JP2659841B2 - Methanol reformer - Google Patents
Methanol reformerInfo
- Publication number
- JP2659841B2 JP2659841B2 JP2027137A JP2713790A JP2659841B2 JP 2659841 B2 JP2659841 B2 JP 2659841B2 JP 2027137 A JP2027137 A JP 2027137A JP 2713790 A JP2713790 A JP 2713790A JP 2659841 B2 JP2659841 B2 JP 2659841B2
- Authority
- JP
- Japan
- Prior art keywords
- methanol
- reaction
- gas
- reforming
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Industrial Gases (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノール改質装置に関し、更に詳しくは、
メタノール又はメタノールと水を触媒と接触させ、水素
含有ガスに改質するメタノール改質装置に関する。The present invention relates to a methanol reformer, and more particularly, to a methanol reformer.
The present invention relates to a methanol reformer for reforming into a hydrogen-containing gas by bringing methanol or methanol and water into contact with a catalyst.
従来のメタノールを改質し、水素含有ガスを製造する
方法の一態様を第4図によって説明する。この態様を実
施する装置はメタノール、純水を供給する原料ポンプ
1、原料を気化させて反応温度まで上昇させる原料予熱
器2及び過熱器5、触媒を充填した反応管を有する反応
器4、未反応原料等を凝縮する冷却器3及び凝縮液を気
液分離する気液分離器8、反応に必要な熱を供給する熱
媒加熱器7と熱媒循環ポンプ6、製品としてガスを精製
する精製器9により構成される。One embodiment of a conventional method for producing a hydrogen-containing gas by reforming methanol will be described with reference to FIG. An apparatus for implementing this embodiment includes a raw material pump 1 for supplying methanol and pure water, a raw material preheater 2 for evaporating the raw material and raising the temperature to a reaction temperature, a superheater 5, a reactor 4 having a reaction tube filled with a catalyst, A cooler 3 for condensing the reaction raw materials and the like, a gas-liquid separator 8 for gas-liquid separation of the condensate, a heating medium heater 7 and a heating medium circulation pump 6 for supplying heat required for the reaction, a purification for purifying a gas as a product It is constituted by a vessel 9.
原料ポンプ1で加圧供給された原料は原料予熱器2及
び過熱器5で所定の温度まで昇温され、触媒を充填した
反応器4でメタノールと水の混合蒸気は水素含有ガスに
改質される。The raw material supplied under pressure by the raw material pump 1 is heated to a predetermined temperature by a raw material preheater 2 and a superheater 5, and a mixed vapor of methanol and water is reformed into a hydrogen-containing gas in a reactor 4 filled with a catalyst. You.
こゝでいう水素含有ガスとは、水素を50mol%(乾ベ
ース)以上含有するガスのことを指し、水素以外のガス
の主成分は炭酸ガス(CO2)、一酸化炭素(CO)であ
り、次の三つの反応の収率によりガス濃度は決定され
る。The term "hydrogen-containing gas" used herein refers to a gas containing at least 50 mol% (dry basis) of hydrogen. The main components of the gas other than hydrogen are carbon dioxide (CO 2 ) and carbon monoxide (CO). The gas concentration is determined by the yield of the following three reactions.
CH3OH→2H2+CO CH3OH+H2O→(2+n)H2+(1−n)CO+nCO2 (0<n<1) CH3OH+H2O→3H2+CO2 これらの反応は吸熱反応であるため、熱媒加熱器7で
加熱された熱媒で熱を補給している。冷却器3で凝縮し
た未反応原料は気液分離器8で回収し、原料ラインへ戻
され循環使用される。又生成ガスは精製され製品ガスと
して回収される。CH 3 OH → 2H 2 + CO CH 3 OH + H 2 O → (2 + n) H 2 + (1-n) CO + nCO 2 (0 <n <1) CH 3 OH + H 2 O → 3H 2 + CO 2 These reactions are endothermic reactions. Therefore, heat is supplied by the heat medium heated by the heat medium heater 7. The unreacted raw material condensed in the cooler 3 is recovered in the gas-liquid separator 8, returned to the raw material line, and circulated. The produced gas is purified and recovered as a product gas.
前記の通り反応は吸熱反応であり、反応器4はシエル
・アンド・チューブの熱交換器型式となっており、チュ
ーブ側に触媒を充填し、この触媒層に供給された原料は
触媒との接触反応により水素含有ガスに改質される。こ
の反応熱はシエル側の熱媒から供給される。触媒上での
上記反応は比較的遅いため反応管内での水素生成速度は
伝熱律速となっており、伝熱をよくするため、反応管は
20φmm〜40φmm、一般的には30φmmと細い。As described above, the reaction is an endothermic reaction, and the reactor 4 is of a shell-and-tube heat exchanger type. The tube is filled with a catalyst, and the raw material supplied to the catalyst layer is brought into contact with the catalyst. It is reformed into a hydrogen-containing gas by the reaction. This reaction heat is supplied from the heat medium on the shell side. Since the above reaction on the catalyst is relatively slow, the rate of hydrogen generation in the reaction tube is controlled by heat transfer.To improve heat transfer, the reaction tube is
It is as thin as 20 to 40 mm, generally 30 mm.
従って、反応管数が非常に多くなり触媒充填作業に大
きな労力を必要とする。なお多管式のため構造上シエル
側容積が大きくなり設備が大型となる。Therefore, the number of reaction tubes becomes very large, and a large amount of labor is required for the catalyst filling operation. In addition, since it is a multi-tube type, the volume on the shell side becomes large structurally, and the equipment becomes large.
一方、熱媒側伝熱係数向上のために仕切り板を設ける
等複雑な構造を必要とする。又、反応熱補充のため熱媒
ユニットが必要であり、これらが製品ガスのコストの上
昇となっている。On the other hand, a complicated structure such as providing a partition plate for improving the heat transfer coefficient on the heat medium side is required. Further, a heat medium unit is required for replenishing the reaction heat, and these increase the cost of the product gas.
本発明は上述した従来法の欠点を解決し、コンパクト
でしかも安価にメタノールを改質することができる装置
を提供しようとするものである。An object of the present invention is to solve the above-mentioned drawbacks of the conventional method and to provide a compact and inexpensive apparatus for reforming methanol.
本発明はメタノールを水素含有ガスに改質する装置に
おいて、 片面をメタノール改質触媒化し、他面を酸化触媒化し
た多数のプレートを、 メタノール改質触媒化どうし、酸化触媒化どうしが対
面するように間隙をおいて配列し、 メタノール改質触媒化どうしの間隙にメタノールと水
を通し、酸化触媒化面どうしの間隙に燃料ガスと空気を
通す ようにしてなることを特徴とするメタノール改質装置で
ある。The present invention relates to an apparatus for reforming methanol into a hydrogen-containing gas, in which a large number of plates having one surface formed as a catalyst for methanol reforming and the other surface formed as an oxidation catalyst are formed so that the methanol reforming catalysts and the oxidation catalysts face each other. A methanol reformer characterized in that methanol and water are passed through the gap between the methanol reforming catalysts, and fuel gas and air are passed through the gap between the oxidation catalyzing surfaces. It is.
本発明にいうプレートの両面が触媒機能を有するプレ
ート式熱交換器型反応器とは、多回流路型、直交流型、
向流型があるが、これらのプレートの両面に触媒成分
を、メッキ、溶射、蒸着、塗布その他の方法で処理し、
プレートそのものを触媒化したものである。The plate heat exchanger type reactor having both sides of a plate having a catalytic function according to the present invention is a multi-flow channel type, a cross flow type,
There is a countercurrent type, but the catalyst component is treated on both sides of these plates by plating, spraying, vapor deposition, coating and other methods,
The plate itself is catalyzed.
触媒化した伝熱プレートは、伝熱面そのものが反応熱
を伴う触媒面であり、熱移動が大きい特徴を有する。ま
た本発明にいうプレートの両面が触媒化されているた
め、反応部(改質触媒化した面でプロセスガス流路、以
下、反応部と表記)では、吸熱反応であるメタノール改
質反応を行なわせ、その反応熱を加熱部(酸化触媒化し
た面で燃料ガス流路路、以下、加熱部と表記)での、燃
料ガスと空気の触媒燃焼による発熱を利用するという特
徴を有する。The catalyzed heat transfer plate is characterized in that the heat transfer surface itself is a catalyst surface accompanied by reaction heat, and has a large heat transfer. Further, since both surfaces of the plate according to the present invention are catalyzed, a methanol reforming reaction, which is an endothermic reaction, is carried out in a reaction section (a process gas flow path on the surface catalyzed by reforming, hereinafter referred to as a reaction section). Then, the reaction heat is utilized by utilizing heat generated by catalytic combustion of fuel gas and air in a heating section (a fuel gas flow path on an oxidation-catalyzed surface, hereinafter referred to as a heating section).
すなわち、プレートの両面での吸熱、発熱反応による
熱のバランスを利用し、効率的な伝熱による改質装置の
小型化を図るものである。That is, the size of the reformer is reduced by efficient heat transfer by utilizing the balance of heat generated by the endothermic and exothermic reactions on both sides of the plate.
以下、本発明の一実施例を図面にそって詳細説明す
る。Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
第1図は直交流型プレート式熱交換器型反応器の要部
を示したもので、反応部と加熱部は一層ごとのサンドイ
ッチ型となっている。FIG. 1 shows a main part of a cross-flow plate heat exchanger type reactor, in which a reaction section and a heating section are sandwich type for each layer.
第2図は触媒機能を有するプレート式熱交換器型反応
器を用い熱源として燃料ガス用いたプロセスフローであ
る。第2図のプロセスフローの構成機器はメタノール、
純水を供給する原料ポンプ1、原料を製品ガスで予熱す
る原料予熱器2、及び原料を蒸発する蒸発器10、プレー
トに触媒機能をもたせたプレート型熱交換器型反応器
4、製品ガスを冷却する冷却器3、製品ガス中の凝縮成
分を分離する気液分離器8、凝縮成分を分離した製品ガ
スを精製する精製器9により構成されてい。FIG. 2 is a process flow using a plate heat exchanger type reactor having a catalytic function and using fuel gas as a heat source. The components of the process flow shown in FIG.
A raw material pump 1 for supplying pure water, a raw material preheater 2 for preheating raw materials with product gas, an evaporator 10 for evaporating raw materials, a plate heat exchanger type reactor 4 having a plate having a catalytic function, and a product gas It comprises a cooler 3 for cooling, a gas-liquid separator 8 for separating condensed components in the product gas, and a purifier 9 for purifying the product gas from which the condensed components have been separated.
第3図は原料蒸発器10、原料過熱器5、反応器4をそ
れぞれ燃料ガスの温度レベルに応じて順次配列したプレ
ート式熱交換器型反応器を用いたプロセスフローを示す
ものであり、より小型でかつ高性能なメタノール改質装
置である。FIG. 3 shows a process flow using a plate heat exchanger type reactor in which the raw material evaporator 10, the raw material superheater 5, and the reactor 4 are sequentially arranged according to the temperature level of the fuel gas. This is a small and high-performance methanol reformer.
また、本発明でいう燃料ガスとは空気を導入し、触媒
燃焼できるガスを総称し、例えばメタノール蒸気や水素
を含有するガスなどを指す。Further, the term "fuel gas" as used in the present invention is a general term for a gas capable of introducing air and catalytically combusting, for example, a gas containing methanol vapor or hydrogen.
なお、本発明装置に使用可能な触媒成分としては下記
触媒成分が好適である。The following catalyst components are suitable as the catalyst components that can be used in the apparatus of the present invention.
(1)メタノール改質触媒成分 Pt,Pd,Rh,Niからなる群の一種以上の元素を含有する
触媒成分 Cu,Zn,Crからなる群の一種以上の元素を含有する触媒
成分 (2)燃焼触媒成分 Pt,Pdからなる群の一種以上の元素を含有する触媒成
分 Fe,Ni,Co,Mn,Cuからなる群の一種以上の元素を含有す
る触媒成分 〔実施例1〕 内部構造が第1図に示した通りの第3図に示したプレ
ート式熱交換器型反応器の反応部に、メタノールを3.2k
g/h、純水を2.7kg/hの原料を供給し、加熱部に燃料ガス
(H2約66mol%、他H2O,CO2CO)3Nm3/h、空気14Nm3/h供
給し、メタノール改質反応を実施した。プレート式熱交
換器反応器の反応部・加熱部のプレート面にはアルミナ
ウィスカーが生成されており、その上にアルミナのウオ
ッシユコートを施し、所定の濃度のジニトロジアンミン
白金(II)硝酸酸性溶液に含浸し、乾燥焼成後水素還元
して白金を担持されている。加熱部に燃料ガスと空気を
通し白金触媒上で触媒燃焼を行わせその発熱を熱源とす
る。プレートの反対面に、原料を導入して反応温度まで
加熱し、反応部で白金触媒上で吸熱反応であるメタノー
ル分解反応を主な反応とする改質反応を行ったところ、
表1に示す結果が得られた。(1) Methanol reforming catalyst component A catalyst component containing one or more elements of the group consisting of Pt, Pd, Rh, and Ni A catalyst component containing one or more elements of the group consisting of Cu, Zn, and Cr (2) Combustion Catalyst component containing one or more elements of the group consisting of Pt and Pd Catalyst component containing one or more elements of the group consisting of Fe, Ni, Co, Mn and Cu [Example 1] As shown in the figure, methanol was added to the reaction section of the plate heat exchanger type reactor shown in FIG.
g / h, a pure water supplying raw material 2.7 kg / h, the fuel gas in the heating section (H 2 to about 66 mol%, the other H 2 O, CO 2 CO) 3Nm 3 / h, air 14 Nm 3 / h supplied A methanol reforming reaction was performed. Alumina whiskers are formed on the plate surface of the reaction section and heating section of the plate heat exchanger reactor. A wash coat of alumina is applied on the whisker, and a dinitrodiammineplatinum (II) nitrate acid solution of a predetermined concentration is applied. , And dried and fired, and then reduced with hydrogen to carry platinum. The fuel gas and air are passed through the heating section to perform catalytic combustion on the platinum catalyst, and the generated heat is used as a heat source. On the opposite side of the plate, the raw materials were introduced and heated to the reaction temperature, and a reforming reaction was performed in which the main reaction was a methanol decomposition reaction, an endothermic reaction, on a platinum catalyst in the reaction section.
The results shown in Table 1 were obtained.
〔実施例2〕 第3図に示したプレート式熱交換器型反応器に、メタ
ノール、純水、燃料ガス、空気とも実施例1と同条件で
供給し、メタノール改質反応を実施した。 Example 2 Methanol, pure water, fuel gas and air were supplied to the plate heat exchanger type reactor shown in FIG. 3 under the same conditions as in Example 1 to carry out a methanol reforming reaction.
プレート式熱交換器型反応器の加熱部のプレートは実
施例1と同様にして白金を担持されている。反応部のプ
レートは高温側(燃焼排ガス入口側)プレートには、ニ
ッケル、銅を所定の濃度含有する複合酸化物を溶射した
ものを、低温側(燃焼排ガス出口側)には、銅、亜鉛を
所定の濃度含有する複合酸化物を溶射したプレートを配
置したプレート式熱交換器型反応器を用いて、加熱部に
は燃料ガスと空気を、反応部にはメタノールと水を通し
てメタノール改質反応を行ったところ、表2に示す結果
が得られた。The plate in the heating section of the plate heat exchanger reactor carries platinum in the same manner as in Example 1. The reaction plate is sprayed with a composite oxide containing a specified concentration of nickel and copper on the high temperature side (combustion exhaust gas inlet side) plate, and copper and zinc on the low temperature side (combustion exhaust gas outlet side). Using a plate heat exchanger type reactor in which plates sprayed with a composite oxide containing a predetermined concentration are placed, a fuel reforming reaction is performed by passing fuel gas and air to the heating section and methanol and water to the reaction section. As a result, the results shown in Table 2 were obtained.
〔〔発明の効果〕 従来の管型反応器に代えて、触媒機能を有したプレー
トを用いたプレート式熱交換器型反応器を使用すること
により、小型で高性能なメタノールの改質反応を行うこ
とができ、かつ粉粒体触媒の充填層を形成しないため、
圧力損失がなく、なお熱源として燃料ガスを効率よく利
用できることからコストの低廉化が可能になりその工業
的価値は極めて高い。 [Effect of the Invention] By using a plate heat exchanger type reactor using a plate having a catalytic function instead of a conventional tubular reactor, a small and high performance methanol reforming reaction can be achieved. Because it can be performed and does not form a packed bed of the particulate catalyst,
Since there is no pressure loss and the fuel gas can be used efficiently as a heat source, the cost can be reduced and its industrial value is extremely high.
第1図は本発明装置の一実施例の概略図、第2図及び第
3図は本発明装置をメタノール改質に用いる方法の態様
を示すプロセスフロー図、第4図は従来の管型反応器を
使用したメタノール改質法のプロセスフロー図である。FIG. 1 is a schematic view of an embodiment of the apparatus of the present invention, FIGS. 2 and 3 are process flow diagrams showing an embodiment of a method of using the apparatus of the present invention for methanol reforming, and FIG. FIG. 3 is a process flow chart of a methanol reforming method using a vessel.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/02 C01B 3/32 A C01B 3/32 31/20 A 31/20 C10K 3/04 C10K 3/04 B01J 23/74 321M ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B01J 35/02 C01B 3/32 A C01B 3/32 31/20 A 31/20 C10K 3/04 C10K 3/04 B01J 23/74 321M
Claims (1)
において、 片面をメタノール改質触媒化し、他面を酸化触媒化し
た多数のプレートを、 メタノール改質触媒化どうし、酸化触媒化どうしが対
面するように間隙をおいて配列し、 メタノール改質触媒化どうしの間隙にメタノールと水
を通し、酸化触媒化面どうしの間隙に燃料ガスと空気を
通す ようにしてなることを特徴とするメタノール改質装置。1. An apparatus for reforming methanol into a hydrogen-containing gas, wherein a large number of plates having one surface catalyzed by methanol reforming and the other surface oxidized by catalysis are treated with methanol reforming catalyzed and oxidized catalyzed one by one. Methanol and water are passed through the gap between the methanol reforming catalysts, and the fuel gas and air are passed through the gap between the oxidation catalyzing faces. Quality equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2027137A JP2659841B2 (en) | 1990-02-08 | 1990-02-08 | Methanol reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2027137A JP2659841B2 (en) | 1990-02-08 | 1990-02-08 | Methanol reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03232701A JPH03232701A (en) | 1991-10-16 |
JP2659841B2 true JP2659841B2 (en) | 1997-09-30 |
Family
ID=12212665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2027137A Expired - Lifetime JP2659841B2 (en) | 1990-02-08 | 1990-02-08 | Methanol reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2659841B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265007A (en) * | 2005-03-22 | 2006-10-05 | Toyota Motor Corp | Fuel reformer |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2741153B2 (en) * | 1993-06-02 | 1998-04-15 | 川崎重工業株式会社 | Plate fin type reactor for non-equilibrium reaction |
CA2389202A1 (en) * | 1999-11-25 | 2001-05-31 | Ikuo Nagashima | Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer |
JP4001723B2 (en) * | 2001-03-28 | 2007-10-31 | 本田技研工業株式会社 | Method for recovering catalyst performance of reforming catalyst device |
CN116654870B (en) * | 2023-06-16 | 2024-04-09 | 北京理工大学 | Self-heating type method for preparing hydrogen by reforming green alcohol and alcohol water solution |
-
1990
- 1990-02-08 JP JP2027137A patent/JP2659841B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265007A (en) * | 2005-03-22 | 2006-10-05 | Toyota Motor Corp | Fuel reformer |
Also Published As
Publication number | Publication date |
---|---|
JPH03232701A (en) | 1991-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5525322A (en) | Method for simultaneous recovery of hydrogen from water and from hydrocarbons | |
JP4350826B2 (en) | Method for producing hydrogen rich gas | |
US5004592A (en) | Steam reforming process | |
KR100201886B1 (en) | Autothermal steam reforming process | |
US5039510A (en) | Steam reforming | |
US7182917B2 (en) | Steam-reforming catalytic structure and pure hydrogen generator comprising the same and method of operation of same | |
KR101044621B1 (en) | Method and apparatus for producing syngas | |
KR100801861B1 (en) | Self-heating Contact Steam Reforming of Hydrocarbons | |
US20040063577A1 (en) | Catalyst for autothermal reforming of hydrocarbons with increased water gas shift activity | |
US6949683B2 (en) | Process for catalytic autothermal steam reforming of alcohols | |
CN1196330A (en) | Synthesis gas production by steam reforming using catalyzed hardware | |
RU2354607C2 (en) | Synthetic gas regeneration method and device | |
CA2389202A1 (en) | Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer | |
JPH04282330A (en) | Process for producing methanol | |
EP0179392B1 (en) | Ammonia synthesis process | |
JP5046437B2 (en) | Method and apparatus for producing ammonia | |
JP2659841B2 (en) | Methanol reformer | |
CA2426347C (en) | Process and apparatus using plate arrangement for reactant heating and preheating | |
JP4970750B2 (en) | Pseudoisothermal ammonia synthesis method | |
JPH04331703A (en) | Method of synthesis of ammonia gas manufacturing | |
CA2004218A1 (en) | Production of methanol from hydrocarbonaceous feedstock | |
JP2607644B2 (en) | Methanol reforming method | |
US7399326B2 (en) | Carbon monoxide clean-up in a PEM fuel cell system | |
JP4557849B2 (en) | Method for producing hydrogen from ethanol | |
JP2781657B2 (en) | Methanol reforming method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 13 |