JP2650274B2 - Crystal preparation method - Google Patents
Crystal preparation methodInfo
- Publication number
- JP2650274B2 JP2650274B2 JP26941387A JP26941387A JP2650274B2 JP 2650274 B2 JP2650274 B2 JP 2650274B2 JP 26941387 A JP26941387 A JP 26941387A JP 26941387 A JP26941387 A JP 26941387A JP 2650274 B2 JP2650274 B2 JP 2650274B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- crystal
- crystallization
- tube
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013078 crystal Substances 0.000 title claims description 35
- 238000002360 preparation method Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims description 32
- 238000002425 crystallisation Methods 0.000 claims description 17
- 230000008025 crystallization Effects 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229920001222 biopolymer Polymers 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000011116 polymethylpentene Substances 0.000 claims description 2
- 229920000306 polymethylpentene Polymers 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims 2
- 239000012780 transparent material Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 description 14
- 238000002788 crimping Methods 0.000 description 12
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 8
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 6
- 235000011130 ammonium sulphate Nutrition 0.000 description 6
- 239000012064 sodium phosphate buffer Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HGAZMNJKRQFZKS-UHFFFAOYSA-N chloroethene;ethenyl acetate Chemical compound ClC=C.CC(=O)OC=C HGAZMNJKRQFZKS-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 102000036675 Myoglobin Human genes 0.000 description 2
- 108010062374 Myoglobin Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241000283222 Physeter catodon Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011549 crystallization solution Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N methyl pentane Natural products CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Peptides Or Proteins (AREA)
Description
【発明の詳細な説明】 〔発明の概要〕 本発明は、溶液成長により単結晶を作製するに際し、
従来は濃度勾配液を人力によって分割し、結晶化してい
た。このため、再現性が悪く、工数も多い等の問題点が
あった。本発明は、所定の圧着用治具等の手段を用いて
簡易にかつ自動的に濃度勾配液を分割することにより省
略化と再現性の向上を可能とした単結晶作製方法を提供
する。DETAILED DESCRIPTION OF THE INVENTION [Summary of the Invention] The present invention relates to the production of a single crystal by solution growth,
Conventionally, the concentration gradient liquid has been divided manually and crystallized. For this reason, there were problems such as poor reproducibility and many man-hours. SUMMARY OF THE INVENTION The present invention provides a single crystal manufacturing method capable of simplifying and automatically dividing a concentration gradient liquid by using a predetermined pressure-bonding jig or the like, thereby enabling omission and improvement of reproducibility.
本発明は、単結晶の作製方法に関し、更に詳しくは溶
液成長により単結晶を作製する際、濃度勾配液の分配を
自動的に行いうるようにした単結晶の作製方法に関す
る。The present invention relates to a method for producing a single crystal, and more particularly to a method for producing a single crystal in which a concentration gradient liquid can be automatically distributed when a single crystal is produced by solution growth.
タンパク質工学やドラッグデザイン等の応用研究に際
しては、例えばX線解析によるタンパク質の高次構造決
定が必須である。このためには、不純物を含有しない生
体高分子の単結晶の作製が問題となる。In applied research such as protein engineering and drug design, it is essential to determine the higher-order structure of a protein by, for example, X-ray analysis. For this purpose, the production of a single crystal of a biopolymer containing no impurities becomes a problem.
単結晶の作製方法として、従来静置バッチ法 自
由界面拡散法 透析法 透析拡散法 蒸気拡散法
濃縮法 等がある(生化学実験講座第1巻III 6〜1
7頁(1976年)。本発明は特に静置バッチ法に関する。Conventional methods for producing single crystals include the conventional stationary batch method, the free interface diffusion method, the dialysis method, the dialysis diffusion method, the vapor diffusion method, and the enrichment method (Biochemical Experiment Course, Vol. 1, III 6-1)
7 pages (1976). The invention particularly relates to the stationary batch method.
この静置バッチ法により結晶化する場合、結晶させる
べき物の水溶液に硫酸アンモニウム、硫酸マグネシウ
ム、硫酸ナトリウム、リン酸ナトリウム、塩化ナトリウ
ム、塩化セシウム、メチルベンタン、ジオール、エタノ
ール、メタノール、アセトン、ポリエチレングリコール
などの水溶液を添加し、高分子を沈澱させて放置するこ
とにより、溶液成長法によって結晶核生成と結晶成長を
行わせている。When crystallizing by this stationary batch method, ammonium sulfate, magnesium sulfate, sodium sulfate, sodium phosphate, sodium chloride, cesium chloride, methyl pentane, diol, ethanol, methanol, acetone, polyethylene glycol, etc. An aqueous solution is added to precipitate a polymer, and the mixture is allowed to stand, whereby crystal nucleation and crystal growth are performed by a solution growth method.
しかし結晶化条件の設定が微妙であるため、並行して
複数の条件において結晶化を行うことが多い。通常この
作業は人手によっているが、本出願人は既に貴重な試料
を無駄にすることなく作業を半自動化できる方法を提案
している(第6図)。この方法では、バルブを切り換え
て所定濃度にしポンプでフラックションコレクタに送っ
ている。この方法により場合、濃度勾配液はある程度自
動的に作製できるもののそれを分割する場合人力によら
ざるをえなかった。従ってこの方法では、作業者の熟練
度によって結果にバラツキが生じる場合もあり、再現性
の点で問題があった。However, since the setting of crystallization conditions is delicate, crystallization is often performed under a plurality of conditions in parallel. Usually, this work is manually performed, but the present applicant has already proposed a method capable of semi-automating the work without wasting valuable samples (FIG. 6). In this method, a valve is switched to a predetermined concentration to send it to a fraction collector by a pump. According to this method, the concentration gradient liquid can be produced to some extent automatically, but when it is divided, it has to be manually performed. Therefore, in this method, the result may vary depending on the skill of the operator, and there is a problem in reproducibility.
本発明は、上記の問題点を解決するため提案されたも
ので、結晶化条件の一つの因子を連続的に変化させたも
のを人手に頼って分割し、結晶化に到らしめるのではな
く、分割をも自動化することにより省力化と再現性の向
上を図ろうとするものである。The present invention has been proposed in order to solve the above-mentioned problems, instead of relying on humans to continually change one factor of the crystallization conditions and splitting, instead of reaching crystallization. It is intended to save labor and improve reproducibility by automating the division.
すなわち、本発明は生体高分子結晶の溶液成長によ
り、結晶化条件を規定する因子の一つを濃度勾配とした
液を分割して個別に結晶化させる方法において、軟質中
空管に該濃度勾配液を導き、しかる後該中空管を圧着す
ることによって複数個の小部屋に分割せしめ、各部屋を
結晶化溶液となすこと特徴とする(以下、発明A方法と
いう)。That is, the present invention provides a method of dividing a liquid having one of the factors defining crystallization conditions into a concentration gradient by solution growth of a biopolymer crystal and individually crystallizing the solution. The liquid is introduced, and then the hollow tube is press-bonded to divide the chamber into a plurality of small chambers, and each chamber is formed as a crystallization solution (hereinafter, referred to as invention A method).
さらに本発明は、生体高分子結晶の溶液成長により、
結晶化条件を規定する因子の一つを濃度勾配とした液を
分割して個別に結晶化させる方法において、各々に孔を
設けた複数ブロックと同じく各々に孔を設けた複数薄板
とを交互に配置して孔が連通する中空管腔を形成せしめ
て結晶成長装置を組立て、次いで結晶化すべき溶液を該
管腔に充填したのち、孔の連通を解除することにより該
管腔を小部屋に分割せしめ、各部屋を結晶化容器とする
(以下、発明B方法という)。Further, the present invention, by the solution growth of biopolymer crystals,
In a method in which a liquid having a concentration gradient as one of the factors defining the crystallization conditions is divided and crystallized separately, a plurality of blocks each having a hole and a plurality of thin plates each having a hole are alternately formed. A crystal growth apparatus is assembled by arranging and forming a hollow lumen in which holes communicate with each other, and then the solution to be crystallized is filled in the lumen, and then the lumen is divided into small chambers by releasing communication of the holes. At the very least, each room is used as a crystallization vessel (hereinafter referred to as the invention B method).
発明A方法における圧着方法は、例えば、第1図およ
び第2図に示すように、断面矩形の同形部材から成る圧
着用治具1を用いることができる。この圧着用治具1に
例えば軟質チューブ2を挟持させ、該治具1を用いて結
晶成長用の小部屋に分割する。この装置は例えば、以下
のように作動させることにより本発明のA方法を実施で
きる。まず圧着用治具の一方の固定しておき、他方には
(片持ちにならないように)4本のボールネジを取りつ
け、それぞれのネジの一端に取りつけたタイミングプー
リをタイミングベルトにより一個のモータで駆動させる
ことにより、圧着用治具の一方を他方に押しつける。フ
ォトインタラプタその他を使用することにより、終点を
自動的に検知して、モータへ電源供給を停止させること
ができる。モータにギアを介することにより、停止後の
逆回転を防止できる。圧着用治具で圧着された状態を第
2図に示す。またその部分拡大図を第3図に示す。In the crimping method in the invention A method, for example, as shown in FIG. 1 and FIG. 2, a crimping jig 1 made of the same member having a rectangular cross section can be used. For example, a soft tube 2 is sandwiched between the crimping jigs 1 and divided into small rooms for crystal growth using the jigs 1. This apparatus can carry out the method A of the present invention, for example, by operating as follows. First, fix one of the crimping jigs, attach four ball screws to the other (so as not to be cantilevered), and drive a timing pulley attached to one end of each screw with a single motor using a timing belt. By doing so, one of the crimping jigs is pressed against the other. By using a photo interrupter or the like, the end point can be automatically detected and the power supply to the motor can be stopped. By rotating the motor through a gear, reverse rotation after stopping can be prevented. FIG. 2 shows a state of being crimped by the crimping jig. FIG. 3 is a partially enlarged view of FIG.
この発明において、軟質中空管は透明なものでよい
が、結晶の成長過程を経時的に観察する必要がない場合
には半透明にないし不透明であってもよい。また中空管
の素材は透水性の低い材質が好ましい。例えばタイゴン
(ポリ塩化ビニル;米国のノートン パフォーマンス
プラスチクス コーポレーションの商標)またはFEP,TF
E,TDA,PVDF等のフッ素ポリマーでできているものが使用
できる。In the present invention, the soft hollow tube may be transparent, but may be translucent to opaque if it is not necessary to observe the crystal growth process over time. The material of the hollow tube is preferably a material having low water permeability. For example, Tygon (polyvinyl chloride; Norton Performance in the United States)
Plastics Corporation trademark) or FEP, TF
E, TDA, PVDF and other fluoropolymers can be used.
濃度勾配作成装置により上記装置の軟質中空管に試料
を導入した後、圧着用治具で小部屋に分割し、結晶成長
を行わしめる。結晶の回収は、該治具をとりはずした
後、軟質チューブの小部屋の一端を切りとることにより
行う。After the sample is introduced into the soft hollow tube of the above-mentioned device by the concentration gradient creating device, the sample is divided into small rooms by a jig for crimping, and the crystal is grown. The crystal is recovered by removing one end of the small chamber of the soft tube after removing the jig.
また、発明Bにおいては例えば、適当な位置に孔3を
設けた複数のブロック4と、該孔3に対応して連通する
孔5を有する複数の薄板6とを交互に配列して構成した
結晶成長用装置を用いることができる。この結晶成長用
装置は、例えば次のように使用できる。ブロック間に挟
持した薄板上端中央部に孔を設け、この孔に薄板を上方
にスライドさせるための棒を通す。次にこの棒の両端に
ボールネジを各々設けておき、前述の装置と同様にタイ
ミングプーリをタイミングベルトによりモータで駆動さ
せることによって薄板6を同時に上方にスライドさせ
る。これにより管腔を小部屋に分割せしめ、各部屋を結
晶化容器とする(第5図参照)。In the invention B, for example, a crystal in which a plurality of blocks 4 having holes 3 at appropriate positions and a plurality of thin plates 6 having holes 5 communicating with the holes 3 are alternately arranged. A growth device can be used. This crystal growth apparatus can be used, for example, as follows. A hole is provided in the center of the upper end of the thin plate sandwiched between the blocks, and a rod for sliding the thin plate upward is passed through the hole. Next, ball screws are provided at both ends of the rod, and the thin plate 6 is simultaneously slid upward by driving a timing pulley by a motor with a timing belt in the same manner as in the above-described apparatus. As a result, the lumen is divided into small rooms, and each room is used as a crystallization container (see FIG. 5).
ブロックの素材は、ガラスの如き無機材料でも、ある
いはアクリル、ポリメチルペンテン又はポリカーボネー
トの如き有機ポリマーであってもよい。The block material may be an inorganic material such as glass or an organic polymer such as acrylic, polymethylpentene or polycarbonate.
薄板はステンレス又はチタン等の金属製が好ましい。 The thin plate is preferably made of metal such as stainless steel or titanium.
また、ブロックおよび薄板の大きさは、例えば厚さ2m
m以上の材質からなるブロックおよび厚さ200μm以下の
金属薄板のものが使用できる。The size of the block and the thin plate is, for example, 2 m in thickness.
A block made of a material of m or more and a thin metal plate having a thickness of 200 μm or less can be used.
この発明における結晶成長用装置の作成に当っては、
ブロックと薄板から成る部品を貫通する孔を設けボルト
とナットにより組立てておく。そして、所定の操作によ
り結晶成長後、結晶の回収は例えば次のように行うこと
ができる。すなわち、該装置を垂直に立て、別途用意す
る解体用治具によりブロック全体をしめつけたまゝ(液
もれを防止するため)前述のボルトとナットをはずし、
ブロックを1個ずつ取り除き各室の結晶を順次回収す
る。In making the apparatus for crystal growth in the present invention,
A hole is formed through a block and a thin plate to assemble it with bolts and nuts. Then, after the crystal is grown by a predetermined operation, the crystal can be recovered, for example, as follows. That is, stand the device vertically, and tighten the whole block with a dismantling jig prepared separately (to prevent liquid leakage), remove the bolts and nuts described above,
The blocks are removed one by one, and the crystals in each chamber are sequentially collected.
以下、実施例により更に本発明を説明する。 Hereinafter, the present invention will be further described with reference to examples.
実施例1 第6図に示すような提案された例の送液配管の末端
に、 第1図に示す弾力性があり水蒸気透過性が低くて透明
なチューブ(本例ではタイゴン(ポリ塩化ビニル;米国
のノートン パフォーマンス プラスチクス コーポレ
ーションの商標)製)を配置する。濃度勾配作製器より
所定の液量を送ってチューブ内に所期の濃度勾配を作製
したのちに、該チューブを一定の間隔で圧着させること
によって小部分に分割し、各部分について結晶成長を行
わせた。Example 1 At the end of the liquid feeding pipe of the proposed example as shown in FIG. 6, an elastic, low water vapor permeable and transparent tube shown in FIG. 1 (Tygon (polyvinyl chloride; Made by Norton Performance Plastics Corporation of the United States). After a predetermined amount of liquid has been sent from the concentration gradient maker to form an intended concentration gradient in the tube, the tube is divided into small portions by crimping at regular intervals, and crystal growth is performed for each portion. I let you.
具体的には、濃度勾配作製器に硫安液(1)(80%飽
和硫酸アンモニウム、10mMリン酸ナトリウム緩衝液 pH
7.0)と、硫安液(2)(95%飽和硫酸アンモニウム、1
0mMリン酸ナトリウム緩衝液 pH7.0)を入れ、総液量3.
34mlの80〜95%飽和の直線的濃度勾配(linear gradien
t)を作製した。別に作ったタンパク質溶液(3%マッ
コウクジラミオグロビン、50%硫酸アンモニウム、10mM
リン酸ナトリウム緩衝液 pH7.0)と上記濃度勾配液と
を1対2の体積比で混合するように二つのポンプの送液
量をそれぞれ0.5ml毎分と1.0ml毎分に設定した。これに
より、最終的な溶液の組成は1%ミオグロビン、10mMリ
ン酸ナトリウム緩衝液を含み、硫酸アンモニウム濃度が
70〜80%に直線的に変化する濃度勾配が形成された。こ
れを内径3mmのタイゴン製チューブ8cm中に導き、凹凸の
ある金属板で挟み込むことにより0.8cm間隔で十の部分
に分割した。こうして、各部分が70.5,71.5,・・・79.5
%飽和の硫安濃度を含むように溶液の注入を行ったの
ち、挟み込んだ状態のまま20℃の恒温槽において結晶成
長を行わせた。Specifically, the ammonium sulfate solution (1) (80% saturated ammonium sulfate, 10 mM sodium phosphate buffer pH
7.0) and ammonium sulfate solution (2) (95% saturated ammonium sulfate, 1
0 mM sodium phosphate buffer (pH 7.0).
34 ml of 80-95% saturation linear gradient
t) was prepared. Separately made protein solution (3% sperm whale myoglobin, 50% ammonium sulfate, 10 mM
The pumping rates of the two pumps were set at 0.5 ml / min and 1.0 ml / min, respectively, so that the sodium phosphate buffer (pH 7.0) and the concentration gradient solution were mixed at a volume ratio of 1: 2. Thus, the final solution composition contains 1% myoglobin, 10 mM sodium phosphate buffer, and ammonium sulfate concentration.
A concentration gradient was formed that varied linearly from 70 to 80%. This was guided into an 8 cm tube made of Tygon having an inner diameter of 3 mm, and divided into ten parts at 0.8 cm intervals by being sandwiched between metal plates having irregularities. Thus, each part is 70.5, 71.5, ... 79.5
After injecting the solution so as to contain a concentration of ammonium sulfate at a% saturation, crystal growth was performed in a constant temperature bath at 20 ° C. while sandwiching the solution.
1日後には結晶が成長しはじめ、7日間にわたって成
長を続せた。生成した結晶は75.5飽和時が最も多く、本
実施例では同濃度が結晶化に最適であったことを示して
いる。One day later, the crystals began to grow and continued to grow for 7 days. Most of the generated crystals were at 75.5 saturation, and this example shows that the same concentration was optimal for crystallization.
実施例2 本実施例では、弾力性があり水蒸気透過性が低くて透
明なチューブを圧着して小部分に分割する代わりに、直
径3mmの孔の開いたアクリル樹脂ブロック(長さ0.8mm)
と直径3mmの孔の開いたステンレス薄板(厚さ50μm)
を交互に挟み込んだ器具(第4図)を使用している。最
初に、アクリルとステンレスの孔が一致するように挟み
こまれた状態で、実施例1と同様に溶液を充填し、つい
でステンレス板を1cmスライドさせることによって十の
部分に分割する。実施例1と同様に結晶を7日間成長せ
しめた。生成した結晶は先に説明したように解体用治具
を用いてブロックを解体して結晶を採取した。Example 2 In this example, instead of crimping a transparent tube having elasticity and low water vapor permeability and dividing it into small parts, an acrylic resin block having a hole with a diameter of 3 mm (length 0.8 mm)
And a stainless steel plate with a hole with a diameter of 3mm (thickness 50μm)
(FIG. 4). First, a solution is filled in the same manner as in Example 1 in a state where the holes of the acrylic and the stainless steel are sandwiched so as to coincide with each other, and then the stainless steel plate is slid by 1 cm to be divided into ten parts. Crystals were grown for 7 days as in Example 1. The generated crystals were disassembled into blocks using a dismantling jig as described above to collect crystals.
本発明は以上説明したように構成したものであるか
ら、提案された方法では不充分であった試料の自動化を
行わせることができ、非熟練者による作業、再現性の向
上、工数の削減などを図ることができる。Since the present invention is configured as described above, it is possible to automate a sample which was insufficient with the proposed method, work by unskilled people, improvement of reproducibility, reduction of man-hours, etc. Can be achieved.
また従来自動結晶化装置に比べて、本発明方法による
場合より小型で系統的な結晶化をおこなうことができ、
配管のデッドボリュームが無いため貴重な試料タンパク
質を無駄にすることも避けられる効果を奏する。In addition, compared to the conventional automatic crystallization apparatus, it is possible to perform a small and systematic crystallization than in the case of the method of the present invention,
Since there is no dead volume in the piping, it is possible to avoid wasting valuable sample proteins.
第1図は本発明方法に用いられる圧着用治具の概略斜視
図であり、 第2図は圧着用治具で圧着された状態を示す説明図、 第3図は第2図の部分拡大図、 第4図は他の発明における結晶成長用装置の説明図であ
り、 第5図は結晶化容器の作成例を示す説明図であり、 第6図は提案された結晶化作成装置の構成図である。 1……圧着用治具、2……軟質チューブ、 3,5……孔、4……ブロック、 6……薄板。FIG. 1 is a schematic perspective view of a crimping jig used in the method of the present invention, FIG. 2 is an explanatory view showing a state of being crimped by the crimping jig, and FIG. 3 is a partially enlarged view of FIG. FIG. 4 is an explanatory view of an apparatus for crystal growth in another invention, FIG. 5 is an explanatory view showing an example of producing a crystallization vessel, and FIG. 6 is a structural view of a proposed crystallization producing apparatus. It is. 1 ... crimping jig, 2 ... soft tube, 3,5 ... hole, 4 ... block, 6 ... thin plate.
Claims (9)
条件を規定する因子の一つを濃度勾配とした液を分割し
て個別に結晶化させる方法において、軟質中空管に該濃
度勾配液を導き、しかる後該中空管を圧着することによ
って複数個の小部屋に分割せしめ、各部屋を結晶化容器
となすことを特徴とする、結晶作製方法。1. A method for dividing a liquid having one of the factors defining crystallization conditions into a concentration gradient by solution growth of a biopolymer crystal and individually crystallizing the solution, the method comprising the steps of: A method for producing a crystal, comprising: introducing a liquid; and thereafter, compressing the hollow tube to divide it into a plurality of small chambers, and forming each room as a crystallization container.
第1項記載の方法。2. The method according to claim 1, wherein the flexible hollow tube is transparent.
とする特許請求の範囲第1項に記載の方法。3. The method according to claim 1, wherein the tube is made of a material having low water permeability.
徴とする特許請求の範囲第1項に記載の方法。4. The method according to claim 1, wherein the tube is made of polyvinyl chloride.
条件を規定する因子の一つを濃度勾配とした液を分割し
て個別に結晶化させる方法において、各々に孔を設けた
複数ブロックと同じく各々に孔を設けた複数薄板とを交
互に配置して孔が連通する中空管腔を形成せしめて結晶
成長用装置を組立て、次いで結晶化すべき溶液を該管腔
に充填したのち、孔の連通を解除することにより該管腔
を小部屋に分割せしめ、各部屋を結晶化容器とすること
を特徴とする前記の方法。5. A method in which a solution having a concentration gradient defined as one of the factors defining crystallization conditions is divided and individually crystallized by solution growth of a biopolymer crystal, wherein a plurality of blocks each having a hole are provided. A plurality of thin plates each having a hole are alternately arranged to form a hollow lumen in which the holes communicate with each other to assemble an apparatus for crystal growth, and then a solution to be crystallized is filled in the lumen, The method described above, wherein the lumen is divided into small chambers by releasing the communication with each other, and each room is a crystallization container.
クおよび厚さ200μm以下の金属薄膜であることを特徴
とする特許請求の範囲第5項に記載の方法。6. The method according to claim 5, wherein the block is made of a transparent material having a thickness of 2 mm or more and a metal thin film having a thickness of 200 μm or less.
特許請求の範囲第5項に記載の方法。7. The method according to claim 5, wherein the block is glass.
ン、またはポリカーボネートであることを特徴とする特
許請求の範囲第5項に記載の方法。8. The method according to claim 5, wherein the block is acrylic, polymethylpentene, or polycarbonate.
する特許請求の範囲第5項に記載の方法。9. The method according to claim 5, wherein the metal thin film is stainless steel.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26941387A JP2650274B2 (en) | 1987-10-27 | 1987-10-27 | Crystal preparation method |
DE88310097T DE3882011T2 (en) | 1987-10-27 | 1988-10-27 | Method and device for producing biopolymer single crystal. |
EP88310097A EP0314469B1 (en) | 1987-10-27 | 1988-10-27 | Process and apparatus for preparation of single crystal of biopolymer |
US07/263,242 US4990216A (en) | 1987-10-27 | 1988-10-27 | Process and apparatus for preparation of single crystal of biopolymer |
US07/605,352 US5126115A (en) | 1987-10-27 | 1990-10-30 | Process and apparatus for preparation of single crystal of biopolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26941387A JP2650274B2 (en) | 1987-10-27 | 1987-10-27 | Crystal preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01111799A JPH01111799A (en) | 1989-04-28 |
JP2650274B2 true JP2650274B2 (en) | 1997-09-03 |
Family
ID=17472070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26941387A Expired - Lifetime JP2650274B2 (en) | 1987-10-27 | 1987-10-27 | Crystal preparation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2650274B2 (en) |
-
1987
- 1987-10-27 JP JP26941387A patent/JP2650274B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01111799A (en) | 1989-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0314469B1 (en) | Process and apparatus for preparation of single crystal of biopolymer | |
US5015585A (en) | Method and apparatus for culturing and diffusively oxygenating cells on isotropic membranes | |
EP0585695B1 (en) | Device for cell culture | |
US4167450A (en) | Method and apparatus for the production of secondary metabolites by the maintenance-state cultivation of microorganisms | |
US3212498A (en) | Oxygenation-dialysis method | |
DE69033032T2 (en) | INTEGRATED CELL CULTURE PROTEIN CLEANING SYSTEM FOR THE AUTOMATED MANUFACTURE AND CLEANING OF CELL CULTURE PRODUCTS | |
US20090155895A1 (en) | Liquid-gas-phase exposure reactor for cell culturing | |
JPS63151306A (en) | Device and method for mass transfer including biological and/or pharmacological medium | |
CH631207A5 (en) | METHOD FOR CELL GROWTH IN VITRO AND DEVICE FOR IMPLEMENTING THE METHOD. | |
JPH05184351A (en) | Cell culture apparatus | |
US3843454A (en) | Flow through tissue culture propagator | |
AU2012346473B2 (en) | Purification and separation treatment assembly (pasta) for biological products | |
EP0586922A1 (en) | Device for cell culture | |
US5540826A (en) | Multi-channel separation device | |
US5286646A (en) | Method for mammalian cell culture | |
JP2650274B2 (en) | Crystal preparation method | |
EP1756263B1 (en) | Liquid/gas phase exposure reactor for cell cultivation | |
EP0224800A2 (en) | Method and apparatus for cell culture | |
DE4016971A1 (en) | METHOD AND DEVICE FOR SEPARATING AMMONIUM FROM AQUEOUS LIQUIDS | |
CN208362227U (en) | A kind of albumen dialysis apparatus | |
JP2602850B2 (en) | Single crystal preparation method | |
DE4208429C2 (en) | Process for generating high cell densities | |
Minkov et al. | Effect of controlled volume variation on the osmotic rate in aqueous solutions | |
DE1959609C3 (en) | Process for increasing the exchange of substances through semipermeable cell membranes of microorganisms and for biosynthesis | |
Brown et al. | Applications of the mass culturing technique (MCT) in the large scale growth of mammalian cells |