[go: up one dir, main page]

JP2653048B2 - Conductive polymer composite and method for producing the same - Google Patents

Conductive polymer composite and method for producing the same

Info

Publication number
JP2653048B2
JP2653048B2 JP62084017A JP8401787A JP2653048B2 JP 2653048 B2 JP2653048 B2 JP 2653048B2 JP 62084017 A JP62084017 A JP 62084017A JP 8401787 A JP8401787 A JP 8401787A JP 2653048 B2 JP2653048 B2 JP 2653048B2
Authority
JP
Japan
Prior art keywords
manganese
film
pyrrole
electrolyte
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62084017A
Other languages
Japanese (ja)
Other versions
JPS63250482A (en
Inventor
進 吉村
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62084017A priority Critical patent/JP2653048B2/en
Publication of JPS63250482A publication Critical patent/JPS63250482A/en
Application granted granted Critical
Publication of JP2653048B2 publication Critical patent/JP2653048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は導電材料、電磁シールド材料、電池、コンデ
ンサ等に使用し得る新規な導電性高分子複合体およびそ
の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a novel conductive polymer composite which can be used for a conductive material, an electromagnetic shielding material, a battery, a capacitor, and the like, and a method for producing the same.

従来の技術 ピロール、チオフェンなどの複素五員環化合物を電気
化学的に電極上に重合して得られる高分子膜は、高い電
導度を示し、比較的高い安定性を有するため、ここ数年
勢力的な研究が行なわれている。この電解重合は一般
に、溶媒(有機溶媒あるいは水)にピロールなどのモノ
マーと支持電解質(たとえば、過塩素酸テトラエチルア
ンモニウム(Et4N・CIO4)を溶解し、この溶液に電極を
入れ電圧を印加することにより、陽極上に酸化反応で重
合膜を形成させるというものである。この場合、支持電
解質の▲CIO- 4▼イオンがピロール膜中にドープされ、
高い電導性を示す。モノマーとしてはピロールの他にビ
ピロール、またチオフェンの他にビチオフェン、α−タ
ーチエニルあるいはピロールとチオフェンのコモノマー
であるチエニルピロールなどの類似化合物の重合も可能
である。その他のモノマーとしては、ベンゼン、ナフタ
レン、アントラセン、ピレン、などの縮合(多環)芳香
族化合物、フラン、インドール、カルバゾール、フェノ
チアジン、チエノチオフェンなどの複素環化合物、更に
アニリン、フェニレンジアミン、アミノピレンなどのア
ミノ基を有するものなど数多くの化合物が検討されてい
る。
2. Description of the Related Art A polymer film obtained by electrochemically polymerizing a five-membered heterocyclic compound such as pyrrole or thiophene on an electrode has a high conductivity and a relatively high stability. Research is being conducted. In this electrolytic polymerization, generally, a monomer such as pyrrole and a supporting electrolyte (eg, tetraethylammonium perchlorate (Et 4 N · CIO 4 )) are dissolved in a solvent (organic solvent or water), an electrode is put in the solution, and a voltage is applied. In this case, a polymer film is formed on the anode by an oxidation reaction, in which case the ▲ CIO - 4 ions of the supporting electrolyte are doped into the pyrrole film,
Shows high conductivity. As the monomer, besides pyrrole, bipyrrole, thiophene, and other similar compounds such as bithiophene, α-terthienyl, or a similar compound such as thienylpyrrole, which is a comonomer of pyrrole and thiophene, can be used. Other monomers include condensed (polycyclic) aromatic compounds such as benzene, naphthalene, anthracene, and pyrene; heterocyclic compounds such as furan, indole, carbazole, phenothiazine, and thienothiophene; and aniline, phenylenediamine, and aminopyrene. Numerous compounds such as those having an amino group have been studied.

このような電解重合膜の特徴は、先ず1000S/cmまでの
高い電導性を示すことである。これは、重合物(高分
子)がイオン化(酸化)状態にあるために生ずるもの
で、中にドープされたイオンを何らかの方法で抜いてや
ると絶縁物に転換される。電気化学的に重合膜にイオン
をドープ、脱ドープすることが最も良く行なわれてお
り、これに伴う膜の色の変化は表示素子として利用で
き、あるいはこれによる電荷の蓄積効果は2次電池とし
て利用できる。
The characteristic of such an electropolymerized film is that it exhibits high conductivity up to 1000 S / cm. This is because the polymer (polymer) is in an ionized (oxidized) state, and is converted into an insulator when ions doped therein are removed by any method. It is best to dope and de-dope the polymerized film electrochemically with ions, and the resulting color change of the film can be used as a display element, or the effect of accumulating the charge by this can be used as a secondary battery. Available.

ところが、最近電解重合膜に表示、エネルギー蓄積以
外の機能を付与する手法として、種々の複合技術が開発
されてきている。
However, recently, various composite techniques have been developed as a technique for imparting functions other than display and energy storage to the electropolymerized film.

たとえば、ドーパントに機能を持たせたもので、ピロ
ール−スルフォン化フタロシアニン、界面活性剤などが
あり、高分子電解質(スルフォン化ポリスチレン)など
もドープされる。RuO2、あるいは酸化鉄などの粉末を重
合と同時にポリピロール膜に分散させる(フィラータイ
プ)こともできる。更に、汎用高分子(ポリ塩化ビニ
ル、ポリビニリデンフルオライド、ポリビニルアルコー
ル)を塗布した電極上にピロールなどを電解重合する
と、ピロールと汎用高分子の高分子アロイが作られると
いう高度な複合技術もある。(これらの複合技術に関し
ては、吉村 進、高分子討論会予稿集、昭和61年9月に
詳しくまとめられている。) 発明が解決しようとする問題点 以上述べたポリピロールを代表例とする電解重合高分
子は、高導電性、高安定性を有するばかりでなく、新し
い機能の発現のための多様な複合化も可能である。しか
しながら、高機能化を推進させるには更に新しい手法な
り、材料なりの開発が必要である。この発明が目的とす
るところは、電気化学的な活性が高く高導電性を有する
導電性高分子複合体を得ることであるが、これに対し、
上に述べた従来の技術の延長で類推される方法ではいず
れも満足のできるものにならない。
For example, the dopant has a function, such as a pyrrole-sulfonated phthalocyanine, a surfactant, and a polymer electrolyte (sulfonated polystyrene). Powder such as RuO 2 or iron oxide can be dispersed in the polypyrrole film simultaneously with polymerization (filler type). Furthermore, there is an advanced composite technology in which a polymer alloy of pyrrole and a general-purpose polymer is made by electrolytic polymerization of pyrrole or the like on an electrode coated with a general-purpose polymer (polyvinyl chloride, polyvinylidene fluoride, polyvinyl alcohol). . (These composite technologies are summarized in detail in Susumu Yoshimura, Proceedings of the Symposium on Polymer Science, September 1986.) Problems to be Solved by the Invention Electropolymerization typified by polypyrrole described above Polymers not only have high conductivity and high stability, but also can be variously complexed to exhibit new functions. However, in order to promote higher functionality, it is necessary to develop new methods and materials. An object of the present invention is to obtain a conductive polymer composite having high electrochemical activity and high conductivity.
None of the methods analogized by extensions of the prior art described above are satisfactory.

またこの発明で取扱う新しい材料は非常に高い電気化
学的な活性を有する二酸化マンガンとポリピロールから
成る複合導電体である。これを従来の技術で製造するに
は、二酸化マンガンの微粉末を懸濁させた電解質中でピ
ロールなどのモノマーを電解重合する方法が考えられ
る。しかしながら、この方法で得られた重合膜は、二酸
化マンガン粒子の不均一分散が起り、電導性の制御が不
十分で、電気化学的活性も十分ではない。その他の電気
化学的な活物質、たとえば二酸化鉛などの粉末をこのよ
うにしてピロール重合膜中に分散させても同様に、不十
分な結果しか得られない。
Also, the new material dealt with in this invention is a composite conductor of manganese dioxide and polypyrrole with very high electrochemical activity. In order to produce this by a conventional technique, a method in which a monomer such as pyrrole is electrolytically polymerized in an electrolyte in which fine powder of manganese dioxide is suspended may be considered. However, in the polymer film obtained by this method, manganese dioxide particles are unevenly dispersed, the conductivity is not sufficiently controlled, and the electrochemical activity is not sufficient. Dispersions of other electrochemically active materials, such as powders of lead dioxide, in the polymerized pyrrole film in this way likewise give poor results.

本発明は上記問題点を解決するもので、化学的な活性
が高く高導電性を有する導電性高分子複合体を得ること
を目的とするものである。
An object of the present invention is to solve the above problems and to obtain a conductive polymer composite having high chemical activity and high conductivity.

本発明の他の目的は上記導電性高分子複合体の新規な
製造方法を確立することである。
Another object of the present invention is to establish a novel method for producing the above conductive polymer composite.

問題点を解決するための手段 本発明の導電性高分子複合体は、電解重合性モノマー
及びマンガン塩を含む電解質を用いた電気分解により得
られた高分子及び二酸化マンガンを含む構成である。
Means for Solving the Problems The conductive polymer composite of the present invention has a configuration containing a polymer obtained by electrolysis using an electrolyte containing an electrolytic polymerizable monomer and a manganese salt, and manganese dioxide.

また、この導電性高分子複合体は、一対の電極を用意
する工程と、硫酸マンガン、塩化マンガン、硝酸マンガ
ン及び過塩素酸マンガンのいずれかであるマンガン塩と
ピロール、チオフェン、チエニルピロール、アニリン、
インドール及びフランのいずれかの電解重合性モノマー
とを含む電解質を用意する工程と、前記電解質を用いて
電気分解することにより前記一対の電極の内の陽極上に
電解重合により前記電解重合性モノマーから高分子を形
成するとともに前記陽極上に電解合成により二酸化マン
ガンをも形成して導電性高分子複合体を形成する工程と
を有する製造方法により好適に製造される。
In addition, this conductive polymer composite includes a step of preparing a pair of electrodes, a manganese salt that is any of manganese sulfate, manganese chloride, manganese nitrate and manganese perchlorate, and pyrrole, thiophene, thienylpyrrole, aniline,
A step of preparing an electrolyte containing an indole or furan electropolymerizable monomer, and from the electropolymerizable monomer by electrolytic polymerization on the anode of the pair of electrodes by electrolysis using the electrolyte. Forming a polymer and also forming manganese dioxide on the anode by electrolytic synthesis to form a conductive polymer composite.

作用 上記製造方法で得られた上記構成の複合体はほとんど
完全な非晶質二酸化マンガンが電解重合膜に均一分散し
ているので高い電気的活性を有し、かつ広い範囲におい
て電導度を連続的に制御できる。
Action The composite of the above constitution obtained by the above production method has high electrical activity because almost completely amorphous manganese dioxide is uniformly dispersed in the electropolymerized film, and has a continuous conductivity in a wide range. Can be controlled.

実施例 以下本発明について実施例をもとに詳細に説明する。Examples Hereinafter, the present invention will be described in detail based on examples.

本発明の複合材料の合成法の基本的なプロセスは、電
解重合性モノマーの電解重合と同時に二酸化マンガンの
電解合成を同時に行なわせようとするものである。二酸
化マンガンは作り方によりいろいろな分類がされてい
る。その中で電解二酸化マンガン(ECM)は、硫酸マン
ガンの水溶液を80〜90℃に保ち、約3Vの電圧で陽極上に
沈澱させて作られる。本発明は、この電解酸化反応が、
ピロールなどの酸化重合反応と同時に進行し得るかとい
う検討から開始し、それが可能であることをはじめて確
認したものである。
The basic process of the method of synthesizing the composite material of the present invention is to simultaneously perform the electrolytic polymerization of manganese dioxide and the electrolytic polymerization of the electrolytically polymerizable monomer. Manganese dioxide is classified in various ways depending on how it is made. Among them, electrolytic manganese dioxide (ECM) is made by keeping an aqueous solution of manganese sulfate at 80-90 ° C and precipitating on the anode at a voltage of about 3V. In the present invention, this electrolytic oxidation reaction
We started by examining whether it could proceed simultaneously with the oxidative polymerization reaction of pyrrole and the like, and for the first time confirmed that it was possible.

第1図は本発明による導電性高分子複合体を製造する
ために用いられる電解重合装置の概念図である。図にお
いて、1はガラス製の容器で、内部に電解質溶液2が収
納される。電解質溶液2中には陽極3および陰極4が設
けられ、定電流・定電圧電源5により所定の電流値、お
よび電圧値が与えられる。6および7はこれらを監視す
る電流計および電圧計である。
FIG. 1 is a conceptual diagram of an electrolytic polymerization apparatus used for producing a conductive polymer composite according to the present invention. In the figure, reference numeral 1 denotes a glass container in which an electrolyte solution 2 is stored. An anode 3 and a cathode 4 are provided in the electrolyte solution 2, and given a predetermined current value and voltage value by a constant current / constant voltage power supply 5. 6 and 7 are an ammeter and a voltmeter for monitoring these.

電解重合は定電流法でも定電圧法でも原理的には可能
である。しかし材料によってはある特殊な電位のみで重
合が起ることがあり、MnO2を作る電位も電解質組成に依
存することがあるので、定電圧法で行なうことが望まし
い。具体的な電解重合は、陽極として、白金、透明電極
(インジウム−錫の酸化物)あるいはクロム含有量の多
いステンレスなどを用い、陰極として白金ブラックある
いは白金メッシュなどの大面積の貴金属を用いた。
Electropolymerization can be performed in principle by a constant current method or a constant voltage method. However, depending on the material, polymerization may occur only at a specific potential, and the potential for forming MnO 2 may also depend on the electrolyte composition. In specific electrolytic polymerization, platinum, a transparent electrode (indium-tin oxide), stainless steel having a high chromium content, or the like was used as an anode, and a large-area noble metal such as platinum black or a platinum mesh was used as a cathode.

モノマーとしてはピロール、チオフエン、チエニルピ
ロール、アニリン、インドール、フランなどを用いるこ
とができる。この中で、ピロール、チオフエン、アニリ
ン、フランは水溶液で使用することができた。支持電解
質としてはマンガンの塩たとえば硫酸マンガン、硝酸マ
ンガン、塩化マンガンなどを用いた。目的に応じて、従
来から用いられている塩も同時に添加して重合を行なわ
せることも可能である。その支持塩としては、トシレー
トイオン(Tosと略す)、硫酸イオン(▲SO2- 4▼)、過
塩素酸イオン(▲ClO- 4▼)、4フッ化ホウ素イオン
(▲BF- 4▼)、硝酸イオン(▲NO- 3▼)、シュウ酸イオ
ン(COO-)2などの塩で有機溶媒あるいは水に対して溶解
性の高いものを選択して使用する。
As the monomer, pyrrole, thiophene, thienylpyrrole, aniline, indole, furan and the like can be used. Among them, pyrrole, thiophene, aniline, and furan could be used in an aqueous solution. A manganese salt such as manganese sulfate, manganese nitrate, manganese chloride or the like was used as a supporting electrolyte. Depending on the purpose, it is also possible to add a conventionally used salt at the same time to carry out the polymerization. As the supporting salt, (abbreviated as Tos) tosylate, sulfate (▲ SO 2- 4 ▼), perchlorate ion (▲ ClO - 4 ▼), 4 boron fluoride ions (▲ BF - 4 ▼) , nitrate ion (▲ NO - 3 ▼), oxalate (COO -) 2 salt, such as selected and used high solubility in organic solvents or water.

まず、ピロールを含まず、MnSO4のみを0.2mol/l含む
水溶液を電解質とする系では、定温で2.5〜3.0V以上の
電圧を印加することにより、陽極上に黒褐色の均一な膜
が得られた。この膜は基板への接着性が悪く、非常にも
ろいものであったが、X線回折スペクトルによればγ型
のMnO2であることが分った。次に、この電解質にピロー
ルを0.1mol/l添加して、電圧を印加したところ、黒色の
均一膜が陽極上に沈澱した。この膜を10万倍の倍率で電
子顕微鏡観察したところ、MnO2らしい粒子は全く存在し
ていなかった。また、X線回折によってもγ−MnO2の存
在は認められなかった。しかしながら、蛍光X線スペク
トルによれば、Mn原子が10〜20%存在することが示さ
れ、ポリピロールとMnO2の均一な複合(分子状複合)が
実現したことが明らかになった。
First, free of pyrrole, in a system of an aqueous solution containing MnSO 4 only 0.2 mol / l and the electrolyte, by applying a voltage greater than 2.5~3.0V at a constant temperature, blackish brown uniform film can be obtained on the anode Was. This film had poor adhesion to the substrate and was very brittle, but the X-ray diffraction spectrum showed that it was γ-type MnO 2 . Next, when 0.1 mol / l of pyrrole was added to this electrolyte and a voltage was applied, a black uniform film was deposited on the anode. When the film was observed with an electron microscope at a magnification of 100,000, no particles that seemed to be MnO 2 were present at all. Also, the presence of γ-MnO 2 was not recognized by X-ray diffraction. However, the fluorescent X-ray spectrum showed that Mn atoms were present in an amount of 10 to 20%, indicating that a uniform composite (molecular composite) of polypyrrole and MnO 2 was realized.

本発明はこのような発見に基づき、MnO2が電解重合膜
に均一分散した複合体を製造する新規な方法を提出する
ものである。
The present invention is based on such a finding, and proposes a novel method for producing a composite in which MnO 2 is uniformly dispersed in an electropolymerized film.

一般にMnO2は非晶質に近いγ−MnO2の方が熱分解(β
一型)MnO2より電気化学的な活性が高いと言われてい
る。それは、MnO2中でのプロトン、水酸基などのイオン
の動き易さに対応している。本発明で得られるポリピロ
ール/MnO2複合電解重合膜は、上に示したように、ほと
んど完全な非晶質MnO2を均一に含む膜であるため、高い
電気的活性が期待される。また、ポリピロールの電導度
は500S/cmであり、γ−MnO2のそれは約0.1S/cmであるの
で、このように均一な複合膜においては、500〜0.1S/cm
の間の電導度が連続的に制御し得ることが期待される。
In general, MnO 2 is thermally decomposed (γ-MnO 2
(Type 1) It is said that it has higher electrochemical activity than MnO 2 . It corresponds to the ease of movement of ions such as protons and hydroxyl groups in MnO 2 . As shown above, the polypyrrole / MnO 2 composite electropolymerized film obtained in the present invention is a film containing almost completely amorphous MnO 2 uniformly, and therefore high electrical activity is expected. Also, since the conductivity of polypyrrole is 500 S / cm and that of γ-MnO 2 is about 0.1 S / cm, in such a uniform composite film, 500 to 0.1 S / cm
It is expected that the conductivity during can be controlled continuously.

また、MnO2のみでは、皮膜にならず接着性が非常に低
いため、基板上に皮膜を形成して、薄膜デバイスを構成
することは不可能であるが、本発明の技術をもってすれ
ば、これが可能になる。
In addition, since MnO 2 alone does not form a film and has very low adhesiveness, it is impossible to form a film on a substrate to form a thin-film device. Will be possible.

実施例1 精製した水1にピロールを0.2mol/l滴下し、NaTos
を0.8mol/l溶解し、超音波をかけ約30分放置する。する
と、油状のピロールは完全に水に溶け、均一溶液が得ら
れる。そこに、MnSO4を0.4mol/l添加し溶解させる。こ
の溶液中に陽極として、ハイクロムステンレスを用い、
白金陰極との距離を2cmに保って浸漬し定電圧を印加し
重合させた。電圧を2.0、2.5、3.0、3.5、4.0、5.0Vと
変化させ各10分電解すると、2.5V以上で黒色の膜が生長
した。4.0V以上では膜の生長が不均一で、所々に基板か
らはく離した部分が見られた。2.5、3.0、3.5Vで得られ
たフィルムの厚さはそれぞれ5、16、14μmであり、そ
の電導度は25、40、16S/cmであった。MnSO4を添加しな
い場合の電導度は400S/cmであったので、MnO2の複合に
より電導度が低下したことが明らかである。蛍光X線お
よびX線光電子放射スペクトル(XPS)により、Mnの含
有量は26重量%であると決定された。X線回折ではMnO2
のいずれの結晶系の存在も認められなかった。
Example 1 Pyrrole was dropped at 0.2 mol / l into purified water 1 and NaTos
Is dissolved in 0.8 mol / l, and ultrasonic waves are applied thereto and left for about 30 minutes. Then, the oily pyrrole is completely dissolved in water, and a homogeneous solution is obtained. There, 0.4 mol / l of MnSO 4 is added and dissolved. Using high chromium stainless steel as the anode in this solution,
It was immersed while keeping the distance from the platinum cathode at 2 cm, and a constant voltage was applied to cause polymerization. When the voltage was changed to 2.0, 2.5, 3.0, 3.5, 4.0, and 5.0 V and electrolysis was performed for 10 minutes each, a black film grew at 2.5 V or more. At 4.0 V or more, the growth of the film was not uniform, and there were some areas separated from the substrate. The thicknesses of the films obtained at 2.5, 3.0 and 3.5 V were 5, 16, and 14 μm, respectively, and their electrical conductivities were 25, 40, and 16 S / cm. Since the conductivity without adding MnSO 4 was 400 S / cm, it is clear that the combination of MnO 2 lowered the conductivity. X-ray fluorescence and X-ray photoemission spectra (XPS) determined the Mn content to be 26% by weight. MnO 2 in X-ray diffraction
No crystal system was found.

実施例2 チオフェンあるいはチエニルピロールをアセトニトリ
ルと水の混合溶媒に0.1mol%添加し、電解質として、テ
トラエチルアンモニウム・トシレート(TEA・Tos)0.1m
ol%、MnSO40.05mol%を溶解して、実施例1と同様の方
法で重合反応を行なわせた。チオフェンは4.5V、チエニ
ルピロールは2.5Vで最も効率良く重合し10分で約20μm
の皮膜が得られた。それぞれの電導度は2.1、0.4S/cmで
あった。この場合Mnの含有量は約5%であった。
Example 2 Thiophene or thienylpyrrole was added to a mixed solvent of acetonitrile and water at 0.1 mol%, and tetraethylammonium tosylate (TEA · Tos) 0.1 m was used as an electrolyte.
ol% and 0.05 mol% of MnSO 4 were dissolved, and a polymerization reaction was carried out in the same manner as in Example 1. Thiophene is most efficiently polymerized at 4.5 V and thienylpyrrole at 2.5 V, and is about 20 μm in 10 minutes
Was obtained. The conductivity was 2.1 and 0.4 S / cm, respectively. In this case, the content of Mn was about 5%.

また、アニリン、フランはMnSO4とテトラエチルアン
モニウム・過塩素酸(TEA・CIO4)を支持電解質とし、
水とアセトニトリルあるいはイソプロピルアルコールの
混合溶媒を用いて、3〜4Vの電位で重合することが可能
であった。特にアニリンの場合は塩酸・硫酸などを添加
し、低いpH状態を作ると良質な皮膜を得ることができ
た。
In addition, aniline and furan use MnSO 4 and tetraethylammonium / perchloric acid (TEA / CIO 4 ) as supporting electrolytes,
Polymerization was possible at a potential of 3 to 4 V using a mixed solvent of water and acetonitrile or isopropyl alcohol. In particular, in the case of aniline, a high-quality film could be obtained by adding hydrochloric acid, sulfuric acid, etc. to a low pH state.

実施例3 ピロール0.2mol/l、NaTos0.5mol/lを含む水溶液およ
びピロール0.2mol/l、MnSO40.5mol/lを含む水溶液の2
種類の溶液を調整し、それらを10:0、8:2、…、2:8、0:
10に混合した電解質を用いて重合反応を行った。電解電
位を3.5Vに固定し、それぞれ20分間重合した皮膜の電気
伝導性を第2図に示す。約100S/mから1S/cmの間で電導
度が対数直線的に変化することが分る。これもポリピロ
ールをMnO2の均一分散の効果である。
Example 3 An aqueous solution containing 0.2 mol / l of pyrrole and 0.5 mol / l of NaTos and an aqueous solution containing 0.2 mol / l of pyrrole and 0.5 mol / l of MnSO 4 were prepared.
Prepare the different solutions and mix them 10: 0, 8: 2,…, 2: 8, 0:
A polymerization reaction was carried out using the electrolyte mixed in Step No. 10. The electrolytic conductivity was fixed at 3.5 V, and the electric conductivity of each film polymerized for 20 minutes is shown in FIG. It can be seen that the conductivity varies logarithmically between about 100 S / m and 1 S / cm. This is also an effect of dispersing polypyrrole uniformly in MnO 2 .

また、ピロール0.2mol/l、NaTos0.5mol/lとMnSO4との
比率を変えると、100S/cmから0.1S/cmの間で電導度を変
化させることができた。しかし、この場合、MnSO4含量
が75%以上では、MnO2が多くなるため皮膜は非常にもろ
いものとなり、実用的には問題である。
When the ratio of pyrrole 0.2 mol / l, NaTos 0.5 mol / l and MnSO 4 was changed, the conductivity could be changed between 100 S / cm and 0.1 S / cm. However, in this case, when the content of MnSO 4 is 75% or more, the amount of MnO 2 increases, so that the film becomes very brittle, which is a practical problem.

実施例4 ピロール0.25mol/l、とスルフォン化ポリスチレンの
ナトリウム塩(NaSPS)0.1mol/lの水溶液に、第2のMnO
2源として硝酸マンガン(Mn(NO3)2)0.5mol/lを溶解し
た透明電極上に3.0Vで電解重合すると、実施例1と同様
の黒い均一皮膜が得られた。MnSO4の場合に比して、こ
の皮膜は強度で高く、電導度も250S/cmと高めであるこ
とが特徴であった。
Example 4 A second MnO 2 solution was added to an aqueous solution of pyrrole 0.25 mol / l and sodium salt of sulfonated polystyrene (NaSPS) 0.1 mol / l.
Electrolytic polymerization at 3.0 V on a transparent electrode in which 0.5 mol / l of manganese nitrate (Mn (NO 3 ) 2 ) was dissolved as a second source gave a black uniform film similar to that of Example 1. Compared to MnSO 4 , this film was characterized by high strength and high conductivity of 250 S / cm.

X線回折スペクトルによれば、Mn(NO3)2から作られた
ポリピロール複合膜では、MnO2は基本的には非晶質であ
るが、微量ではあるがε型のMnO2の存在が認められた。
According to the X-ray diffraction spectrum, in the polypyrrole composite film made of Mn (NO 3 ) 2 , MnO 2 was basically amorphous, but a small amount of ε-type MnO 2 was observed. Was done.

また、同様の実験を塩化マンガン、過塩素酸マンガン
とNaTosの混合電解質を用いて行い本質的に同様の性質
を有する複合電解重合膜を得ることができた。
A similar experiment was performed using a mixed electrolyte of manganese chloride, manganese perchlorate and NaTos, and a composite electropolymerized membrane having essentially the same properties was obtained.

実施例5 ピロール0.5mol/l、NaTos0.4mol/l、MnSO40.4mol/lか
ら成る電解質を用い、白金板上にポリピロール−MnO2
合膜を形成させた。次に、この電極をNaTos0.1mol/lを
含む電解質中へ移し、第1図の装置で1mA/cm2の電流を
流した(充電)。約10分で1.9Vに達したので次に負荷抵
抗100KΩを通して放置し電圧計にて電圧の変化を見た。
これによると電圧の安定性は非常に良く、2次電池とし
て、約60Ah/kgのエネルギー密度の蓄積が可能であるこ
とを示していた。この電池は、複合導電膜の電導度が50
S/cmと非常に高いため、内部インピーダンスが低くな
り、大電流デバイスの可能性を有するものである。
Example 5 A polypyrrole-MnO 2 composite film was formed on a platinum plate using an electrolyte composed of pyrrole 0.5 mol / l, NaTos 0.4 mol / l, and MnSO 4 0.4 mol / l. Next, this electrode was transferred into an electrolyte containing 0.1 mol / l of NaTos, and a current of 1 mA / cm 2 was passed (charging) using the apparatus shown in FIG. Since the voltage reached 1.9 V in about 10 minutes, the load was left to pass through a load resistance of 100 KΩ, and the voltage was changed with a voltmeter.
According to this, the voltage stability was very good, indicating that a secondary battery can store an energy density of about 60 Ah / kg. This battery has a composite conductive film having an electric conductivity of 50.
Since the S / cm is very high, the internal impedance is low, and the device has a possibility of a large current device.

発明の効果 以上述べたように、本発明は、従来良く知られていた
電解重合膜の中に二酸化マンガンを分子状に分散した導
電性高分子複合体を実現するもので、その製造方法は、
ピロールなどのモノマーの電解重合と同時に、マンガン
塩の酸化反応を行なわせるという全く新しい電気化学反
応に基づいている。
Effect of the Invention As described above, the present invention realizes a conductive polymer composite in which manganese dioxide is molecularly dispersed in a conventionally well-known electrolytically polymerized film.
It is based on a completely new electrochemical reaction in which the manganese salt is oxidized simultaneously with the electropolymerization of monomers such as pyrrole.

本発明の導電性高分子複合体を用いれば、電導度が幅
広い範囲で制御された導電性皮膜が作られ、電子部品用
抵抗体、電磁シールド材料等に利用することができる。
また、この複合体はMnO2よりも高い電気化学的活性を有
するので、電池用活物質あるいは固体電解コンデンサ用
固体電解質としても活用できる。
By using the conductive polymer composite of the present invention, a conductive film whose conductivity is controlled in a wide range can be produced, and can be used as a resistor for an electronic component, an electromagnetic shielding material, and the like.
Further, since this composite has higher electrochemical activity than MnO 2, it can be used as an active material for a battery or a solid electrolyte for a solid electrolytic capacitor.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に用いられる電解重合装置の概念図、第
2図はナトリウムトシレートおよび硫酸マンガンを支持
電解質として、ピロールを重合した場合の重合膜の電気
伝導度の電解質組成依存特性図である。 2…電解質溶液、3…陽極、4…陰極、5…定電流定電
圧電源。
FIG. 1 is a conceptual diagram of an electropolymerization apparatus used in the present invention, and FIG. 2 is a diagram showing an electrolyte composition-dependent characteristic of the electric conductivity of a polymer film when pyrrole is polymerized using sodium tosylate and manganese sulfate as a supporting electrolyte. is there. 2 ... Electrolyte solution, 3 ... Anode, 4 ... Cathode, 5 ... Constant current and constant voltage power supply.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/04 H01M 4/04 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01M 4/04 H01M 4/04 A

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解重合性モノマー及びマンガン塩を含む
電解質を用いた電気分解により得られた高分子及び二酸
化マンガンを含む導電性高分子複合体。
1. A conductive polymer composite containing manganese dioxide and a polymer obtained by electrolysis using an electrolyte containing an electrolytic polymerizable monomer and a manganese salt.
【請求項2】高分子は、ポリピロール、ポリチオフェ
ン、ポリチエニルピロール、ポリアニリン、ポリインド
ール及びポリフランのいずれかである特許請求の範囲第
1項記載の導電性高分子複合体。
2. The conductive polymer composite according to claim 1, wherein the polymer is any one of polypyrrole, polythiophene, polythienylpyrrole, polyaniline, polyindole and polyfuran.
【請求項3】一対の電極を用意する工程と、硫酸マンガ
ン、塩化マンガン、硝酸マンガン及び過塩素酸マンガン
のいずれかであるマンガン塩とピロール、チオフェン、
チエニルピロール、アニリン、インドール及びフランの
いずれかの電解重合性モノマーとを含む電解質を用意す
る工程と、前記電解質を用いて電気分解することにより
前記一対の電極の内の陽極上に電解重合により前記電解
重合性モノマーから高分子を形成するとともに前記陽極
上に電解合成により二酸化マンガンをも形成して導電性
高分子複合体を形成する工程とを有する導電性高分子複
合体の製造方法。
3. A process for preparing a pair of electrodes, comprising: a manganese salt which is any of manganese sulfate, manganese chloride, manganese nitrate and manganese perchlorate, pyrrole, thiophene,
Thienyl pyrrole, aniline, a step of preparing an electrolyte containing an electropolymerizable monomer of any of indole and furan, and electrolytically using the electrolyte to electrolytically polymerize on the anode of the pair of electrodes on the anode. Forming a polymer from the electrolytic polymerizable monomer and also forming manganese dioxide on the anode by electrolytic synthesis to form a conductive polymer composite.
JP62084017A 1987-04-06 1987-04-06 Conductive polymer composite and method for producing the same Expired - Lifetime JP2653048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62084017A JP2653048B2 (en) 1987-04-06 1987-04-06 Conductive polymer composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62084017A JP2653048B2 (en) 1987-04-06 1987-04-06 Conductive polymer composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63250482A JPS63250482A (en) 1988-10-18
JP2653048B2 true JP2653048B2 (en) 1997-09-10

Family

ID=13818799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62084017A Expired - Lifetime JP2653048B2 (en) 1987-04-06 1987-04-06 Conductive polymer composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP2653048B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348405B2 (en) * 1999-07-22 2002-11-20 エヌイーシートーキン株式会社 Secondary battery and capacitor using indole polymer
JP4547495B2 (en) * 2004-09-13 2010-09-22 国立大学法人山口大学 Method for producing layered manganese oxide thin film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068519B2 (en) * 1985-04-19 1994-02-02 日立化成工業株式会社 Method for producing conductive plastic composite

Also Published As

Publication number Publication date
JPS63250482A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
Ghanbari et al. Preparation of polyaniline nanofibers and their use as a cathode of aqueous rechargeable batteries
Syed et al. Polyaniline—A novel polymeric material
JPH0548925B2 (en)
Okabayashi et al. Electrochemical studies of polyaniline and its application
JPH0454350B2 (en)
Ryu et al. Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane
US4663001A (en) Electroconductive polymers derived from heterocycles polycyclic monomers and process for their manufacture
Furukawa et al. Lithium batteries with polymer electrodes
Palaniappan et al. High‐temperature oxidation of aniline to highly ordered polyaniline–sulfate salt with a nanofiber morphology and its use as electrode materials in symmetric supercapacitors
Naoi et al. Impedance Analysis of Ionic Transport in Polypyrrole‐Polyazulene Copolymer and Its Charge‐Discharge Characteristics
Kawai et al. Electrochemical Characteristics of Poly (trans‐1, 2‐di (2‐thienyl) ethylene) and Its Battery Application
Palaniappan et al. Synthesis of copolymer of aniline and pyrrole by inverted emulsion polymerization method for supercapacitor
JP2653048B2 (en) Conductive polymer composite and method for producing the same
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPS6411209B2 (en)
Pokhodenko et al. Electrochemistry of conjugated organic polymers
JPH0138805B2 (en)
Dong et al. Electrochemical synthesis and study of poly (N-phenyl-1-naphthylamine)
JP2006310384A (en) Porous electrode manufacturing method, porous electrode, and electrochemical device
CN102683041B (en) Electrochemical synthesis method of poly-o-phenylenediamine non-membrane material and application of poly-o-phenylenediamine non-membrane material in super capacitor
Satoh et al. Polypyrrole: Synthesis and electronic device application
JPS63139912A (en) Conductive polymer
JPS62181325A (en) Electrolytic organic polymer film
JPH01157060A (en) Polyaniline electrode
JPS62143923A (en) Electrolytic polymerization for electrically conductive polymer