[go: up one dir, main page]

JP2661383B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JP2661383B2
JP2661383B2 JP3028846A JP2884691A JP2661383B2 JP 2661383 B2 JP2661383 B2 JP 2661383B2 JP 3028846 A JP3028846 A JP 3028846A JP 2884691 A JP2884691 A JP 2884691A JP 2661383 B2 JP2661383 B2 JP 2661383B2
Authority
JP
Japan
Prior art keywords
catalyst
copper
zeolite
ion
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3028846A
Other languages
Japanese (ja)
Other versions
JPH04267949A (en
Inventor
伸一 竹島
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3028846A priority Critical patent/JP2661383B2/en
Priority to EP91110697A priority patent/EP0463626B1/en
Priority to DE69118024T priority patent/DE69118024T2/en
Priority to US07/723,306 priority patent/US5141906A/en
Publication of JPH04267949A publication Critical patent/JPH04267949A/en
Application granted granted Critical
Publication of JP2661383B2 publication Critical patent/JP2661383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は自動車などの内燃機関の
排気ガス浄化用触媒に関し、更に詳しくは、例えば、理
論空燃費より比較的空燃比が大きい希薄燃焼運転条件で
の自動車排気ガスのようにガス中の残存酸素が比較的多
いNOx含有ガスを浄化するのに適した排気ガス浄化用
触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for an internal combustion engine of an automobile or the like, and more particularly, for example, to an exhaust gas purifying an automobile under a lean burn operating condition having an air-fuel ratio relatively larger than the stoichiometric air-fuel efficiency. The present invention also relates to an exhaust gas purifying catalyst suitable for purifying a NOx-containing gas having a relatively large amount of residual oxygen in the gas.

【0002】[0002]

【従来の技術】自動車などの内燃機関や工業プラントな
どの排気ガス浄化用触媒として、一酸化炭素や炭化水素
などの酸化と、窒素酸化物(NOx)の還元を同時に行
なう触媒が排気ガス浄化用触媒として汎用されている。
このような触媒としては、典型的にはコージエライトな
どの耐火性担体上にγ−アルミナスラリーを塗布し、焼
成後、パラジウム、白金、ロジウムなどの貴金属又はそ
れらの任意の混合物を担持させたものが知られている。
特にその触媒活性を高めるために数多くの提案がなされ
ており、例えば希土類酸化物で安定化したγ−アルミナ
粒子上に貴金属等を分散させるタイプの触媒において実
質的に希土類酸化物を含まない粒子上にロジウムを分散
させた触媒が特開昭61−11147 号公報に開示されてい
る。
2. Description of the Related Art As an exhaust gas purifying catalyst for internal combustion engines such as automobiles and industrial plants, a catalyst which simultaneously oxidizes carbon monoxide and hydrocarbons and reduces nitrogen oxides (NOx) is used for purifying exhaust gas. It is widely used as a catalyst.
As such a catalyst, typically, a γ-alumina slurry is applied on a refractory carrier such as cordierite, and after firing, palladium, platinum, a precious metal such as rhodium, or a mixture of any of them supported thereon. Are known.
In particular, many proposals have been made to enhance the catalytic activity thereof, for example, in a catalyst of the type in which a noble metal or the like is dispersed on rare earth oxide-stabilized γ-alumina particles, on a particle substantially containing no rare earth oxide. A catalyst in which rhodium is dispersed is disclosed in JP-A-61-11147.

【0003】しかしながら、これらの触媒は、エンジン
の設定空燃比によって浄化特性が大きく左右され、空燃
比の大きいリーン側、即ち希薄混合気では燃焼後も酸素
量が多いために、酸化作用が活発になり、還元作用が不
活発となる。これに対し、空燃比の小さいリッチ側では
燃焼後の酸素量が少なくなるために酸化作用が不活発に
なり、還元作用が活発となる現象がある。この酸化と還
元のバランスがとれる理論空燃比(A/F=14.6)付近
で触媒が最も有効に働くため、排気系の酸素濃度を検出
して混合気を理論空燃比付近に保つようにフィードバッ
ク制御することが行なわれていた。
[0003] However, the purification characteristics of these catalysts are greatly affected by the set air-fuel ratio of the engine. On the lean side where the air-fuel ratio is large, that is, on the lean mixture, the amount of oxygen is large even after combustion, so that the oxidizing action becomes active. And the reducing action becomes inactive. On the other hand, on the rich side where the air-fuel ratio is small, the amount of oxygen after combustion becomes small, so that the oxidizing action becomes inactive and the reducing action becomes active. Since the catalyst works most effectively near the stoichiometric air-fuel ratio (A / F = 14.6) where this oxidation and reduction can be balanced, feedback control is performed to detect the oxygen concentration in the exhaust system and maintain the mixture near the stoichiometric air-fuel ratio. Was being done.

【0004】かかる状況下に、リーン側でもNOxを還
元除去できる排気ガス浄化用触媒が提案されている(特
開平1−130735号公報参照)。この触媒は遷移金属でイ
オン交換されたゼオライトから成り、空燃比がリーン側
となる酸素過剰雰囲気においてもNOxを高効率に浄化
できる触媒である。
Under such circumstances, an exhaust gas purifying catalyst capable of reducing and removing NOx even on the lean side has been proposed (see Japanese Patent Application Laid-Open No. 1-130735). This catalyst is made of zeolite ion-exchanged with a transition metal, and is a catalyst that can efficiently purify NOx even in an oxygen-excess atmosphere where the air-fuel ratio is lean.

【0005】またゼオライト構造中に銅イオンを含むゼ
オライト型銅アルミノ珪酸塩から成る炭素物質燃焼用触
媒が例えば特公昭57−36015 号公報に記載されている。
A catalyst for burning a carbon material comprising a zeolite type copper aluminosilicate containing a copper ion in a zeolite structure is described in, for example, Japanese Patent Publication No. 57-36015.

【0006】前記した銅などの遷移金属でイオン交換さ
れたゼオライト触媒はリーン側でもNOxの還元に有効
であるが、本発明者らの知見によれば、実際の使用条件
あるいは排気規制モードでは、NOxの浄化率が低くな
る傾向にあった。これは、ゼオライトのイオン交換点以
外に例えば銅イオンが付着すると、触媒製造の乾燥及び
焼成工程において銅が酸化銅クラスタになり、これが以
下の反応で炭化水素(HC)を完全酸化させ、NOxの
還元に使われる炭化水素の量が減少し、NOxの浄化率
が低下することに起因するようである。
[0006] The zeolite catalyst ion-exchanged with a transition metal such as copper is effective for reducing NOx on the lean side, but according to the knowledge of the present inventors, in actual use conditions or in the exhaust gas regulation mode, The NOx purification rate tended to decrease. This is because, for example, when copper ions adhere to a point other than the ion exchange point of the zeolite, copper becomes a copper oxide cluster in the drying and calcining steps of the catalyst production, and this completely oxidizes hydrocarbons (HC) by the following reaction, and NOx It appears that the amount of hydrocarbons used for reduction is reduced and the NOx purification rate is reduced.

【0007】2HC→H2 O+CO2 この反応は高温で特に顕著になるため、実際の使用条件
あるいは排気規制モードでは、NOx浄化率が一層低く
なるおそれがあるという問題があった。そこで、本発明
者らは先に遷移金属でイオン交換されたゼオライト触媒
を硫化水素などの硫黄化合物を含むガス気流中で熱処理
することによって、ゼオライト表面上の酸化銅クラスタ
を硫化銅クラスタに変化させて、NOxの浄化率を向上
した排気ガス浄化用触媒を提案した。しかしながら、こ
の触媒は前述の硫化銅クラスタがゼオライトの細孔の一
部を閉塞するため、細孔内部の活性点を有効に利用でき
ず、NOxの浄化率が未だ実用的に十分とはいえなかっ
た。
2HC → H 2 O + CO 2 Since this reaction is particularly remarkable at high temperatures, there is a problem that the NOx purification rate may be further reduced under actual use conditions or the exhaust gas regulation mode. Therefore, the present inventors heat-treat the zeolite catalyst ion-exchanged with the transition metal in a gas stream containing a sulfur compound such as hydrogen sulfide, thereby converting the copper oxide clusters on the zeolite surface into copper sulfide clusters. Thus, an exhaust gas purifying catalyst with an improved NOx purification rate was proposed. However, in this catalyst, the aforementioned copper sulfide cluster blocks a part of the pores of the zeolite, so that the active sites inside the pores cannot be effectively used, and the purification rate of NOx is not yet practically sufficient. Was.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明は前記
した従来技術の問題点を除き、実際の希薄燃焼条件下に
おいても排気ガスを実用化できる程度に効果的に浄化す
ることのできる排気ガス浄化用触媒を開発することを目
的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above-mentioned problems of the prior art, and therefore, the present invention provides an exhaust gas capable of effectively purifying exhaust gas even under actual lean burn conditions. The purpose is to develop a purification catalyst.

【0009】[0009]

【課題を解決するための手段】本発明に従えば、1B族
及び鉄族から選ばれた遷移金属でイオン交換されたゼオ
ライト触媒をイオウ化合物を含む還元性ガス気流中で熱
処理した後、グリコールで洗浄して成る排気ガス浄化用
触媒が提供される。
According to the present invention, a zeolite catalyst ion-exchanged with a transition metal selected from the group 1B and the iron group is heat-treated in a reducing gas stream containing a sulfur compound and then treated with glycol. An exhaust gas purifying catalyst is provided by washing.

【0010】本発明に係る触媒はゼオライトを、先ず、
前記した特定の遷移金属(以下、単に「遷移金属」とい
う)でイオン交換し、これを硫黄化合物を含む還元性ガ
ス気流中で熱処理する。
[0010] The catalyst according to the present invention comprises a zeolite,
Ion exchange is performed with the above-mentioned specific transition metal (hereinafter simply referred to as “transition metal”), and this is heat-treated in a reducing gas stream containing a sulfur compound.

【0011】ゼオライトは、周知の通り、一般式: xM2/n O・Al2 3 ・ySiO2 で表される結晶性アルミノケイ酸塩(M:Na,K,C
a,Baなどの金属で、nは原子価数、x及びyは正
数)でM,x及びyの違いによって結晶構造中の細孔径
その他が異なり、そのカチオン交換能や分子ふるい作用
を利用して触媒、分子ふるい、吸着剤などとして汎用さ
れており、多くの種類のものが市販されている。
[0011] Zeolites are well known, the general formula: xM 2 / n O · Al 2 O 3 · crystalline aluminosilicate ySiO represented by 2 (M: Na, K, C
(a is a metal such as Ba, n is a valence number, x and y are positive numbers) and the pore size and the like in the crystal structure are different depending on the difference of M, x and y, and their cation exchange ability and molecular sieving action are utilized. It is widely used as a catalyst, molecular sieve, adsorbent, etc., and many types are commercially available.

【0012】本発明に係る触媒の製造においては、これ
らの任意のゼオライトを出発物質として用いることがで
きるが、浄化すべきNOx,CO及びHC分子の径より
も僅かに大きい約5〜10Åの細孔径を有するものを使
用するのが好ましい。本発明では、先ず、Cu,Co,
Ni,Feなどの遷移金属でゼオライト中の金属イオン
をイオン交換させる。このイオン交換は、例えばゼオラ
イトを金属イオン溶液で処理することによって行なうこ
とができる。
In the preparation of the catalyst according to the invention, any of these zeolites can be used as starting material, but with a fineness of about 5 to 10 ° slightly larger than the diameter of the NOx, CO and HC molecules to be purified. It is preferable to use one having a pore size. In the present invention, first, Cu, Co,
A metal ion in zeolite is ion-exchanged with a transition metal such as Ni or Fe. This ion exchange can be performed, for example, by treating zeolite with a metal ion solution.

【0013】次に遷移金属でイオン交換したゼオライト
は、本発明に従って硫黄化合物を含む還元性ガス気流中
で熱処理する。硫黄化合物としては例えば硫化水素など
を用いることができる。
Next, the zeolite ion-exchanged with the transition metal is heat-treated in a reducing gas stream containing a sulfur compound according to the present invention. For example, hydrogen sulfide or the like can be used as the sulfur compound.

【0014】本発明に従って遷移金属イオンでイオン交
換されたゼオライト触媒を硫黄化合物を含む還元性ガス
気流中で熱処理する装置の一例として、遷移金属として
銅イオンを用い、これを硫化水素含有ガスで熱処理して
本発明に係る触媒を製造する方法を図1を参照し乍ら以
下に説明する。他の遷移金属についても同様である。
As an example of an apparatus for heat-treating a zeolite catalyst ion-exchanged with a transition metal ion in a reducing gas stream containing a sulfur compound according to the present invention, copper ion is used as a transition metal and this is heat-treated with a hydrogen sulfide-containing gas. The method for producing the catalyst according to the present invention will be described below with reference to FIG. The same applies to other transition metals.

【0015】図1に示すように、銅イオンでイオン交換
されたゼオライト触媒1を、例えば電気炉2にいれ、硫
化水素ボンベ3より硫化水素含有ガス4(H2 S濃度に
は特に制限はないが、好ましくは、1,000 〜10,000ppm
程度、窒素希釈)を流通させ、電気炉をヒータ5で昇温
させ(生成硫化物が安定である限り、温度には特に制限
はないが、通常約500 〜700 ℃程度の温度で3〜12時
間)、イオン交換でイオン交換点以外の部位に付着して
酸化された酸化銅クラスタなどを硫化させて硫化銅クラ
スタとして、酸化活性を消失させる。なお、この操作に
おいてゼオライトのイオン交換点に置換した銅イオンは
安定に存在し、硫化されない状態で残存する(弱い硫化
水素の吸着)。なお、図1において6は熱電対である。
As shown in FIG. 1, a zeolite catalyst 1 ion-exchanged with copper ions is placed in, for example, an electric furnace 2 and a hydrogen sulfide-containing gas 4 (H 2 S concentration is not particularly limited) from a hydrogen sulfide cylinder 3. However, preferably, 1,000 to 10,000 ppm
And the temperature of the electric furnace is raised by the heater 5 (the temperature is not particularly limited as long as the produced sulfide is stable, but usually at a temperature of about 500 to 700 ° C. and 3 to 12 ° C.). Time), copper oxide clusters and the like oxidized by adhering to sites other than the ion exchange point by ion exchange are sulfided to form copper sulfide clusters and the oxidation activity is lost. In this operation, the copper ion substituted at the ion exchange point of the zeolite is stably present and remains without being sulfurized (weak adsorption of hydrogen sulfide). In FIG. 1, reference numeral 6 denotes a thermocouple.

【0016】上で得られたゼオライト触媒の表面には硫
化銅クラスタが生成するが、この硫化銅クラスタはグリ
コール(例えばエチレングリコール、プロピレングリコ
ールなどの純液)に溶解する。一方、イオン交換された
銅イオンは酸や強アルカリの溶液には溶解するがグリコ
ール等の非電解質液には溶解しないので、この性質を利
用し、表面付近の硫化銅クラスタのみを選択的に洗浄す
ることができる。グリコールによる洗浄温度には特に制
限はないが、好ましくは120 〜170 ℃で実施することが
できる。グリコールによる洗浄は、例えば図2に示すよ
うに、イオウ化合物で処理したゼオライト触媒6を充填
した容器7を通してグリコールを保有するタンク9から
グリコールをポンプ10で循環することによって行なうこ
とができる。洗浄はグリコールを変えて複数回繰り返す
ことによって一層効率よく行なうことができる。洗浄後
は常法に従って焼成することにより所望の触媒を得るこ
とができる。
Copper sulfide clusters are formed on the surface of the zeolite catalyst obtained above, and the copper sulfide clusters are dissolved in glycol (for example, a pure liquid such as ethylene glycol or propylene glycol). On the other hand, ion-exchanged copper ions dissolve in acid or strong alkali solutions but do not dissolve in non-electrolyte solutions such as glycols, so this property is used to selectively wash only copper sulfide clusters near the surface. can do. The temperature for washing with glycol is not particularly limited, but it can be preferably carried out at 120 to 170 ° C. The washing with glycol can be performed, for example, by circulating the glycol from a tank 9 holding the glycol by a pump 10 through a container 7 filled with a zeolite catalyst 6 treated with a sulfur compound, as shown in FIG. Washing can be performed more efficiently by repeating the washing several times with different glycols. After washing, a desired catalyst can be obtained by calcining according to a conventional method.

【0017】[0017]

【作用】本発明者らの知見によれば、前述した通り、従
来の触媒は実際の運転条件又は排気規制モードでのNO
x浄化率が低かった。これはHCの酸化能が高く、HC
を無駄に消費するため、NOx浄化率が向上しないこと
を確認した。また排気温が高いときリーンNOx触媒の
NOx浄化能がかなり減少する。これは高温でHC成分
の直接的なCO2 への酸化が促進するためである。
According to the knowledge of the present inventors, as described above, the conventional catalyst is used under actual operating conditions or NO in the exhaust gas regulation mode.
x The purification rate was low. This has high oxidizing ability of HC,
It was confirmed that the NOx purification rate was not improved because waste was consumed. When the exhaust gas temperature is high, the NOx purification ability of the lean NOx catalyst is considerably reduced. This is because the oxidation of HC components directly to CO 2 is promoted at high temperatures.

【0018】一方、耐久性についても例えば銅イオンで
置換したゼオライト触媒では表面に付着した酸化銅クラ
スタが劣化を促進することを確認した。この酸化銅クラ
スタは例えばゼオライト骨格と反応し、銅アルミネート
を形成してゼオライト骨格を破壊する。現状のイオン交
換法で銅をイオン交換させた場合に、溶液中の銅イオン
はイオン交換されるだけでなく表面に酸化銅クラスタを
生成してしまう。
On the other hand, with respect to durability, it was confirmed that, for example, in the case of a zeolite catalyst substituted with copper ions, copper oxide clusters adhering to the surface accelerated deterioration. The copper oxide cluster reacts with the zeolite skeleton, for example, to form copper aluminate and destroy the zeolite skeleton. When copper is ion-exchanged by the current ion-exchange method, copper ions in the solution are not only ion-exchanged but also form copper oxide clusters on the surface.

【0019】イオン交換率が低い間は比較的酸化銅クラ
スタの生成は少ないが、耐久性はイオン交換の多いもの
より悪い。これはイオン交換率の低い間は、イオン交換
した銅イオンの安定性が低く、触媒の(使用)動作中に
ゼオライト内を容易に移動・凝集し酸化銅クラスタを生
成するために劣化が促進されるからである。そのため耐
久性を向上するには銅イオンをイオン交換点すべてに交
換し銅イオンを安定化するとともに、表面に酸化銅クラ
スタを生成しないようにすることが必要である。
While the ion exchange rate is low, the formation of copper oxide clusters is relatively small, but the durability is worse than that of the one with much ion exchange. This is because while the ion exchange rate is low, the stability of the ion-exchanged copper ions is low, and the catalyst easily moves and aggregates in the zeolite during (use) operation of the catalyst to form copper oxide clusters, which accelerates the deterioration. This is because that. Therefore, in order to improve the durability, it is necessary to exchange copper ions at all ion exchange points to stabilize the copper ions and not to form copper oxide clusters on the surface.

【0020】然るに本発明に従えば、先ず酸化銅クラス
タなどの酸化物を硫化して例えば硫化銅クラスタとし、
この硫化銅クラスタをグリコールに溶解して選択的に洗
浄除去するので、硫化銅クラスタによる細孔閉塞を防止
すると共に、細孔内部の活性点を有効に利用できるよう
にし、NOxの浄化率を向上させることができる。
According to the present invention, an oxide such as a copper oxide cluster is first sulfurized to form, for example, a copper sulfide cluster.
This copper sulfide cluster is dissolved in glycol and selectively washed and removed, so that pore blocking due to the copper sulfide cluster is prevented, active points inside the pores can be effectively used, and the NOx purification rate is improved. Can be done.

【0021】[0021]

【実施例】以下、添付図面を参照し乍ら本発明の実施例
を説明するが、本発明の技術的範囲を以下の実施例に限
定するものでないことはいうまでもない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings, but it goes without saying that the technical scope of the present invention is not limited to the following embodiments.

【0022】例1(製造例) (イ)ゼオライト触媒の調製法 Si/Al比40、細孔径 5.5ÅのZSM−5型ゼオライ
ト(東ソー製)の粉末を濃度0.01Nの酢酸銅水溶液中に
数日間常温で浸漬して銅イオンが交換したゼオライトを
得た。一方、アルミナゾルとシリカゾルをSi/Al比
が40となるように混合してスラリー状バインダーを得、
このバインダー70重量部中に、上記の銅イオン交換した
ゼオライト100 重量部及び水100 重量部を加えて混合
し、pHが7.0 〜8.6 となるようにアンモニア水(希釈)
で調製してスラリーを得た。このスラリーをコージエラ
イト製ハニカム担体(日本碍子製)0.7リットルにウォッ
シュコートし、乾燥後、600 〜650 ℃に焼成して銅イオ
ン交換ゼオライト触媒(以下触媒Aという)を得た。
Example 1 (Production Example) (a) Preparation method of zeolite catalyst A powder of ZSM-5 type zeolite (manufactured by Tosoh Corporation) having a Si / Al ratio of 40 and a pore size of 5.5% was prepared by dispersing a powder in an aqueous solution of 0.01 N copper acetate. It was immersed at room temperature for a day to obtain a zeolite in which copper ions were exchanged. On the other hand, alumina sol and silica sol were mixed so that the Si / Al ratio was 40 to obtain a slurry binder,
To 70 parts by weight of the binder, 100 parts by weight of the zeolite exchanged with copper ions and 100 parts by weight of water were added and mixed, and ammonia water (diluted) was adjusted to a pH of 7.0 to 8.6.
To obtain a slurry. This slurry was wash-coated on 0.7 liter of a cordierite honeycomb carrier (manufactured by Nippon Insulator), dried, and calcined at 600 to 650 ° C. to obtain a copper ion exchanged zeolite catalyst (hereinafter referred to as catalyst A).

【0023】(ロ)ゼオライト触媒Aの硫黄化合物処理 上で得た触媒Aを図1に示した電気炉2中に触媒1とし
て入れ、硫化水素ボンベからH2 S 1000ppmのガス(N
2 で希釈したガス)を触媒のイオン交換点以外に付着し
た銅の全量を硫化するのに十分な量を流通させた。電気
炉2は出口排ガス温度が約600 ℃になるように調製し、
約4時間反応させた。このようにしてイオン交換により
イオン交換点以外の部位に付着した銅(実際には酸化銅
クラスタ)は硫化され、硫化処理触媒(以下、触媒Bと
いう)を得た。
[0023] (b) placed in a catalyst A obtained in the sulfur compound-treated zeolite catalysts A as a catalyst 1 in an electric furnace 2 shown in FIG. 1, the hydrogen sulfide bomb H 2 S 1000 ppm gas (N
( A gas diluted by 2 ) was passed in an amount sufficient to sulphide the entire amount of copper adhering to portions other than the ion exchange point of the catalyst. The electric furnace 2 is prepared so that the outlet exhaust gas temperature is about 600 ° C.
The reaction was performed for about 4 hours. In this way, the copper (actually, a copper oxide cluster) adhered to a portion other than the ion exchange point by ion exchange was sulfided, and a sulfurization treatment catalyst (hereinafter, referred to as catalyst B) was obtained.

【0024】(ハ)硫化処理触媒Bのグリコール洗浄 水分を蒸溜により除去したエチレングリコールを用いて
図2に示す洗浄装置において上記方法でH2 S処理した
触媒Bに流通させ触媒Bに付着した硫化銅クラスタを溶
解した。洗浄した触媒Bを取り出し、再び新しいエチレ
ングリコールをグリコールタンク9に入れかえて2次洗
浄した。2次洗浄後、減圧乾燥を約3時間行ない、その
後N2 中 150℃で1日乾燥した。さらに空気中 600℃で
焼成を行ない触媒を得た(以下、触媒Cという)。この
ようにしてゼオライト内部のイオン交換点には銅イオン
をイオン交換し、表面の不純物としての硫化銅クラスタ
を除去した。
(C) Glycol washing of catalyst B for sulfidation Using ethylene glycol from which water has been removed by distillation, sulfuric acid adhering to catalyst B is passed through catalyst B which has been subjected to H 2 S treatment by the above method in the washing apparatus shown in FIG. The copper cluster was dissolved. The washed catalyst B was taken out, and fresh ethylene glycol was replaced in the glycol tank 9 again for secondary washing. After the second washing, drying under reduced pressure was performed for about 3 hours, and then drying was performed at 150 ° C. in N 2 for 1 day. Further, the catalyst was calcined at 600 ° C. in air to obtain a catalyst (hereinafter referred to as catalyst C). In this way, copper ions were ion-exchanged at the ion exchange points inside the zeolite, and copper sulfide clusters as surface impurities were removed.

【0025】例2(製造例) 例1において酢酸銅に代えて酢酸コバルトを用いた以外
は全く同様にしてコバルトイオン交換ゼオライト触媒
(触媒D)、その硫化処理触媒(触媒E)及び触媒Eを
グリコール洗浄した触媒(触媒F)を調製した。
Example 2 (Preparation Example) A cobalt ion-exchanged zeolite catalyst (catalyst D), a sulfidation catalyst (catalyst E) and a catalyst E were prepared in exactly the same manner as in Example 1 except that cobalt acetate was used instead of copper acetate. A glycol-washed catalyst (catalyst F) was prepared.

【0026】例3(評価例) 例1及び2で製造した触媒A,B,D及びE(対照例)
並びにC及びF(本発明例)を用いて10モードでこれら
の触媒の浄化活性を評価した(触媒容量:0.71リット
ル、車両:1.6 リットルリーンバーン、走行モード:10
モード)。結果は以下の表1に示す通りであった。
Example 3 (Evaluation Example) Catalysts A, B, D and E prepared in Examples 1 and 2 (Control Example)
The purification activity of these catalysts was evaluated in 10 modes using C and F (Examples of the present invention) (catalyst capacity: 0.71 liter, vehicle: 1.6 liter lean burn, running mode: 10
mode). The results were as shown in Table 1 below.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果から明らかな通り、触媒A又は
Dに対して触媒B又はEでは10モードにおけるHCの浄
化率が大幅に減少し、酸化能が明らかに減少した。また
触媒A又はDに対し触媒C又はFではHCの浄化率の減
少はやはりあるが、その程度は触媒B又はEほどではな
く、しかもNOxの浄化率は大幅に向上した。触媒B又
はEに対して触媒C又はFを比較すると、触媒C又はF
はHC浄化率およびNOx浄化率ともかなり向上してい
る。触媒C又はFは容量が小さくても活性が高く、触媒
B又はEでは表面付近に不活性な硫化銅が存在している
が、触媒C又はFではそれが除去されているので細孔内
部のイオン交換点が有効に利用されるようになったと思
われる。
As is evident from the results in Table 1, in the case of the catalyst B or E, compared with the catalyst A or D, the purification rate of HC in the 10 mode was significantly reduced, and the oxidizing ability was clearly reduced. Further, although the purification rate of HC in the catalysts C or F is still smaller than that in the catalysts A or D, the degree of the reduction is not as large as that of the catalysts B or E, and the purification rate of NOx is greatly improved. When comparing catalyst C or F with catalyst B or E, catalyst C or F
Have significantly improved both the HC purification rate and the NOx purification rate. The catalyst C or F has a high activity even if the capacity is small. In the catalyst B or E, inactive copper sulfide exists near the surface, but in the catalyst C or F, since it is removed, the inside of the pores is reduced. It seems that the ion exchange point has been effectively used.

【0029】上記触媒Cについて、特定のHC成分が残
存しているので、予め排気ガスを酸化触媒によりクラッ
クして、HC成分を少なくし、その後に本発明のリーン
NOx触媒を設置したところ、浄化率が更に上昇した。
Since a specific HC component remains in the catalyst C, the exhaust gas is cracked by an oxidation catalyst in advance to reduce the HC component, and then the lean NOx catalyst of the present invention is installed. Rates have risen further.

【0030】[0030]

【発明の効果】本発明に従えば、以上説明したように、
CuやCoなどの1B族及び鉄族から選ばれた遷移金属
でイオン交換されたゼオライト触媒を硫化水素などの硫
黄化合物を含むガス気流中で熱処理して、例えばゼオラ
イトのイオン交換点以外の部位に存在する酸化銅クラス
タなどの遷移金属の酸化物を硫化銅クラスタなどの硫化
物に交換させ、次いで、この硫化物などをグリコールで
洗浄して溶解除去するため硫化銅クラスタによって閉塞
されていた細孔内の活性点を有効に利用でき、活性点が
増加した分、NOxの浄化率を向上することができる。
According to the present invention, as described above,
A zeolite catalyst ion-exchanged with a transition metal selected from the group 1B and iron such as Cu or Co is heat-treated in a gas stream containing a sulfur compound such as hydrogen sulfide, for example, at a site other than the ion exchange point of the zeolite. The oxides of transition metals such as copper oxide clusters are exchanged for sulfides such as copper sulfide clusters, and then the pores closed by the copper sulfide clusters for washing and dissolving and removing the sulfides and the like with glycol. The active points in the area can be used effectively, and the purification rate of NOx can be improved by the increase in the active points.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に従って遷移金属でイオン交換
されたゼオライト触媒を硫黄化合物を含む気流中で熱処
理する装置の一例を示す図面である。
FIG. 1 is a drawing showing an example of an apparatus for heat-treating a zeolite catalyst ion-exchanged with a transition metal in an air stream containing a sulfur compound according to the present invention.

【図2】図2は、硫黄化合物で処理したゼオライト触媒
をグリコールで洗浄する装置の一例を示す図面である。
FIG. 2 is a drawing showing an example of an apparatus for washing a zeolite catalyst treated with a sulfur compound with glycol.

【符号の説明】[Explanation of symbols]

1…触媒 2…電気炉 3…硫黄水素ボンベ 4…硫黄水素含有ガス 5…ヒータ 6…熱電対 7…触媒 8…容器 9…グリコールタンク 10…ポンプ DESCRIPTION OF SYMBOLS 1 ... Catalyst 2 ... Electric furnace 3 ... Sulfur-hydrogen cylinder 4 ... Sulfur-hydrogen containing gas 5 ... Heater 6 ... Thermocouple 7 ... Catalyst 8 ... Container 9 ... Glycol tank 10 ... Pump

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1B族及び鉄族から選ばれた遷移金属で
イオン交換されたゼオライト触媒をイオウ化合物を含む
還元性ガス気流中で熱処理した後、グリコールで洗浄し
て成る排気ガス浄化用触媒。
An exhaust gas purifying catalyst comprising a zeolite catalyst ion-exchanged with a transition metal selected from the group 1B and the iron group, heat-treated in a reducing gas stream containing a sulfur compound, and then washed with glycol.
JP3028846A 1990-06-29 1991-02-22 Exhaust gas purification catalyst Expired - Fee Related JP2661383B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3028846A JP2661383B2 (en) 1991-02-22 1991-02-22 Exhaust gas purification catalyst
EP91110697A EP0463626B1 (en) 1990-06-29 1991-06-27 Catalyst for purifying exhaust gas
DE69118024T DE69118024T2 (en) 1990-06-29 1991-06-27 Catalytic converter for cleaning exhaust gases
US07/723,306 US5141906A (en) 1990-06-29 1991-06-28 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3028846A JP2661383B2 (en) 1991-02-22 1991-02-22 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH04267949A JPH04267949A (en) 1992-09-24
JP2661383B2 true JP2661383B2 (en) 1997-10-08

Family

ID=12259737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3028846A Expired - Fee Related JP2661383B2 (en) 1990-06-29 1991-02-22 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP2661383B2 (en)

Also Published As

Publication number Publication date
JPH04267949A (en) 1992-09-24

Similar Documents

Publication Publication Date Title
JP4757027B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
EP1875954A1 (en) Catalyst for catalytically reducing nitrogen oxide, catalyst structure, and method of catalytically reducing nitrogen oxide
US5141906A (en) Catalyst for purifying exhaust gas
WO2005023421A1 (en) Catalyst and method for contact decomposition of nitrogen oxide
JP2006314989A (en) Catalyst and catalytic structure for catalytic reduction of nitrogen oxides
CN106334577A (en) Preparation method of Mo modified Cu-SSZ-13 catalyst
JP4901129B2 (en) Nitrogen oxide catalytic reduction catalyst
US20020094314A1 (en) Method for the reduction and removal of nitrogen oxides
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
US7794679B2 (en) Catalyst and method for purification of diesel engine exhaust gas
JP2661383B2 (en) Exhaust gas purification catalyst
JP3111491B2 (en) Exhaust gas purification catalyst
JP4194805B2 (en) Method for catalytic removal of nitrogen oxides and catalyst therefor
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
US20080196396A1 (en) Catalyst and method for purification of diesel engine exhaust gas
JP3721112B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH06170166A (en) Nitrogen oxide removal method
JP2004068717A (en) Method and apparatus for catalytically removing nitrogen oxides
JP2004209386A (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3555148B2 (en) Exhaust gas purification catalyst
JP3473245B2 (en) Exhaust gas purification catalyst
JPH06126184A (en) Exhaust gas purification catalyst and exhaust gas purification method using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees