[go: up one dir, main page]

JP2656364B2 - Superconducting element manufacturing method - Google Patents

Superconducting element manufacturing method

Info

Publication number
JP2656364B2
JP2656364B2 JP2077605A JP7760590A JP2656364B2 JP 2656364 B2 JP2656364 B2 JP 2656364B2 JP 2077605 A JP2077605 A JP 2077605A JP 7760590 A JP7760590 A JP 7760590A JP 2656364 B2 JP2656364 B2 JP 2656364B2
Authority
JP
Japan
Prior art keywords
conductive material
superconducting
bridge
superconducting element
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2077605A
Other languages
Japanese (ja)
Other versions
JPH03276685A (en
Inventor
二朗 吉田
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2077605A priority Critical patent/JP2656364B2/en
Publication of JPH03276685A publication Critical patent/JPH03276685A/en
Application granted granted Critical
Publication of JP2656364B2 publication Critical patent/JP2656364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超伝導体を利用した超電導素子の製
造方法に係り、特にブリッジ型ジョセフソン接合を有す
る超電導素子の製造方法に関する。
The present invention relates to a method for manufacturing a superconducting element using an oxide superconductor, and more particularly to a method for manufacturing a superconducting element having a bridge-type Josephson junction. It relates to a manufacturing method.

(従来の技術) 従来から、超電導素子として、PbあるいはNbなどの金
属超電導体を用いて、超電導電子対がトンネルできる程
度の薄い絶縁層挾み込んだ構成のトンネル型ジョセフソ
ン接合が知られている。このような従来のトンネル型ジ
ョセフソン素子は、液体ヘリウム温度に近い極低温動作
が必要とされている。また、トンネル型ジョセフソン接
合に特有なヒステリシスを持つ電流−電圧特性を示すた
め、回路構成が複雑になるなどの問題を有し、広く実用
に供されるまでに至っていない。
(Prior art) Conventionally, a tunnel-type Josephson junction has been known in which a superconducting element is made of a metal superconductor such as Pb or Nb and a thin insulating layer sandwiched by a pair of superconducting elements is sandwiched. I have. Such a conventional tunnel-type Josephson device needs to operate at a very low temperature close to the temperature of liquid helium. In addition, since it exhibits current-voltage characteristics having hysteresis peculiar to a tunnel-type Josephson junction, it has a problem such as a complicated circuit configuration and has not been widely used.

一方、金属超電導体を用いたヒステリシス特性を持た
ないジョセフソン接合素子として、一対の金属超電導体
からなる主電極間を細く、かつ薄い金属超電導体で接続
した、いわゆるブリッジ型接合の開発も進められてい
る。しかしながら、このようなブリッジ型接合は、上述
したトンネル型接合の場合と同様に、液体ヘリウム温度
に近い極低温動作が必要であるとともに、金属超電導体
の超電導ギャップが小さいため、大きい出力電圧を得る
のが困難であり、産業上寄与するのには至っていなかっ
た。
On the other hand, as a Josephson junction element using a metal superconductor and having no hysteresis characteristics, the development of a so-called bridge type junction, in which a main electrode consisting of a pair of metal superconductors is connected by a thin and thin metal superconductor, is also being developed. ing. However, such a bridge-type junction requires a very low-temperature operation close to the temperature of liquid helium and obtains a large output voltage because the superconducting gap of the metal superconductor is small, as in the case of the tunnel-type junction described above. It was difficult to do so, and it did not contribute to the industry.

このような状況の下で、最近、液体窒素温度以上の高
温で超電導特性を示す酸化物超電導材料が発見され、大
きな注目を集めている。この酸化物超電導体を持いて、
ジョセフソン接合を作製し得れば、上記従来の金属超電
導体を用いて構成したジョセフソン接合に比べ、少なく
とも極低温動作の必要がないことから大きな期待がもた
れている。
Under such circumstances, an oxide superconducting material exhibiting superconducting properties at a high temperature equal to or higher than the temperature of liquid nitrogen has recently been discovered and has attracted much attention. Having this oxide superconductor,
If a Josephson junction can be manufactured, there is great expectation that at least a cryogenic operation is not required as compared with a Josephson junction formed using the above-mentioned conventional metal superconductor.

(発明が解決しようとする課題) しかしながら、酸化物超電導材料はその表面が大気中
で容易に劣化し、またコヒーレンス長が小さいという本
質的問題を有しており、明確なジョセフソン特性を示す
良好な接合を作製することが難しかった。換言すると、
前記臨界温度の高い酸化物超電導体を用いたジョセフソ
ン接合の開発は、産業上大きなインパクトを持ちものと
期待されているが、これを実用に供するための接合構
造、ならびにその製造方法の開発が課題とされていた。
(Problems to be Solved by the Invention) However, the oxide superconducting material has an essential problem that its surface is easily degraded in the air and its coherence length is small, and the oxide superconducting material exhibits a clear Josephson characteristic. It was difficult to produce a perfect junction. In other words,
The development of a Josephson junction using the oxide superconductor having a high critical temperature is expected to have a great impact on industry, but the development of a bonding structure for making this practical, and a method of manufacturing the same have been developed. Was an issue.

本発明は、このような点に対処してなされたもので、
良好なジョセフソン特性を示すとともに出力電圧が大き
くかつ、ヒステリシス特性を示さないブリッジ型ジョセ
フソン接合素子の製造方法を提供することを目的とす
る。
The present invention has been made in view of such a point,
It is an object of the present invention to provide a method of manufacturing a bridge-type Josephson junction device that exhibits good Josephson characteristics, has a large output voltage, and does not exhibit hysteresis characteristics.

[発明の構成] (課題を解決するための手段) 本発明の超電導素子の製造方法は、酸化物超電導薄膜
上に異種の導電材料薄膜を積層して形成する工程と、 前記形成した超電導材料−導電材料薄膜積層体の一部
を選択的にエッチング除去する工程と、前記選択的なエ
ッチングにより除去された領域に絶縁材料を埋め込む工
程と、 前記埋め込んだ絶縁材料上の少なくとも一部を被いか
つ、埋め込んだ絶縁材料によって互いに離隔した超電導
材料−導電材料薄膜積層体間を電気接触を持つように導
電材料を積層配設する工程とを具備することを特徴とす
る。
[Structure of the Invention] (Means for Solving the Problems) In the method for manufacturing a superconducting element of the present invention, a step of laminating and forming a different kind of conductive material thin film on an oxide superconducting thin film; A step of selectively etching and removing a part of the conductive material thin film stack, a step of burying an insulating material in a region removed by the selective etching, and covering at least a part of the buried insulating material, And a step of laminating and disposing a conductive material so as to have electrical contact between the superconducting material and the conductive material thin film laminate separated from each other by the embedded insulating material.

(作用) 本発明によれば、所要の超電導素子製造において、先
ず酸化物超電導体層上に、他の導電材料層を被覆積層し
た構造とする。このため、表面の劣化が容易かつ確実に
防止され、また大気中に放置されても、表面に所要の超
電導特性を示さない変成層が形成する恐れも全面的に防
止される。
(Operation) According to the present invention, in manufacturing a required superconducting element, a structure in which another conductive material layer is coated and laminated on an oxide superconductor layer first is adopted. For this reason, the deterioration of the surface is easily and reliably prevented, and even if left undisturbed in the air, the possibility of forming a metamorphic layer that does not exhibit the required superconducting properties is completely prevented.

しかも、本発明においては、選択的なエッチングによ
って微小間隔を置いて形成した、ジョセフソン接合に関
与する島状の酸化物超電導体−導電材料薄膜積層体領域
間の電気的な接続も、前記微小間隔をほぼ平面を成すよ
うに埋めた絶縁体面上に配設されるため、安定した配線
を行ない得る。
In addition, in the present invention, the electrical connection between the island-shaped oxide superconductor and the conductive material thin film laminate region involved in the Josephson junction and formed at minute intervals by selective etching is also minimized. Since the gaps are arranged on the surface of the insulator buried so as to form a substantially flat surface, stable wiring can be performed.

かくして、本発明によれば、ヒステリシス特性を示さ
ない、応用範囲の広いジョセフソン超電導素子を製造し
得ることが可能となる。
Thus, according to the present invention, it is possible to manufacture a Josephson superconducting element having no hysteresis characteristics and a wide application range.

(実施例) 以下本発明の実施例を説明する。(Example) Hereinafter, an example of the present invention will be described.

先ず、具体例の説明に先立って本発明の基本的な構成
ないし条件を説明する。
First, the basic configuration or conditions of the present invention will be described prior to the description of specific examples.

本発明では、超電導素子の製造に当り、その出発点と
して、酸化物超電導膜上に、他の導電材料を積層して形
成する。ここで、積層する他の導電材料としては、酸化
物超電導体と良好な電気的な接触性を有しかつ、化学的
に安定であるAu、Ag、Ptなどの貴金属あるいは、これら
を主成分とする合金が望ましい。この積層構造の形成な
いし作製は、超電導体層の表面を大気に曝することなく
行うことで、一層の特性改善が期待できる。
In the present invention, as a starting point in manufacturing a superconducting element, another conductive material is laminated and formed on an oxide superconducting film. Here, as another conductive material to be laminated, a noble metal such as Au, Ag, or Pt, which has good electrical contact with the oxide superconductor and is chemically stable, or a material containing these as a main component Preferred alloys. By forming or manufacturing this laminated structure without exposing the surface of the superconductor layer to the atmosphere, further improvement in characteristics can be expected.

また、本発明のいては、ブリッジ型接合を構成ないし
作製する部分の超電導体−導電材料積層膜をエッチング
除去した後、その部分を絶縁材料で充填接続するブリッ
ジ部を細くかつ、薄く形成する必要がある。前記ブリッ
ジ部が段差を横切る構造とすると、いわゆる段切れなど
を問題を生じ、歩留り良く超電導素子を製造することは
できない。
Further, in the present invention, after the superconductor-conductive material laminated film at the portion where the bridge-type junction is formed or formed is removed by etching, it is necessary to form a thin and thin bridge portion that fills and connects that portion with an insulating material. There is. If the bridge portion has a structure crossing a step, a problem such as so-called step disconnection occurs, and a superconducting element cannot be manufactured with high yield.

本発明において、使用されるブリッジ部の導電材料
は、酸化物超電導体との間に近接効果を発現し得るもの
であれば任意に選択することができるが、前述した製造
工程で出発点とした積層構造に用いた貴金属などを用い
ることで、主電極部との接触を大きく改善できる。ま
た、ブリッジ部材料として、自らが極低温では超電導特
性を示す金属超電導体を用いることもできる。
In the present invention, the conductive material of the bridge portion used can be arbitrarily selected as long as it can exhibit a proximity effect with the oxide superconductor. By using the noble metal or the like used for the laminated structure, contact with the main electrode portion can be greatly improved. Alternatively, a metal superconductor that exhibits superconducting characteristics at a very low temperature can be used as the bridge material.

本発明に係る製造方法においては、酸化物超電導体と
他の導電材料の積層した構造を先ず形成する。被覆する
導電材料は、酸化物超電導体と良好な電気的接触を持つ
ことで、酸化物超電導体より近接効果により超電導特性
が、その表面まで浸み出すように形成する。
In the manufacturing method according to the present invention, a stacked structure of an oxide superconductor and another conductive material is first formed. The conductive material to be coated is formed so as to have good electrical contact with the oxide superconductor, so that the superconducting property oozes to the surface of the oxide superconductor by the proximity effect.

したがって、被覆する電導材料の厚さは、近接効果を
有効に働かすため、薄い方が望ましいが、同時にこの導
電材料膜に酸化物超電導体表面の保護膜としての機能も
持たすために、ピンホールなどを生じない程度の厚さに
する。このような保護膜としての機能を果す導電材料膜
で被われた表面は化学的に安定となり、以降の製造工程
において劣化することはなくなる。
Therefore, it is desirable that the thickness of the conductive material to be coated be thin in order to effectively exert the proximity effect, but at the same time, since this conductive material film also has a function as a protective film on the surface of the oxide superconductor, a pinhole or the like is required. To a thickness that does not cause The surface covered with the conductive material film functioning as such a protective film becomes chemically stable and does not deteriorate in the subsequent manufacturing steps.

本発明に係る製造方法においては、ブリッジ接合を形
成する主電極部を、上記超電導体−導電材料積層膜に対
するリングラフィ手段を用いたエッチング技術で形成す
る。つまり、ブリッジ接合では主電極間距離を狭くとる
ことが必要とされるため、現状技術においては電子線露
光法を用いるこたが現実的である。現在の電子線露光技
術によれば、0.1μmのパターニングは比較的容易であ
り、将来的には一層の縮小も可能と期待される。
In the manufacturing method according to the present invention, the main electrode portion forming the bridge junction is formed by an etching technique using the lithography means for the superconductor-conductive material laminated film. That is, since the bridge junction requires a small distance between the main electrodes, it is realistic to use the electron beam exposure method in the current technology. According to the current electron beam exposure technology, patterning of 0.1 μm is relatively easy, and it is expected that further reduction will be possible in the future.

前記パターンニングにおけるレジストの露光、現像処
理の後、エッチングはイオンミリング法などを用いて容
易に行うことができる。本発明方法においては、特に前
記エッチング工程の後、エッチングに用いたレジストを
残したままで、SiO、BaF2などの絶縁材料の蒸着を行
い、エッチングで形成された溝部(エッチング除去部)
に絶縁材料を埋め込み、リフトオフ後の表面を平坦化す
ることにある。この平坦化工程を経ることにより、以降
のブリッジ部の形成を平坦な表面上に行うことができ、
大きい出力電圧を得るのに必要な、薄くかつ細いブリッ
ジ部を歩留りを良く形成することが可能となる。
After the resist is exposed and developed in the patterning, etching can be easily performed by using an ion milling method or the like. In the method of the present invention, particularly after the etching step, while leaving the resist used for the etching, an insulating material such as SiO or BaF 2 is vapor-deposited, and the groove formed by the etching (etching removed portion)
And to flatten the surface after lift-off. By going through this flattening step, subsequent formation of a bridge portion can be performed on a flat surface,
It is possible to form a thin and thin bridge portion necessary for obtaining a large output voltage with a good yield.

上記のように、ブリッジ部の形成には、リングラフィ
工程とレジストによるリフトオフ工程を用いる。この場
合も、現状の技術水準では電子線露光工程を用いるのが
現実的である。また、ブリッジ部を形成する材料として
は、主電極との間の接触特性が良好な金属などを用いる
のがよい。つまり、ブリッジ接合がジョセフソン特性を
示すためには、主電極からブリッジ部材料内に超電導特
性が浸み出す近接効果を生じることが必要だからであ
る。しかし、近接効果を有効に発現し得る限りにおいて
は、出力電圧を大きくすることを目的とした介在層を積
層膜とブリッジ部の間に意図的に形成してもよい。
As described above, the bridge portion is formed by the lithography process and the lift-off process using the resist. Also in this case, it is practical to use an electron beam exposure step in the current state of the art. Further, as a material for forming the bridge portion, a metal or the like having good contact characteristics with the main electrode is preferably used. That is, in order for the bridge junction to exhibit the Josephson characteristic, it is necessary to generate a proximity effect in which the superconducting characteristic leaks into the bridge material from the main electrode. However, as long as the proximity effect can be effectively exerted, an intervening layer for the purpose of increasing the output voltage may be intentionally formed between the laminated film and the bridge portion.

次に第1図(a)〜(e)、第2図および第3図を参
照して、本発明の具体例を説明する。
Next, a specific example of the present invention will be described with reference to FIGS. 1 (a) to 1 (e), 2 and 3. FIG.

第1図(a)〜(e)は、本発明の超電導素子の製造
方法の実施態様を模式的に示したものである。
1 (a) to 1 (e) schematically show an embodiment of a method for manufacturing a superconducting element of the present invention.

先ず、酸化物超電導体としてYBa2 Cu3 O7および導伝
材料としてAuを用意し、同一真空容器内において多元ス
パッタ法によって、基板1、たとえばSrTiO3板上に膜状
に順次連続的に形成し、第1図(a)に断面的に示めす
ような構成の酸化物超電導体2−導電材料3の積層構造
を形成した。この際、YBa2 Cu3 O7の製膜2は基板(SrT
iO3)1を650℃に加熱した状態で、Ar−O2混合ガス雰囲
気中で行い、YBa2 Cu3 O7の製膜2後、基板1の温度を2
00℃程度まで低下させた状態で、Au膜3を500Åを厚さ
に、Ar雰囲気中で積層した。
First, YBa 2 Cu 3 O 7 as an oxide superconductor and Au as a conductive material are prepared, and sequentially and sequentially formed in a film shape on a substrate 1, for example, a SrTiO 3 plate by a multi-source sputtering method in the same vacuum vessel. Then, a laminated structure of the oxide superconductor 2 and the conductive material 3 having a structure as shown in cross section in FIG. 1A was formed. At this time, the film 2 of YBa 2 Cu 3 O 7 is made of a substrate (SrT
iO 3 ) 1 was heated to 650 ° C. in an Ar—O 2 mixed gas atmosphere, and after forming YBa 2 Cu 3 O 7 , the temperature of the substrate 1 was changed to 2 ° C.
With the temperature lowered to about 00 ° C., the Au film 3 was laminated at a thickness of 500 ° in an Ar atmosphere.

次いで、前記酸化物超電導体2−導電材料3積層構造
を形成した基板1を、真空容器より取出し、電子線露光
用レジスト4の2層塗布を行い、幅約0.2μmのライン
パターンを電子線描画により形成した後、Arイオンを用
いたイオンビームミリング法で一部を選択的に除去し
て、第1図(b)に断面的に示めすように、酸化物超電
導体−導電材料積層を区画する溝部5を形成した。
Next, the substrate 1 on which the stacked structure of the oxide superconductor 2 and the conductive material 3 is formed is taken out of the vacuum vessel, and two layers of resist 4 for electron beam exposure are applied, and a line pattern having a width of about 0.2 μm is drawn by electron beam. After that, a portion is selectively removed by an ion beam milling method using Ar ions to partition an oxide superconductor-conductive material stack as shown in cross section in FIG. 1 (b). The groove 5 to be formed was formed.

上記イオンビームミリング処理後、レジスト4を残し
たまま、真空装置中で、SiO膜(層)6を所定膜厚だけ
蒸着形成し(第1図(c)、レジスト4を溶解するリフ
トオフ工程により、エッチング除去された溝5部分に絶
縁体を埋め込んだ。第1図(d)はこの状態を断面的に
示したもので、SiO膜6と酸化物超電導体2側壁部の接
触は良好であり、表面の平坦性にもすぐれたものが得ら
れた。
After the ion beam milling process, a SiO film (layer) 6 is vapor-deposited and formed to a predetermined thickness in a vacuum device while leaving the resist 4 (FIG. 1 (c)). An insulator is buried in the groove 5 that has been etched away, and Fig. 1 (d) shows this state in cross-section, where the contact between the SiO film 6 and the side wall of the oxide superconductor 2 is good. Good surface flatness was obtained.

次に、ライン状に形成された絶縁体埋め込み部5′を
横切るように、ブリッジ形成部を、電子線露光法でパタ
ーニングし、レジストを用いたリフトオフ工程によりブ
リッジとなるAu3′を幅0.2μmに形成し、第1図(e)
に断面的に示すようなジョセフソン接合型の超電導素子
構造を得た。
Next, the bridge forming portion is patterned by an electron beam exposure method so as to cross the insulator buried portion 5 'formed in a line shape, and Au3' serving as a bridge is formed to a width of 0.2 μm by a lift-off process using a resist. Formed, FIG. 1 (e)
A Josephson junction type superconducting element structure as shown in section in FIG.

このようにして得たジョセフソン接合型の超電導素子
について、10゜Kにおける電流−電圧特性を測定した結
果を第2図に示めす。第2図から接合の臨海電流は約50
μA、IcRn積として4mVという良好な特性が得られるこ
とが確認された。
FIG. 2 shows the results of measuring the current-voltage characteristics at 10 ° K of the thus obtained Josephson junction type superconducting element. From Fig. 2, the critical current at the junction is about 50
It was confirmed that a good characteristic of 4 mV as a product of μA and IcRn was obtained.

また、上記ジョセフソン接合型の超電導素子を製造し
た場合と同じ製造方法を用いて、第3図に平面的に示め
す構成のdc SQUID(超電導磁束量子干渉計)構造の超電
導素子を製造した。かくして、製造したdc SQUID構造の
超電導素子は、磁場に対し明瞭な周期的な応答を示し、
電圧変調の深さは500μV以上に達する性能を呈した。
A superconducting element having a dc SQUID (superconducting magnetic flux quantum interferometer) structure having a configuration shown in plan view in FIG. 3 was produced by using the same production method as that for producing the above-mentioned Josephson junction type superconducting element. Thus, the manufactured dc SQUID structure superconducting element shows a clear periodic response to the magnetic field,
The voltage modulation depth exhibited a performance reaching 500 μV or more.

[発明の効果] 以上述べたように、本発明によれば、酸化物高温超電
導体を利用した高温で動作し得るブリッジ型ジョセフソ
ン接合素子を、安定性良好に(再現性よく)かつ、容易
に製造し得る。すなわち、液体窒素温度程度の高温でも
動作するとともに、電流−電圧特性にヒステリシスを示
さないために、SQUID(超電導磁束量子干渉計)の応用
に最適であるとともに、非ラッチ型のジョセフソン集積
回路を実現する上で不可欠な要素素子であるジョセフソ
ン素子の製造に好適である。かくして、本発明の製造方
法は、産業上極めて有用な超電導素子の提供に大きく寄
与するものといえる。
[Effects of the Invention] As described above, according to the present invention, a bridge-type Josephson junction device that can operate at a high temperature using an oxide high-temperature superconductor can be easily and stably provided (with good reproducibility). Can be manufactured. In other words, it operates at a high temperature of about liquid nitrogen temperature and shows no hysteresis in current-voltage characteristics, making it ideal for SQUID (superconducting magnetic flux quantum interferometer) applications. It is suitable for manufacturing a Josephson element, which is an essential element for realizing it. Thus, it can be said that the manufacturing method of the present invention greatly contributes to providing a superconducting element which is extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(e)は本発明に係る超電導素子の製造
方法によってブリッジ型接合形成の実施態様を模式的に
示す断面図、第2図は本発明に係る超電導素子の製造方
法によって製造したジョセフソン接合素子の電流−電圧
特性図、第3図は本発明に係る超電導素子の製造方法に
よって製造したdc SQUID用超電導素子の構造を示す平面
図である。 1……支持基板 2……酸化物超電導体 3……導電体膜 3′……ブリッジ部 4……レジスト層 5……酸化物超電導体−導電体膜積層エッチング除去領
域(溝) 6……絶縁物 6′……絶縁物で埋め込まれた領域
1 (a) to 1 (e) are cross-sectional views schematically showing an embodiment of forming a bridge type junction by a method for manufacturing a superconducting element according to the present invention, and FIG. 2 is a sectional view showing a method for manufacturing a superconducting element according to the present invention. FIG. 3 is a plan view showing the structure of a dc SQUID superconducting element manufactured by the method for manufacturing a superconducting element according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Support substrate 2 ... Oxide superconductor 3 ... Conductor film 3 '... Bridge part 4 ... Resist layer 5 ... Oxide superconductor-conductor film lamination etching removal area | region (groove) 6 ... Insulator 6 ': Area buried with insulator

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導薄膜上に異種の導電材料薄膜
を積層して形成する工程と、 前記形成した超電導材料−導電材料薄膜積層体の一部を
選択的にエッチング除去する工程と、 前記選択的なエッチングにより除去された領域に絶縁材
料を埋め込む工程と、 前記埋め込だ絶縁材料上の少なくとも一部を被いかつ、
埋め込んだ絶縁材料によって互いに離隔した超電導材料
−導電材料薄膜積層体間を電気接触を持つように導電材
料を積層配設する工程とを具備することを特徴とする超
電導素子の製造方法。
A step of laminating and forming a different kind of conductive material thin film on the oxide superconducting thin film; a step of selectively etching and removing a part of the formed superconductive material-conductive material thin film laminate; Embedding an insulating material in a region removed by selective etching; and covering at least a part of the buried insulating material, and
Stacking and disposing a conductive material so as to make electrical contact between the superconducting material and the conductive material thin film laminate separated from each other by the embedded insulating material.
JP2077605A 1990-03-26 1990-03-26 Superconducting element manufacturing method Expired - Fee Related JP2656364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077605A JP2656364B2 (en) 1990-03-26 1990-03-26 Superconducting element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077605A JP2656364B2 (en) 1990-03-26 1990-03-26 Superconducting element manufacturing method

Publications (2)

Publication Number Publication Date
JPH03276685A JPH03276685A (en) 1991-12-06
JP2656364B2 true JP2656364B2 (en) 1997-09-24

Family

ID=13638563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077605A Expired - Fee Related JP2656364B2 (en) 1990-03-26 1990-03-26 Superconducting element manufacturing method

Country Status (1)

Country Link
JP (1) JP2656364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516199B2 (en) 2000-09-13 2010-08-04 キヤノンアネルバ株式会社 Sputtering apparatus and electronic device manufacturing method

Also Published As

Publication number Publication date
JPH03276685A (en) 1991-12-06

Similar Documents

Publication Publication Date Title
JPH036675B2 (en)
US4539741A (en) Josephson junction element and method of making the same
JP2656364B2 (en) Superconducting element manufacturing method
JPH03228384A (en) superconducting element
US5304817A (en) Superconductive circuit with film-layered josephson junction and process of fabrication thereof
JPH07235700A (en) Superconductive super-lattice crystal device
JP2682136B2 (en) Method of manufacturing Josephson device
JP2994304B2 (en) Superconducting integrated circuit and method of manufacturing superconducting integrated circuit
JP2829173B2 (en) Superconducting element
JPS5846197B2 (en) Josephson junction device and its manufacturing method
JPS63245972A (en) Weakly coupled Josephson device
JPH01300575A (en) Superconducting element
JPS60147179A (en) Superconducting multi-terminal element
JP2955407B2 (en) Superconducting element
JP2989943B2 (en) Superconducting integrated circuit manufacturing method
JP2829201B2 (en) Superconducting element
JP2909455B1 (en) Superconducting element
JP2899308B2 (en) Superconducting element manufacturing method
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP2768276B2 (en) Oxide superconducting junction element
JPH10188754A (en) Superconducting relay
JPS61144892A (en) Manufacturing method of Syosefson integrated circuit
JP3085492B2 (en) Micro-bridge type Josephson device and stacked type Josephson device
JP3267353B2 (en) Manufacturing method of weak junction type Josephson device using edge junction of submicron area
JP2731513B2 (en) Superconducting element and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees