JP2645845B2 - Ultrasonic motor - Google Patents
Ultrasonic motorInfo
- Publication number
- JP2645845B2 JP2645845B2 JP63031478A JP3147888A JP2645845B2 JP 2645845 B2 JP2645845 B2 JP 2645845B2 JP 63031478 A JP63031478 A JP 63031478A JP 3147888 A JP3147888 A JP 3147888A JP 2645845 B2 JP2645845 B2 JP 2645845B2
- Authority
- JP
- Japan
- Prior art keywords
- vibrating body
- moving body
- moving
- ultrasonic motor
- vibrating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 230000033001 locomotion Effects 0.000 claims description 6
- 230000008602 contraction Effects 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 description 14
- 238000000605 extraction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000008111 motor development Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は比較的小型で低消費電力の分野に利用可能な
超音波モータに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic motor that is relatively small and can be used in the field of low power consumption.
本発明は、圧電振動子の伸縮運動を利用した振動波に
より移動体を摩擦駆動させる超音波モータにおいて、固
定台上に設置された中心軸に振動体部の中心部を固定支
持し、振動体又は振動体部が半径方向に対して一次の振
動モードで励振される構成とし、変位の大きな外周部に
さらに変位拡大機構を設けて移動体と接触させるように
する。このときの移動体の回転中心軸は振動体の外周よ
り外側に配置し、移動体の外周部が振動体の外周の一部
と加圧接触することにより摩擦駆動されるものである。
さらには振動体の中心部より摩擦力発生部までの半径に
比べ移動体の回転中心軸より摩擦力発生部までの半径の
方を小さくすることにより移動体の回転数を早めたもの
である。The present invention is directed to an ultrasonic motor that frictionally drives a moving body by a vibration wave using the expansion and contraction motion of a piezoelectric vibrator, wherein the center of the vibrating body portion is fixedly supported on a central axis installed on a fixed base, Alternatively, a configuration is adopted in which the vibrating body is excited in a primary vibration mode in the radial direction, and a displacement enlarging mechanism is further provided on the outer peripheral portion where displacement is large so as to contact the moving body. At this time, the rotation center axis of the moving body is disposed outside the outer periphery of the vibrating body, and the outer periphery of the moving body is frictionally driven by being in pressure contact with a part of the outer periphery of the vibrating body.
Further, the rotation speed of the moving body is increased by making the radius from the rotation center axis of the moving body to the frictional force generating section smaller than the radius from the center of the vibrating body to the frictional force generating section.
従来、圧電振動子を用いた超音波モータとしては、定
在波方式や進行方式などが知られていた。例えば、日本
工業技術センター発行の、「新方式/新原理モータ開発
・実用化の要点」(昭和59年)などに、従来の超音波モ
ータの原理が示されている。また、第4図に示す円環型
の振動体部403を用いたものかとか、第5図,第9図,
第10図に示すような円板型の振動体部503,903,1003を用
い進行性波動モータが知られていた。例えば特開昭59−
96881号公報、ならびに特開昭60−174078号公報にこの
ような従来の構造が開示されている。Conventionally, as an ultrasonic motor using a piezoelectric vibrator, a standing wave system, a traveling system, and the like have been known. For example, the principle of the conventional ultrasonic motor is shown in "New Method / New Principle Motor Development and Practical Points" (1984) published by Japan Industrial Technology Center. The use of the ring-shaped vibrating body 403 shown in FIG.
A traveling wave motor using a disk-shaped vibrating body portion 503,903,1003 as shown in FIG. 10 has been known. For example, JP-A-59-
Such a conventional structure is disclosed in 96881 and JP-A-60-174078.
上記の様な超音波モータの構造では、例えば第9図に
示すような円板型の振動体903をもつ構造において、振
動体903が半径方向に対して一次の振動モードで励振さ
れている場合では振動体903の振動振幅変位は外周付近
が一番大きくなるが、振動体903の外周部全面と移動体9
05が加圧接触しているため、振動体903の振幅変位は加
圧の外力に押さえられて減衰し、電気−機械変換効率を
低下させていた。又、振動体903の中心軸と移動体905の
回転中心軸901が同一軸であるため、移動体905の回転速
度は駆動周波数、振動体の縦振幅、振動体厚み、振動波
波長の関数で決定さてれしまうので、形状による回転速
度制御要因が振動体厚みしかなかった。例えば電子時計
の指示針駆動用モータのように出力トルクは小さくとも
回転数を早くして1回転当たりの消費電力を小さくした
い場合、従来のモータでは回転スピードが遅くて低消費
電力化できなかった。In the structure of the ultrasonic motor as described above, for example, in a structure having a disk-shaped vibrating body 903 as shown in FIG. 9, when the vibrating body 903 is excited in a primary vibration mode in a radial direction. In this case, the vibration amplitude displacement of the vibrating body 903 becomes largest near the outer periphery, but the entire outer peripheral portion of the vibrating body 903 and the moving body 9
Since 05 is in pressurized contact, the amplitude displacement of the vibrating body 903 is attenuated by the external force of pressurization, thereby reducing the electro-mechanical conversion efficiency. Further, since the central axis of the vibrating body 903 and the rotation central axis 901 of the moving body 905 are the same axis, the rotational speed of the moving body 905 is a function of the driving frequency, the longitudinal amplitude of the vibrating body, the vibrating body thickness, and the vibration wave wavelength. Since it is determined, the only factor controlling the rotational speed depending on the shape is the thickness of the vibrating body. For example, when it is desired to reduce the power consumption per rotation by increasing the number of rotations even if the output torque is small, such as the motor for driving the pointer of an electronic timepiece, the conventional motor has a low rotation speed and cannot reduce the power consumption. .
上記課題を解決するために、本発明においては、振動
体又は振動体部が半径方向に対して一次の振動モードで
励振される構造とし、この場合の振幅変位が大きくとれ
る外周部の一部に変位拡大機構を設ける構造とし、振動
体の外周部より外側に中心軸を有する小さな径の移動体
外周部と変位拡大機構部が加圧接触して摩擦駆動するよ
うにした。このとき振動体の摩擦半径を移動体の摩擦半
径に比べて十分大きくした。In order to solve the above-mentioned problem, in the present invention, the vibrating body or the vibrating body portion is configured to be excited in a primary vibration mode in a radial direction, and in this case, a part of an outer peripheral portion where a large amplitude displacement can be obtained. The displacement enlargement mechanism is provided, and the outer periphery of the moving body having a small diameter having a center axis outside the outer periphery of the vibrator and the displacement enlargement mechanism are brought into pressure contact and driven by friction. At this time, the friction radius of the vibrating body was made sufficiently larger than the friction radius of the moving body.
上記のような構成によれば、振動体前面に移動体が加
圧接触することがなくなるので振動体の振幅減衰が従来
に比べて極めて小さくなり、効率よく移動体の回転運動
に変換できる。又、移動体の摩擦半径に比べて移動体の
摩擦半比を十分に小さくすればその径比だけ移動体の回
転数を増やすことができる。According to the above configuration, since the moving body does not come into pressure contact with the front surface of the vibrating body, the amplitude attenuation of the vibrating body becomes extremely small as compared with the related art, and the rotational movement of the moving body can be efficiently converted. Also, if the friction half ratio of the moving body is made sufficiently smaller than the friction radius of the moving body, the rotational speed of the moving body can be increased by the diameter ratio.
さらには、振動体の外周より外側に複数の移動体を配
置した場合においても、振動体外周前面を加圧接触しな
いため、1つの振動体で複数の移動体を回転させること
も可能となる。Furthermore, even when a plurality of moving bodies are arranged outside the outer periphery of the vibrating body, the plurality of moving bodies can be rotated by one vibrating body because the outer peripheral front surface of the vibrating body does not come into pressure contact.
以下に、本発明の実施例を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
本発明は、定在波方式や進行波方式などの超音波モー
タを対象としている。The present invention is directed to a standing wave type or traveling wave type ultrasonic motor.
第2図は、進行波型超音波モータにおける進行波発生
原理を一例を示した図である。201は圧電セラミック、
圧電性結晶体からなる圧電振動子で、図示するように幅
bにて等間隔に分極されており、隣どうしの分極方向は
互いに逆方向となっている。各圧電振動子には銀、ニッ
ケルなどの導電材料を蒸着、メッキ等の手法により202
に示す電極が形成されており、それらを信号線203、204
で結線し、それぞれ異なる信号源からの高周波電圧が印
加されることになる。また、信号線203、204でそれぞれ
結線された電極群の間には、幅cなる空隙部分を設け
る。この際、幅cなる空隙部分は分極の有無ならびに電
極の有無はどちらでもかまわないこととする。ここで、
説明の都合上幅cをはさむ電極の中心間距離はaとす
る。以上の図および記号をもとに以下に進行波発生のメ
カニズムについて説明する。図中の電極部分の中点を
基準に考えると進行波と後退波からなる屈曲振動波は次
の様に表せる。FIG. 2 is a diagram showing an example of a traveling wave generation principle in a traveling wave type ultrasonic motor. 201 is a piezoelectric ceramic,
This is a piezoelectric vibrator made of a piezoelectric crystal, and is polarized at equal intervals with a width b as shown in the figure, and the directions of polarization between adjacent directions are opposite to each other. A conductive material such as silver or nickel is deposited on each piezoelectric vibrator by a method such as evaporation or plating.
Are formed, and they are connected to the signal lines 203 and 204.
, And high-frequency voltages from different signal sources are applied. A gap having a width c is provided between the electrode groups connected by the signal lines 203 and 204, respectively. At this time, the gap having the width c may be either polarized or non-polarized. here,
For convenience of explanation, the distance between the centers of the electrodes sandwiching the width c is a. The mechanism of generation of a traveling wave will be described below with reference to the above figures and symbols. Considering the midpoint of the electrode portion in the figure, a bending vibration wave composed of a traveling wave and a backward wave can be expressed as follows.
Asin(ωt−kx)+Asin(ωt+kx) ……(1)式 ここで(1)式はいわゆる定在波を示していることに
なる。これに対してに示す電極部分による屈曲振動波
は次のように表せる。Asin (ωt−kx) + Asin (ωt + kx) Equation (1) Here, Equation (1) indicates a so-called standing wave. On the other hand, the bending vibration wave caused by the electrode portion shown in FIG.
Bsin(ωt−k(x+a)+φ) +Bsin(ωt+k(x+a)+φ) ……(2)式 ここで、k=ω/ν=2π/λ λ:波長,φ:に対する位相差角 (2)式にて、 とおくと、(2)式は次のように表せる。Bsin (ωt−k (x + a) + φ) + Bsin (ωt + k (x + a) + φ) Expression (2) where k = ω / ν = 2π / λ λ: wavelength, phase difference angle with respect to φ: expression (2) At In other words, equation (2) can be expressed as follows.
Bsin(ωt−kx+απ)+Bsin(ωt+kx+βπ)……
(4)式 従って、,より励振される屈曲振動波は(1)式と
(4)式を加え合わせた型で表される。ここで、進行波
成分だけが存在するための条件を(4)式の展開式から
考えるとαが偶数、βが奇数の場合であることがわか
る。ここで(3)式よりaとφについてαとβの式で表
すと次のようになる。Bsin (ωt−kx + απ) + Bsin (ωt + kx + βπ)
Equation (4) Therefore, the bending vibration wave to be more excited is represented by a type obtained by adding the equations (1) and (4). Here, considering the condition for the presence of only the traveling wave component from the expansion formula of equation (4), it can be seen that α is an even number and β is an odd number. Here, from the equation (3), a and φ can be expressed by the following equations using α and β.
すなわち、(α,β)=(0,1),(2,3)の時には (α,β)=(2,1)の時には (α,β)=(0,3)の時には となって、それぞれのa,φを同時に満足する時に進行波
成分のみが存在することになる。一例をあげると、 の場合を考えれば、(1)式+(2)式は次のようにな
る。 That is, when (α, β) = (0,1), (2,3) When (α, β) = (2,1) When (α, β) = (0,3) As a result, when both a and φ are simultaneously satisfied, only the traveling wave component exists. To give an example, Considering the case (1), the expression (1) + the expression (2) is as follows.
Asin(ωt−kx)+Asin(ωt+kx)+ Bsin(ωt−kx)−Bsin(ωt+kx) ……(6)式 ここで駆動回路より出される高周波電圧信号の振動幅A
およびBがA=Bならば(6)式は2Asin(ωt−kx)
となり、進行波成分のみが残ることがわかる。また、逆
転駆動させるためには後退波成分のみを残せば良いわけ
であるから、(5)式におけるαとβを逆にしてαが奇
数、βが偶数となるようにすれば良い。実線上はを基
準にして考えると、に加える信号の位相を正転駆動さ
せる時に比べて180゜ずらせば良いことになる。Asin (ωt−kx) + Asin (ωt + kx) + Bsin (ωt−kx) −Bsin (ωt + kx) Equation (6) Here, the oscillation width A of the high-frequency voltage signal output from the drive circuit.
If A and B are A = B, equation (6) becomes 2Asin (ωt−kx)
It turns out that only the traveling wave component remains. In order to drive the motor in the reverse direction, only the backward wave component needs to be left. Therefore, α and β in the equation (5) may be reversed so that α is an odd number and β is an even number. Considering the solid line as a reference, the phase of the signal to be applied should be shifted by 180 ° as compared with the time of forward rotation driving.
第3図は進行波型超音波モータが進行性成分によって
回転する原理を示した図である。301は振動体で、圧電
振動子が弾性部材に接着されているために屈曲振動が生
じることになる。ここで、振動体301は第2図に示した
原理で右方向への進行波が生じると表面部の一点は左方
向への楕円軌跡を描くために、ロータ部302は進行波の
進行方向とは逆方向に移動するわけである。以上は日経
メカニカル(1985.9.23)などに掲載されており、振動
体301の表面上の一点が楕円軌跡を描くことに関する詳
細な説明も同文献に記されている。FIG. 3 is a view showing the principle that a traveling wave type ultrasonic motor rotates by a traveling component. Numeral 301 denotes a vibrator, which generates bending vibration because the piezoelectric vibrator is bonded to the elastic member. Here, when a traveling wave in the right direction is generated according to the principle shown in FIG. 2, one point on the surface of the vibrating body 301 draws an elliptical trajectory in the left direction. Moves in the opposite direction. The above is described in Nikkei Mechanical (1985.9.23) or the like, and a detailed description on that one point on the surface of the vibrating body 301 draws an elliptical locus is also described in the same document.
第1図は本発明に係る超音波モータの断面図を示す。
中心軸101は固定台102と打ち込みにより一体となってお
り、さらに振動体部103は中心部分にて中心軸101と一体
構造になっている。振動体103はステンレス、黄銅、ジ
ュラルミン等の弾性部材からなっており、実質的に中心
部分にて中心軸101によって支持されていることにな
る。また、中心軸101、固定台102の機械的共振周波数は
振動体部103、圧電振動子105等からなる振動体の共振周
波数に比べて十分に高く、支持の影響による振動モレや
減衰がほとんど生じない支持構造となっている。圧電振
動子105は中心に孔のあいた圧電セラミックス、また
は、周方向に分割された数片の圧電セラミックスであ
り、周方向に数パターンの電極部が設けられて分極処理
されたものが、振動体部103の出力取り出し部104を設け
た面と反対側に接合されている。移動体は移動体車106
と移動体回転107により構成され、移動体軸中心は振動
体外周部より外側に配置されている。移動体軸107と移
動体車106は打ち込みによって支持固定され、固定台10
2、移動体受107で軸支されて回転可能となっている。移
動体車106の外周は振動体の出力取り出し部104と接触し
ている。接触部分の加圧力は移動体軸105を押さえてい
る調圧バネ108によって決まる。この際、調圧バネ108に
よって移動体106に生ずる加圧力をN、振動体出力取り
出し部104と移動体車106との間の摩擦係数をμ、移動体
の中心軸から移動体車の摩擦発生部までの距離をaとす
ると、移動体に生ずるトルクTは、およそT=μNaとす
ることができる。振動体の出力取り出し位置104は、振
動体部103と圧電振動子105からなる振動体に励振された
振動波成分微小なたわみ振動振幅を効率よく移動体の回
転運動に変換するために設定するもので、振動体と移動
体車106が振動体部103の半径方向における一部分のみで
接するような突起を振動体103側につけた。第7図は本
発明に係る振動体と移動体の関係を示す平面図である。
この図は第1図の振動体と移動体の平面な関係を示した
図である。第7図でわかるように、振動体部703の外周
の一部分に振動体の出力取り出し部704を設けて移動体
車と接触させている。振動体の中心軸から振動体の出力
取り出し部704までの距離r1に比べて移動体の中心軸か
ら移動体の摩擦力発生部までの距離r2は十分小さくなっ
ている。ところで本発明の最も特徴とするところは、振
動体の出力取り出し位置704が振動体部703の全周にない
ことと、移動体中心を振動体中心からズラせて径比較r1
/r2をより1より大きくしたことにある。なぜこのよう
にするかについて少し述べたい。本発明の利用分野は比
較的小型で低消費電力な用途である。径小構造であるこ
とから必然的に振動体の機械的共振周波数が高くなって
しまう。一般に、駆動周波数が100kHzを越えてしまうと
どうしても駆動系の回路効率が低下するため半径方向に
対して一次の振動モードで励振しなければならない。実
際に半径方向に対して一次の振動モードになるような駆
動周波数で励振すると外径にいくにつれて振動振幅が大
きくなり、最外周において振幅が最大となる。従って、
振動体の出力取り出し部704を振動体の最外周に設定し
て、この位置で移動体と接触させれば良いと思われる
が、実際にはこの最大振幅位置で移動体と振動体の出力
取り出し部が全周で加圧接触するか、一部分で加圧接触
するかによって振動体の振幅振動の様子が変わる。第11
図は振動体加圧違いによる振動体振幅量の差異を示すも
のである。振動体振幅量の周波数特性についての測定方
法は、圧電素子が2回路から構成されていることを利用
して、一方に周波電圧を掃引印加して、振動体を定在波
で励振させるようにし、もう一方の回路側の圧電効果に
よって生じる逆起電圧をスペクトルアナイザーでフーリ
エ変換するような手法を用いている。第11図のaは、振
動体のみを励振した場合を示し、bは本発明のように振
動体の外周部の一部が移動体と加圧接触する場合を示
し、cは振動体の外周部全周と移動体が加圧接触する場
合を示している。ここでの加圧力はb,cは同一としてい
る。縦軸の圧電効果による逆起電圧は振動振幅に比例し
て大きくなるため縦軸が振動振幅の大きさを示している
といえる。従来のように振動体の外周部全周を移動体と
加圧接触する方式(図示c)では、本発明の方式(図中
b)に比べて振動体の機械的共振点付近における振幅の
減衰が大きくなっていることがわかる。結果的には本発
明の方が摩擦駆動部での振幅変位が大きく従来の構造よ
り低電圧でも高効率な回転運動が実現できることにな
る。FIG. 1 is a sectional view of an ultrasonic motor according to the present invention.
The central shaft 101 is integrated with the fixed base 102 by driving, and the vibrating body portion 103 has an integral structure with the central shaft 101 at a central portion. The vibrating body 103 is made of an elastic member such as stainless steel, brass, and duralumin, and is supported by the central shaft 101 at a substantially central portion. In addition, the mechanical resonance frequency of the central axis 101 and the fixed base 102 is sufficiently higher than the resonance frequency of the vibrating body including the vibrating body portion 103, the piezoelectric vibrator 105, and the like. There is no support structure. The piezoelectric vibrator 105 is a piezoelectric ceramic having a hole at the center, or several pieces of piezoelectric ceramic divided in the circumferential direction. It is joined to the side of the unit 103 opposite to the surface on which the output extraction unit 104 is provided. The moving object is a mobile vehicle 106
And the moving body rotation 107, and the moving body axis center is disposed outside the outer periphery of the vibrating body. The moving body shaft 107 and the moving body wheel 106 are supported and fixed by driving, and the fixed base 10 is fixed.
2. It is rotatably supported by the moving body receiver 107. The outer periphery of the moving vehicle 106 is in contact with the output extraction unit 104 of the vibrating body. The pressing force of the contact portion is determined by a pressure adjusting spring 108 pressing the moving body shaft 105. At this time, the pressure applied to the moving body 106 by the pressure adjusting spring 108 is N, the friction coefficient between the vibrating body output extraction unit 104 and the moving body 106 is μ, and the friction of the moving body from the center axis of the moving body is generated. Assuming that the distance to the part is a, the torque T generated in the moving body can be approximately T = μNa. The output position 104 of the vibrating body is set in order to efficiently convert the minute flexural vibration amplitude of the vibration wave component excited by the vibrating body including the vibrating body portion 103 and the piezoelectric vibrator 105 into the rotational motion of the moving body. Thus, a protrusion is provided on the vibrating body 103 so that the vibrating body and the movable vehicle 106 contact only at a part of the vibrating body portion 103 in the radial direction. FIG. 7 is a plan view showing the relationship between the vibrating body and the moving body according to the present invention.
This figure is a diagram showing a planar relationship between the vibrating body and the moving body in FIG. As can be seen from FIG. 7, an output take-out section 704 for the vibrating body is provided on a part of the outer periphery of the vibrating body section 703 so as to be in contact with the moving vehicle. Distance r 2 as compared to the distance r 1 to the output extraction portion 704 of the vibrating body from the central axis of the vibrating body from the central axis of the moving body to the frictional force generating portion of the mobile is sufficiently small. By the way, the most characteristic features of the present invention are that the output take-out position 704 of the vibrating body is not on the entire circumference of the vibrating body portion 703, and the center of the moving body is shifted from the center of the vibrating body to compare the diameter r 1.
/ r 2 is set to be larger than 1. I want to say a little about why we do this. The field of application of the present invention is relatively small and low power consumption applications. Because of the small diameter structure, the mechanical resonance frequency of the vibrating body necessarily increases. In general, if the drive frequency exceeds 100 kHz, the circuit efficiency of the drive system is inevitably reduced. Therefore, the drive system must be excited in the primary vibration mode in the radial direction. When the excitation is actually performed at a driving frequency such that the primary vibration mode is set in the radial direction, the vibration amplitude increases toward the outer diameter, and the amplitude becomes maximum at the outermost periphery. Therefore,
It is thought that the output take-out part 704 of the vibrating body should be set at the outermost periphery of the vibrating body and should be brought into contact with the moving body at this position. The state of the amplitude vibration of the vibrating body changes depending on whether the part is in pressure contact with the entire circumference or in part. Eleventh
The figure shows the difference in the amplitude of the vibrating body due to the difference in pressurizing the vibrating body. The method for measuring the frequency characteristic of the vibration body amplitude amount utilizes the fact that the piezoelectric element is composed of two circuits, and a frequency voltage is swept to one side to excite the vibration body with a standing wave. In addition, a technique is used in which a back electromotive voltage generated by the piezoelectric effect on the other circuit side is Fourier-transformed by a spectrum analyzer. 11a shows a case where only the vibrating body is excited, b shows a case where a part of the outer peripheral portion of the vibrating body comes into pressure contact with the moving body as in the present invention, and c shows an outer peripheral portion of the vibrating body. The case where the entire periphery of the unit and the moving body are in pressure contact with each other is shown. Here, the pressures b and c are the same. Since the back electromotive voltage due to the piezoelectric effect on the vertical axis increases in proportion to the vibration amplitude, it can be said that the vertical axis indicates the magnitude of the vibration amplitude. In the conventional method (c in the drawing) in which the entire outer periphery of the vibrating body is brought into pressure contact with the moving body, the attenuation of the amplitude near the mechanical resonance point of the vibrating body is smaller than that in the method of the present invention (b in the figure). It can be seen that is larger. As a result, according to the present invention, the amplitude displacement in the friction drive unit is large, and a more efficient rotational movement can be realized even at a lower voltage than the conventional structure.
次にr1/r2を1より大きくするとなぜ移動体の回転数
が増すかを述べる。一般に移動体の回転運動に寄与する
楕円軌跡の横方向速度成分の最大値Umaxは Umax=−2π2ρδ(T/λ) ……(7) ρ:駆動周波数 δ:縦振幅 T:振動体厚み λ:振動波波長 で表されることにより、回転数を大きくするには形状的
に考えると振動体厚みを厚くすれば良い。しかし、単に
厚みを厚くしたのでは機械的なかたさが極度に増し共振
周波数が大きくなってしまう。そこで振動体部に周方向
に対して凹凸になるくし歯状の出力取り出し部704を変
位拡大機構として設けるのが得策である。さらに形状的
に考えられることは、振動体の出力取り出し部の径r
1と、移動体の出力伝達部(振動体出力取り出し部と加
圧接触する部分)の径r2の比を変えることである。
(7)式のUmaxは振動体のみで決まることにより、径比
が変われば回転角速度が変わることになる。従来のよう
なr1/r2=1に比べてr1/r2だけ回転角速度を増やすこと
ができる。Next, the reason why the rotation speed of the moving body increases when r 1 / r 2 is made larger than 1 will be described. In general the maximum value of the transverse velocity component of the contributing elliptical trajectory in the rotational movement of the moving body U max is U max = -2π 2 ρδ (T / λ) ...... (7) ρ: drive frequency [delta]: Vertical amplitude T: Vibration The body thickness λ: represented by the vibration wave wavelength, the number of revolutions can be increased by increasing the thickness of the vibrating body in terms of shape. However, simply increasing the thickness extremely increases the mechanical hardness and increases the resonance frequency. Therefore, it is advisable to provide a comb-shaped output extraction unit 704 that becomes uneven in the circumferential direction on the vibrating body as a displacement enlarging mechanism. What can be further considered in terms of shape is the diameter r of the output extraction portion of the vibrating body.
1, is to change the ratio of the diameter r 2 of the output transmission portion of the moving body (the portion that contacts the vibrator output members pressurization).
Since Umax in the equation (7) is determined only by the vibrating body, if the diameter ratio changes, the rotational angular velocity changes. The rotational angular velocity can be increased by r 1 / r 2 as compared with the conventional r 1 / r 2 = 1.
以上、第1図、第7図の構造を主体に本発明の実施例
を説明したが、別実施例として第6図、第8図を説明す
る。第6図は、本発明に係る振動体と移動体の平面図を
示す別実施例である。変位拡大機構をもたず振動体部80
3と移動体806が直に加圧接触し摩擦駆動するものであ
る。第8図は、本発明に係る振動体と移動体の平面図を
示す別実施例である。1つの振動体部803に4個の振動
体の出力取り出し部(変位拡大機構付)をもち移動体車
806,807,808,809を加圧接触させて同時に4つの移動体
を回転させるものである。The embodiment of the present invention has been described above mainly with reference to the structure of FIGS. 1 and 7, but FIGS. 6 and 8 will be described as another embodiment. FIG. 6 is another embodiment showing a plan view of the vibrating body and the moving body according to the present invention. Vibration body part 80 without displacement enlargement mechanism
3 and the moving body 806 are brought into direct pressure contact and driven by friction. FIG. 8 is another embodiment showing a plan view of the vibrating body and the moving body according to the present invention. Mobile vehicle with one vibrating body part 803 with four vibrating body output extraction parts (with displacement enlargement mechanism)
806, 807, 808, 809 are brought into contact with each other under pressure to simultaneously rotate four moving bodies.
本発明による超音波モータによれば、振動体の半径方
向に対して一次の振動モードで励振される小型モータに
おいて、振動振幅の変位最大となる外周部での振幅変位
を減衰させずに、移動体に伝えられ、かつ移動体と振動
体の径比を変えることによって移動体の回転速度を増す
ことができるので、アナログ電子時計のモータのように
針が駆動できる程度の低出力トルクの利用分野で回転角
当たりの低消費電力化が求められるものにおいては、径
小超音波モータ構造で高効率化が得られるという点で非
常に効果が大きい。さらには、1つの振動体で多数のモ
ータを駆動できることはアナログ電子時計の多機能化に
とって非常に効果が大きい。According to the ultrasonic motor according to the present invention, in a small motor that is excited in the primary vibration mode in the radial direction of the vibrator, the ultrasonic motor moves without attenuating the amplitude displacement at the outer peripheral portion where the displacement of the vibration amplitude becomes maximum. Since the rotating speed of the moving body can be increased by changing the diameter ratio between the moving body and the vibrating body, it can be transmitted to the body and the output torque can be low enough to drive the hands like a motor in an analog electronic watch. In the case where low power consumption per rotation angle is required, the effect is very large in that high efficiency can be obtained with a small-diameter ultrasonic motor structure. Furthermore, the ability to drive a large number of motors with one vibrating body is very effective for increasing the functionality of an analog electronic timepiece.
第1図は本発明に係る超音波モータの断面図、第2図は
進行波発生の原理図の一例を示す図、第3図は進行波型
超音波モータの回転原理図の一例を示す図、第4図は、
従来の超音波モータの断面図(1)、第5図は従来の超
音波モータの断面図(2)、第6図は本発明に係る振動
体と移動体の平面図(2)、第7図は本発明に係る振動
体と移動体の平面図(1)、第8図は本発明に係る振動
体と移動体の平面図(3)、第9図は従来の超音波モー
タの断面図(3)、第10図は第2図に用いられた従来の
超音波モータの変位拡大機構平面図、第11図は加圧違い
による振動体振幅量の差位を示す図である。 101,401,501,901……中心軸 102,402,502,902……固定台 105,404,504,904,201……圧電振動子 103,903,403,503,1003,803,703,603……振動体部 104,1004,704,804……振動体の出力取り出し部(変位拡
大機構) 106,606,706,806,807,808,809……移動体車 105,605,705,805……移動体回転軸 107……移動体受 405,505,905……移動体板 108,907……調圧バネ 507……調圧機構 506,407……ベアリング 202……電極部FIG. 1 is a cross-sectional view of an ultrasonic motor according to the present invention, FIG. 2 is an example of a principle diagram of traveling wave generation, and FIG. 3 is an example of a principle of rotation of a traveling wave ultrasonic motor. , FIG.
FIG. 5 is a cross-sectional view of a conventional ultrasonic motor (1), FIG. 5 is a cross-sectional view of a conventional ultrasonic motor (2), FIG. 6 is a plan view of a vibrating body and a moving body according to the present invention (2), and FIG. FIG. 1 is a plan view of a vibrating body and a moving body according to the present invention (1), FIG. 8 is a plan view of a vibrating body and a moving body according to the present invention (3), and FIG. 9 is a cross-sectional view of a conventional ultrasonic motor. (3), FIG. 10 is a plan view of a displacement enlarging mechanism of the conventional ultrasonic motor used in FIG. 2, and FIG. 11 is a diagram showing a difference in amplitude of a vibrating body due to a difference in pressure. 101,401,501,901 ... Center axis 102,402,502,902 ... Fixing base 105,404,504,904,201 ... Piezoelectric vibrator 103,903,403,503,1003,803,703,603 ... Vibrating body part 104,1004,704,804 105, 605, 705, 805 Moving body rotating shaft 107 Moving body receiver 405, 505, 905 Moving body plate 108, 907 Pressure regulating spring 507… Pressure regulating mechanism 506, 407… Bearing 202… Electrode section
Claims (2)
振動体部に接合された圧電振動子の伸縮運動を利用し振
動体に振動波を起こさせることにより、移動体を摩擦駆
動させる超音波モータにおいて、前記移動体は前記振動
体の外周部より外側に配置された回転中心軸を有し、前
記振動体は前記移動体と接触することにより前記移動体
を摩擦駆動するための出力取り出し部を有し、前記振動
体の中心軸から前記出力取り出し部までの距離は、前記
移動体の中心軸から前記取り出し部との接触部までの距
離より大きいことを特徴とする超音波モータ。A superconducting device that frictionally drives a moving body by causing an oscillating wave to occur in the vibrating body by using an expansion and contraction motion of a piezoelectric vibrator that is made of an elastic member and that is joined to a vibrating body portion having a central axis at the center. In the acoustic wave motor, the moving body has a rotation center axis disposed outside an outer peripheral portion of the vibrating body, and the vibrating body comes into contact with the moving body to take out an output for frictionally driving the moving body. An ultrasonic motor having a portion, wherein a distance from a central axis of the vibrating body to the output extracting portion is larger than a distance from a central axis of the moving body to a contact portion with the extracting portion.
され、前記各々の移動体は前記振動体により個別に摩擦
駆動される構成である特許請求の範囲第1項記載の超音
波モータ。2. The ultrasonic motor according to claim 1, wherein a plurality of said moving bodies are arranged around said vibrating body, and said respective moving bodies are individually driven by friction by said vibrating body. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63031478A JP2645845B2 (en) | 1988-02-13 | 1988-02-13 | Ultrasonic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63031478A JP2645845B2 (en) | 1988-02-13 | 1988-02-13 | Ultrasonic motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01206883A JPH01206883A (en) | 1989-08-21 |
JP2645845B2 true JP2645845B2 (en) | 1997-08-25 |
Family
ID=12332372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63031478A Expired - Fee Related JP2645845B2 (en) | 1988-02-13 | 1988-02-13 | Ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2645845B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03139177A (en) * | 1989-10-20 | 1991-06-13 | Matsushita Electric Ind Co Ltd | Ultrasonic motor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2632158B2 (en) * | 1987-04-11 | 1997-07-23 | 本多電子株式会社 | Ultrasonic motor |
-
1988
- 1988-02-13 JP JP63031478A patent/JP2645845B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01206883A (en) | 1989-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5006746A (en) | Travelling-wave motor | |
EP0169297B1 (en) | Piezoelectric motor | |
JPH0117353B2 (en) | ||
JP2645845B2 (en) | Ultrasonic motor | |
JPH11346487A (en) | Oscillation wave unit and oscillation wave driver | |
JP2720037B2 (en) | Ultrasonic motor | |
JP2683587B2 (en) | Ultrasonic motor | |
JPS60207469A (en) | Supersonic motor | |
JP2518647B2 (en) | Ultrasonic motor | |
JPS60183981A (en) | Supersonic wave motor | |
JP2543144B2 (en) | Ultrasonic motor | |
JPH0681523B2 (en) | Vibration wave motor | |
JP2975072B2 (en) | Actuator driving method and ultrasonic actuator realizing this driving method | |
JP2586045B2 (en) | Vibration motor | |
JP4731737B2 (en) | Vibration wave motor | |
JP2537874B2 (en) | Ultrasonic motor | |
EP0539969B1 (en) | Ultrasonic motor | |
JP2506859B2 (en) | Ultrasonic motor | |
JPS60226781A (en) | Supersonic wave motor | |
JP2537848B2 (en) | Ultrasonic motor | |
JP2601268B2 (en) | Ultrasonic motor | |
JP2523634B2 (en) | Ultrasonic motor | |
JP3089324B2 (en) | Ultrasonic motor | |
JPS63205591A (en) | Electronic timepiece | |
JPS63294280A (en) | Piezoelectric driving device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |