needle-like device to scan the surface of the memory section; means for controlling the distance between the tip of the needle-like device and the surface of the memory section; A memory input device comprising means for controlling the voltage applied to the tip of the device. 2. The means for controlling the distance, when a voltage is applied to the tip of the needle-shaped device by the means for controlling the voltage, the distance between the surface of the memory unit and the tip of the needle-shaped device, The memory input device according to claim 1, wherein proximity control is performed to such an extent that a tunnel effect occurs between the tip of the needle-shaped device and the surface of the memory.
JP62253157A 1987-09-10 1987-10-07 Memory input device Expired - Fee Related JP2673352B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62253157A JP2673352B2 (en) 1987-10-07 1987-10-07 Memory input device
EP19880308324 EP0307210A3 (en) 1987-09-10 1988-09-09 Memory writing apparatus
US07/243,512 US4945515A (en) 1987-09-10 1988-09-12 Memory writing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253157A JP2673352B2 (en) 1987-10-07 1987-10-07 Memory input device

Publications (2)

Publication Number Publication Date
JPH0196841A JPH0196841A (en) 1989-04-14
JP2673352B2 true JP2673352B2 (en) 1997-11-05

Family

ID=17247322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253157A Expired - Fee Related JP2673352B2 (en) 1987-09-10 1987-10-07 Memory input device

Country Status (1)

Country Link
JP (1) JP2673352B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69127379T2 (en) * 1990-01-11 1998-03-19 Canon K.K., Tokio/Tokyo Micro probe, manufacturing method for manufacturing the same and information input and / or output device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2556491B2 (en) * 1986-12-24 1996-11-20 キヤノン株式会社 Recording device and recording method

Also Published As

Publication number Publication date
JPH0196841A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US4945515A (en) Memory writing apparatus
US4962480A (en) Memory reading apparatus
US5107112A (en) Scanning tunnel-current-detecting device and method for detecting tunnel current and scanning tunnelling microscope and recording/reproducing device using thereof
US5412641A (en) Information recording/reproducing apparatus for recording/reproducing information with probes
JP2961452B2 (en) Information processing device
US5220555A (en) Scanning tunnel-current-detecting device and method for detecting tunnel current and scanning tunnelling microscope and recording/reproducing device using thereof
US5400192A (en) Storage device having vibratory head
JP3184619B2 (en) Parallel plane holding mechanism and memory device and STM device using the same
JP2004046933A (en) Pickup device
JPH04157640A (en) Information recording carrier and information processing using the same
JP2673352B2 (en) Memory input device
DE69128257T2 (en) Device and method for processing information
JP2673351B2 (en) Memory output device
JP2673352C (en)
US5255259A (en) Method of access to recording medium, and apparatus and method for processing information
JP2851855B2 (en) Recording and playback device
KR100519772B1 (en) Magnetic medium using spin-polarized electron and Apparatus of recording data and Recording method using the same
JP3053971B2 (en) Three-dimensional displacement element for generating tunnel current, multi-tip unit using the three-dimensional displacement element for generating tunnel current, and information processing apparatus
JPH0191339A (en) Memory output device
JP2942011B2 (en) Information storage device
JP3060143B2 (en) Recording medium and information processing apparatus using the same
JPH07110969A (en) Face alignment method, position control mechanism and information processor with the mechanism
JP3220914B2 (en) Recording medium manufacturing method
SU1774376A1 (en) Data recording and playback device
JP3276018B2 (en) Electrostatic latent image reader

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees