[go: up one dir, main page]

JP2639803B2 - Production of thermostable isocitrate dehydrogenase - Google Patents

Production of thermostable isocitrate dehydrogenase

Info

Publication number
JP2639803B2
JP2639803B2 JP62045222A JP4522287A JP2639803B2 JP 2639803 B2 JP2639803 B2 JP 2639803B2 JP 62045222 A JP62045222 A JP 62045222A JP 4522287 A JP4522287 A JP 4522287A JP 2639803 B2 JP2639803 B2 JP 2639803B2
Authority
JP
Japan
Prior art keywords
enzyme
isocitrate dehydrogenase
thermostable
molecular weight
nad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62045222A
Other languages
Japanese (ja)
Other versions
JPS63214182A (en
Inventor
泰郎 大島
英孝 江口
賢右 吉田
高善 若木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENTARU KOBO KOGYO KK
Original Assignee
ORIENTARU KOBO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENTARU KOBO KOGYO KK filed Critical ORIENTARU KOBO KOGYO KK
Priority to JP62045222A priority Critical patent/JP2639803B2/en
Publication of JPS63214182A publication Critical patent/JPS63214182A/en
Application granted granted Critical
Publication of JP2639803B2 publication Critical patent/JP2639803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性イソクエン酸脱水素酵素を製造する
方法に関し、更に詳細には従来未知の耐熱性イソクエン
酸脱水素酵素を製造する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing thermostable isocitrate dehydrogenase, and more particularly to a method for producing conventionally unknown thermostable isocitrate dehydrogenase. Things.

(従来の技術) イソクエン酸脱水素酵素(以下、ICDHということもあ
る)は、動植物組織や酵母等に広く存在し、従来、発酵
又はブタの心筋といった動物組織を原料として製造され
ている(「化学大辞典1」共立出版、昭42−9−10、p5
98)。
(Prior Art) Isocitrate dehydrogenase (hereinafter sometimes referred to as ICDH) is widely present in animal and plant tissues, yeasts, and the like, and has conventionally been produced from fermented or animal tissues such as porcine myocardium ("""Chemical Encyclopedia 1" Kyoritsu Shuppan, 42-9-10, p5
98).

しかしながら、従来既知のICDHは、熱や化学薬品に対
して不安定であるし、そして更に、その反応に際して、
NADのみを用いるもの(EC1.1.1.41)及びNADPのみを用
いるもの(EC1.1.1.42)は知られているが、NAD、NADP
補酵素のいずれをも利用できるものは全く知られていな
いのが現状である。
However, the previously known ICDH is unstable to heat and chemicals, and furthermore, in its reaction,
Those using only NAD (EC1.1.1.41) and those using only NADP (EC1.1.1.42) are known, but NAD, NADP
At present, none of the coenzymes can be used.

(発明が解決しようとする問題点) このように従来既知のICDHは、物理化学的安定性に欠
け、工業的に利用するのには数多くの制約を受けざるを
得ない。しかもブタの心筋のように動物組織から抽出す
るという方法では、原料の入手難、操作の繁雑性、低い
収率、高いコストといった欠点は避けられず、工業的な
方法にはなり得ない。
(Problems to be Solved by the Invention) As described above, the conventionally known ICDH lacks physicochemical stability and must be subjected to many restrictions for industrial use. In addition, the method of extracting from animal tissue, such as porcine myocardium, has disadvantages such as difficulty in obtaining raw materials, complicated operation, low yield, and high cost, and cannot be an industrial method.

(問題点を解決するための手段) 本発明は、上記問題点を一挙に解決するためになされ
たものであって、製法及び製品酵素の双方の面からの欠
点を同時に解決するため、先ず、工業的製法とするには
組織からの抽出法ではなく微生物による発酵法とするの
が好適であるとの観点にたった。
(Means for Solving the Problems) The present invention has been made in order to solve the above problems all at once, and in order to simultaneously solve the disadvantages in both the production method and the product enzyme, From the viewpoint of industrial production, it is preferable to use a fermentation method using a microorganism instead of an extraction method from a tissue.

このような観点にたち、莫大な数存在する微生物につ
いてスクリーニングを実施したにも拘らず目的とするIC
DHは得られなかった。そこで発想を転換して古細菌、特
に好酸性好熱性細菌について検討したところ、スルホロ
ブス属菌がICDHを生産するという新知見を得、そしてま
たこのICDHが従来未知の新規酵素であるという新知見を
得た。そして更にスクリーニングを続けた結果、好熱細
菌であるテルムス属菌も同様に新規なICDH酵素を生産す
るという極めて有用な新知見を得た。
From this point of view, despite the screening of a huge number of microorganisms, the target IC
DH was not obtained. We changed our idea and examined archaebacteria, especially acidophilic thermophilic bacteria, and obtained new knowledge that Sulfolobus produces ICDH, and also obtained new knowledge that this ICDH is a novel enzyme that was previously unknown. Obtained. As a result of further screening, a very useful new finding that the thermophilic bacterium of the genus Termus similarly produces a novel ICDH enzyme was obtained.

本発明は、これらの新知見を基礎として更に研究の結
果、遂に完成されたものである。
The present invention has been finally completed as a result of further studies based on these new findings.

本発明においては、テルムス属又はスルホロブス属に
属する耐熱性ICDH生産菌を使用するが、例えば温泉から
単離したテルムス・テルモフィルス(Thermus thermoph
ilus)、スルホロブス・アシドカルダリウム(Sulfolob
us acidocaldarius)等を使用するのが好適である。こ
れらの細菌は、通常の細菌用培地で培養すればよいが、
いずれも好熱性細菌であるので温度を65〜85℃、好まし
くは75℃前後で常法により培養する。培養pHは中性程度
でよいが、後者の菌は好酸性菌でもあるので、pHを酸性
側にもっていくのが好ましい。
In the present invention, a thermostable ICDH-producing bacterium belonging to the genus Thermus or Sulfolobus is used. For example, Thermus thermophus isolated from hot springs (Thermus thermophus)
ilus), Sulfolob acidocardarium (Sulfolob)
It is preferred to use, for example, US acidocaldarius). These bacteria may be cultured in a normal bacterial medium,
Since all of them are thermophilic bacteria, they are cultured by a conventional method at a temperature of 65 to 85 ° C, preferably around 75 ° C. The culture pH may be about neutral, but since the latter is also an eosinophilic bacterium, it is preferable to bring the pH to the acidic side.

目的酵素は、菌体外にも分泌されるが、相当部分は菌
体内に残留するので、培養終了後、遠沈、濾過等によっ
て菌体を集め、洗浄処理を行う。このようにして清浄化
した菌体は、超音波処理、機械的撹拌、溶菌処理等によ
って、機械的、物理的、化学的、ないし生物学的に破砕
して菌体内容物を外部に放出させる。
The target enzyme is secreted out of the cells, but a considerable portion remains in the cells. After the cultivation, the cells are collected by centrifugation, filtration, etc., and washed. The cells thus cleaned are mechanically, physically, chemically or biologically disrupted by ultrasonic treatment, mechanical stirring, bacteriolysis, etc., to release the contents of the cells to the outside. .

これを遠沈、濾過等の分離操作にかけて上澄を分取す
る。この上澄を硫安分画して活性画分を得る。また、菌
体内の核酸を除去するために、放出された菌体内成分を
RNase、DNaseで処理してRNA、DNAを分解した後、これを
遠沈、濾過等の分離操作にかけて沈渣を分取し、これに
バッファー、KClを加え、均質化した後遠沈、濾過し
て、酵素含有画分である上清を得る。
This is subjected to a separation operation such as centrifugation and filtration to collect the supernatant. The supernatant is fractionated with ammonium sulfate to obtain an active fraction. In addition, in order to remove nucleic acids in the cells, the released intracellular components are used.
After treating with RNase and DNase to decompose RNA and DNA, centrifuge and separate the precipitate by filtration, etc. to separate the precipitate, add buffer and KCl, homogenize, centrifuge and filter. Then, a supernatant, which is an enzyme-containing fraction, is obtained.

このようにして分離したICDHに富んだ画分(例えば上
記した硫安画分ないし上清)を、必要ある場合には該上
清から夾雑蛋白を除去した後に、酵素精製において慣用
される手法を適宜組合せ、ないしは反復使用して処理
し、目的とするICDHを極めて効率よく且つ高純度でしか
も活性を低下させることなく、分離精製する。例えば、
硫安や硫酸ソーダを用いる、塩析、濃硫、pH調節、透
析、低温エタノール分画、クロマトグラフィー(DEAE−
セルロースやCM−セルロース等を用いるイオン交換クロ
マトグラフィー、分配クロマトグラフィー、吸着クロマ
トグラフィー)、高速液体クロマトグラフィー、薄層ク
ロマトグラフィー、ゲル濾過、電気泳動、蔗糖密度勾配
超遠心等既知の精製法を単用ないし適宜組合せたりまた
はくり返したりして分離精製を行う。
The ICDH-rich fraction thus separated (for example, the above-mentioned ammonium sulfate fraction or supernatant) is removed, if necessary, by removing contaminating proteins from the supernatant. The target ICDH is separated and purified with high efficiency and high purity without reducing the activity, by treating it in combination or repeatedly. For example,
Salting out, concentrated sulfuric acid, pH adjustment, dialysis, low temperature ethanol fractionation, chromatography using ammonium sulfate or sodium sulfate (DEAE-
Known purification methods such as ion exchange chromatography, partition chromatography, and adsorption chromatography using cellulose, CM-cellulose, etc.), high performance liquid chromatography, thin layer chromatography, gel filtration, electrophoresis, and sucrose density gradient ultracentrifugation. Separation and purification are carried out by using or appropriately combining or repeating.

このようにして分離精製されたICDH酵素は、従来既知
のICDHとは全く異なり、NAD、NADPのいずれをも補酵素
として利用できる全く新規にして有用な性質を具備して
いる。従来既知のICDHは、これまで補酵素としてNADの
みを用いるもの(EC1.1.1.41)とNADPのみを用いるもの
(EC1.1.1.42)とに峻別されていたものである。ミカエ
リス定数は、テルムス属菌を用いる実施例1で得られた
酵素の場合、NADPで20μM、NADで2.6mMであり、スルホ
ロブス属菌を用いる実施例2で得られた酵素の場合、NA
DPで35μM、NADで1.6mMであった。なおNADにNADPが混
雑していないのは塩化リチウム水溶液を展開液とする薄
層クロマトグラフィーでバンドが1本しか得られなかっ
た事、市販のブタ心筋イソクエン酸脱水素酵素(NADP特
異的)では過剰量のNADでも反応しなかった事から確認
された。
The ICDH enzyme separated and purified in this way is completely different from the conventionally known ICDH, and has a completely new and useful property in which both NAD and NADP can be used as coenzymes. Heretofore known ICDHs have been distinguished so far from those using only NAD as a coenzyme (EC1.1.1.41) and those using only NADP (EC1.1.1.42). The Michaelis constant is 20 μM for NADP and 2.6 mM for NAD for the enzyme obtained in Example 1 using the genus Termus, and NA for the enzyme obtained in Example 2 using the genus Sulfolobus.
It was 35 μM in DP and 1.6 mM in NAD. The reason that NAD was not contaminated with NADP was that only one band was obtained by thin-layer chromatography using an aqueous solution of lithium chloride as an eluent. Commercially available porcine myocardial isocitrate dehydrogenase (NADP-specific) It was confirmed that the reaction did not occur even with an excessive amount of NAD.

二価金属陽イオン要求性についてはNAD、NADPいずれ
の補酵素を用いても、Mn2+もしくはMg2+が必須であった
が、Sr2+およびCo2+はNAD依存性の反応のみ有効であっ
た。
Regarding divalent metal cation requirement, Mn 2+ or Mg 2+ was essential for both NAD and NADP coenzymes, but Sr 2+ and Co 2+ were effective only for NAD-dependent reactions Met.

本発明に係るICDH酵素は、熱に対して極めて安定であ
って、90℃で15分間保温した後の残存活性は、40%(実
施例1)及び90%(実施例2)であり(第1図及び第2
図)、また反応の活性化エネルギーは10.7Kcal/mol(実
施例1)及び11.8Kcal/mol(実施例2)であって(第3
図及び第4図)、本酵素がきわめて耐熱性にすぐれてい
ることがわかる。既知のICDHにおいて、このようにすぐ
れた耐熱性を示す酵素は存在せず、高温での利用がはじ
めて可能となったのである。
The ICDH enzyme according to the present invention is extremely stable to heat, and the residual activity after incubation at 90 ° C. for 15 minutes is 40% (Example 1) and 90% (Example 2) Fig. 1 and 2
(Fig.), And the activation energies of the reactions were 10.7 Kcal / mol (Example 1) and 11.8 Kcal / mol (Example 2) (see
(FIG. 4 and FIG. 4), it can be seen that this enzyme is extremely excellent in heat resistance. In the known ICDH, there is no enzyme exhibiting such excellent thermostability, and the use at a high temperature has become possible for the first time.

本発明に係るICDH酵素は、各種変性剤に対しても卓越
した耐性を示し、きわめて安定である。たとえば、市販
のブタ心筋由来のICDHを対照とした場合、2M尿素中で、
市販のICDHは完全に失活したが、本酵素は、それぞれ無
処理酵素の70%(実施例1)(第5図)及び90%(実施
例2)の活性を示した。また、実施例2に係る酵素は、
5M尿素中でも80%の活性を示した。0.1Mグアニジン塩酸
中では、市販のICDHは完全に失活したが、本酵素は、そ
れぞれ無処理酵素の55%(実施例1)(第6図)及び80
%(実施例2)の活性を示した。更にまた、0.001%ド
デシル硫酸ナトリウム中では、市販のICDHはほぼ完全に
失活したが(3%)、本酵素(実施例1)は85%の活性
を示した(第7図)。
The ICDH enzyme according to the present invention shows excellent resistance to various denaturants and is extremely stable. For example, when ICDH derived from commercially available porcine myocardium is used as a control, in 2M urea,
Although commercially available ICDH was completely inactivated, the present enzyme showed 70% (Example 1) (FIG. 5) and 90% (Example 2) activities of the untreated enzyme, respectively. Further, the enzyme according to Example 2
It showed 80% activity even in 5M urea. Commercially available ICDH was completely inactivated in 0.1 M guanidine hydrochloride, but this enzyme was 55% of the untreated enzyme (Example 1) (FIG. 6) and 80%, respectively.
% (Example 2). Furthermore, in 0.001% sodium dodecyl sulfate, commercially available ICDH was almost completely inactivated (3%), but the present enzyme (Example 1) showed an activity of 85% (FIG. 7).

次に本発明の実施例を示す。 Next, examples of the present invention will be described.

実施例1 以下の操作は特記しない限り全て室温で行なわれた。
高度好熱菌テルムス・テルモフィルスHB8(ATCC 2763
4)を栄養培地(酵母エキス3g、ポリペプトン5g、グル
コース1g、NaCl2gを1の水に溶解しpH7.2に調製)で7
5℃で8時間培養(湿重量約4g/)した後、遠心分離に
て集菌した。ついで洗浄した後に、超音波処理を行ない
遠心により上清と沈渣とに分離した。このテルムス粗抽
出液を硫酸アンモニウムで分画し、活性のある画分を20
mMトリス塩酸(pH7.5)、1mM EDTAを透析外液として透
析を行なった。透析後の液をDEAEセファセルカラムクロ
マトグラフィー(20mMトリス塩酸(pH7.5)1mM EDTA緩
衝液で平衡化)にかけ、素通りを分画した。これを硫酸
アンモニウム濃度2Mとして、トヨパールHW55−Sによる
疎水クロマトグラフィー(硫安濃度勾配2M−0Mにて展
開)で分画した。これを硫安濃度2Mとした後、ブチルト
ヨパール650Sによる疎水クロマトグラフィー(硫安濃度
2M−硫安濃度0M、10%グリセロール勾配にて展開)で分
画した。これを濃縮後、セファクリルS200カラムクロマ
トグラフィー(20mMトリス塩酸、1mM EDTAで展開)によ
り分画し、最後に活性画分を高速液体クロマトグラフィ
ー(ゲル濾過用担体TSK Gel G3000、0.2Mリン酸緩衝液
(pH6.9)で展開)にかけ鋭いピークが分子量8万5千
の位置に得られた。この画分はポリアクリルアミドゲル
電気泳動で1本のバンドとして得られ、またドデシル硫
酸ナトリウム存在下のポリアクリルアミドゲル電気泳動
で分子量5万の位置に単一のバンドとして得られ、同一
サブユニットからなるダイマー酵素であると考えられ
た。比活性で約200倍にまで精製された。
Example 1 The following operations were all performed at room temperature unless otherwise specified.
Advanced thermophile Thermus thermophilus HB8 (ATCC 2763)
4) in a nutrient medium (3 g of yeast extract, 5 g of polypeptone, 1 g of glucose, 2 g of NaCl dissolved in 1 water and adjusted to pH 7.2)
After culturing at 5 ° C. for 8 hours (wet weight: about 4 g /), the cells were collected by centrifugation. Then, after washing, the mixture was subjected to ultrasonic treatment and separated into a supernatant and a sediment by centrifugation. This crude extract of thermus is fractionated with ammonium sulfate, and the active fraction is separated into 20 fractions.
Dialysis was performed using mM Tris-HCl (pH 7.5) and 1 mM EDTA as an external solution. The dialyzed solution was subjected to DEAE Sephacel column chromatography (equilibrated with 20 mM Tris-HCl (pH 7.5), 1 mM EDTA buffer) to fractionate the solution. This was fractionated by hydrophobic chromatography with Toyopearl HW55-S (developed with an ammonium sulfate concentration gradient of 2M-0M) at an ammonium sulfate concentration of 2M. This was adjusted to an ammonium sulfate concentration of 2M, and then subjected to hydrophobic chromatography using butyl toyopearl 650S (ammonium sulfate concentration).
2M-ammonium sulfate concentration 0M, developed with a 10% glycerol gradient). After concentrating this, it is fractionated by Sephacryl S200 column chromatography (developed with 20 mM Tris-HCl, 1 mM EDTA), and finally the active fraction is subjected to high-performance liquid chromatography (gel filtration carrier TSK Gel G3000, 0.2 M phosphate buffer) (Developed at pH 6.9)), a sharp peak was obtained at the position of molecular weight 85,000. This fraction was obtained as one band by polyacrylamide gel electrophoresis, and was obtained as a single band at a molecular weight of 50,000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and consisted of the same subunit. It was thought to be a dimer enzyme. It was purified to about 200 times in specific activity.

実施例2 以下の操作は特記しない限り全て室温で行なわれた。
好酸好熱性古細菌スルホロブス アシドカルダリウスを
培地(酵母エキス1g、カザミノ酸1g、グルコース1g、Na
Cl0.2gリン酸1カリウム0.3g、硫酸アンモニウム1.3g、
硫酸マグネシウム7水塩0.25g、塩化カルシウム2水塩
0.05gを1の水に溶解し、硫酸でpHを2.5に調整)で75
℃で4日間振とう培養(湿重量約1g/)した後、重炭
酸ナトリウムを加え、pHを5にした後、遠心分離により
集菌した。ついで洗浄した後、トリス塩酸(pH8)でpH
を7.5に調整して溶菌し、DNase、RNaseを加え、37℃で
一時間放置し、DNA、RNAを分解した。これを遠心し、上
清と沈渣に分離した。この沈渣を50mMトリス塩酸に懸濁
し塩化カリウムを加え終濃度0.5Mとしてホモジナイズし
た後遠心した。この上清に0.2Mクエン酸−0.1Mリン酸2
ナトリウムpH2.6の緩衝液を加え、pHを4として遠心に
より沈殿する蛋白質を除いた。次いで上清を40%硫安飽
和にして、トヨパールHW55−Sカラムに吸着させ、30%
飽和へと硫安濃度を下げて展開すると活性画分が得られ
たので、これをブチルトヨパール650Sカラムクロマトグ
ラフィー(硫安濃度40%−0%勾配で展開)にかけ、活
性のある画分を集めた。これを20mMリン酸ナトリウム緩
衝液に対して透析し、DEAEセファセルカラムに吸着さ
せ、塩濃度を0から0.5Mへと直線的に上昇させて溶出す
る活性画分を集めた。これを再び透析して、ブルートヨ
パールカラムに吸着させ、0.5M KClを含む緩衝液で溶出
させた。この画分を濃縮し、高速液体クロマトグラフィ
ー(TSK Gel Type G3000 0.2Mリン酸ナトリウム、1mM E
DTAで展開)にかけ、鋭いピークが分子量8万5千の位
置に得られた。この画分はポリアクリルアミドゲル電気
泳動で一本のバンドとして得られ、またドデシル硫酸ナ
トリウム存在下のポリアクリルアミドゲル電気泳動で分
子量4万2千の位置に単一のバンドとして得られ、アイ
デンティカルダイマーであると考えられた。比活性で約
200倍にまで精製された。
Example 2 The following operations were all performed at room temperature unless otherwise specified.
Culture medium (yeast extract 1 g, casamino acid 1 g, glucose 1 g, Na acidophilic thermophilic archaeon Sulfolobus acidocardarius)
Cl 0.2 g, potassium phosphate 0.3 g, ammonium sulfate 1.3 g,
Magnesium sulfate heptahydrate 0.25g, calcium chloride dihydrate
Dissolve 0.05 g in 1 water and adjust the pH to 2.5 with sulfuric acid).
After shaking culture (wet weight about 1 g /) at 4 ° C. for 4 days, sodium bicarbonate was added to adjust the pH to 5, and the cells were collected by centrifugation. After washing, pH is adjusted with Tris-HCl (pH 8).
Was adjusted to 7.5, lysed, DNase and RNase were added, and the mixture was left at 37 ° C. for 1 hour to decompose DNA and RNA. This was centrifuged and separated into a supernatant and a sediment. The precipitate was suspended in 50 mM Tris-HCl, potassium chloride was added to a final concentration of 0.5 M, homogenized, and then centrifuged. The supernatant contains 0.2M citric acid-0.1M phosphoric acid 2
A buffer solution of sodium pH 2.6 was added to adjust the pH to 4, and proteins precipitated by centrifugation were removed. The supernatant was then saturated with 40% ammonium sulfate and adsorbed on a Toyopearl HW55-S column,
An active fraction was obtained by lowering the ammonium sulfate concentration to saturation, and an active fraction was obtained. This was subjected to butyl toyopearl 650S column chromatography (developed with a ammonium sulfate concentration of 40% -0% gradient) to collect an active fraction. . This was dialyzed against a 20 mM sodium phosphate buffer, adsorbed on a DEAE Sephacel column, and the active fraction eluted by linearly increasing the salt concentration from 0 to 0.5 M was collected. This was dialyzed again, adsorbed on a Brute Yopearl column, and eluted with a buffer containing 0.5 M KCl. This fraction was concentrated and subjected to high performance liquid chromatography (TSK Gel Type G3000 0.2 M sodium phosphate, 1 mM E
(Development with DTA)), and a sharp peak was obtained at the position of 85,000 in molecular weight. This fraction was obtained as a single band by polyacrylamide gel electrophoresis, and was obtained as a single band at a molecular weight of 42,000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Was thought to be. About specific activity
It was purified up to 200 times.

(発明の効果) 本発明によれば、耐熱性イソクエン酸脱水素酵素が微
生物を用いる発酵法によって、工業的に大量生産するこ
とができる。
(Effect of the Invention) According to the present invention, thermostable isocitrate dehydrogenase can be industrially mass-produced by a fermentation method using a microorganism.

しかも本発明によって得られた耐熱性ICDHは、きわめ
て耐熱性が高く、変性剤に対する耐性もきわめて高く、
補酵素としてNAD、NADPの両者を用いるものであるが、
細菌起源のICDHの中でこのように卓越した性質を併有す
るものは全く知られておらず、したがって本発明に係る
酵素は、従来未知の新規酵素である。
Moreover, the heat-resistant ICDH obtained by the present invention has extremely high heat resistance and extremely high resistance to denaturants,
Although both NAD and NADP are used as coenzymes,
None of the ICDHs of bacterial origin having such excellent properties is known at all, and therefore the enzyme according to the present invention is a novel enzyme which is hitherto unknown.

本酵素は上記したように耐熱性及び高度の安定性とい
った卓越した性質を有しているので、高温での反応、変
性剤の存在下での反応において自由に使用することがで
き、各種の工業的用途、分析化学の用途、その他の用途
に広範に利用することができる。
As described above, this enzyme has excellent properties such as heat resistance and high stability, so that it can be used freely in reactions at high temperatures and in the presence of denaturing agents. It can be widely used in industrial applications, analytical chemistry applications, and other applications.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図及び第3図、第4図は、実施例1及び2
によって得た酵素について、これを90℃に15分間維持し
た後の残存活性及び活性化エネルギーをそれぞれ図示し
たものである。 第5〜7図は、各種濃度における尿素、グアニジン塩酸
及びドデシル硫酸ナトリウム中での実施例1によって得
た酵素の活性の変化をそれぞれ図示したものである。
1, 2, 3, and 4 show Examples 1 and 2.
2 shows the residual activity and activation energy of the enzyme obtained after maintaining the enzyme at 90 ° C. for 15 minutes, respectively. 5 to 7 illustrate changes in the activity of the enzyme obtained according to Example 1 in urea, guanidine hydrochloride and sodium dodecyl sulfate at various concentrations, respectively.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の理化学的性質を有する新規耐熱性イ
ソクエン酸脱水素酵素。 (イ)耐熱性 本酵素は、90℃で15分間保持した後の残存活性が40%以
上である。 (ロ)補酵素の利用性 本酵素は、NAD及びNADPのいずれの補酵素も利用する。 (ハ)変性剤に対する耐性 本酵素は、2M尿素中で70%以上の活性を示す。 (ニ)分子量 本酵素は、高速液体クロマトグラフィーにかけた結果、
鋭いピークが分子量85,000の位置に得られる。
1. A novel thermostable isocitrate dehydrogenase having the following physicochemical properties: (B) Thermostability The enzyme has a residual activity of 40% or more after holding at 90 ° C. for 15 minutes. (B) Utilization of coenzyme This enzyme utilizes both NAD and NADP coenzymes. (C) Resistance to denaturing agents This enzyme shows an activity of 70% or more in 2M urea. (D) Molecular weight As a result of subjecting this enzyme to high performance liquid chromatography,
A sharp peak is obtained at a molecular weight of 85,000.
【請求項2】テルムス属に属する耐熱性イソクエン酸脱
水素酵素生産菌を培養し、培養物から該酵素を採取する
ことを特徴とする下記の理化学的性質を有する新規耐熱
性イソクエン酸脱水素酵素の製法。 (イ)耐熱性 本酵素は、90℃で15分間保持した後の残存活性が40%以
上である。 (ロ)補酵素の利用性 本酵素は、NAD及びNADPのいずれの補酵素も利用する。 (ハ)変性剤に対する耐性 本酵素は、2M尿素中で70%以上の活性を示す。 (ニ)分子量 本酵素は、高速液体クロマトグラフィーにかけた結果、
鋭いピークが分子量85,000の位置に得られる。
2. A novel thermostable isocitrate dehydrogenase having the following physicochemical properties, comprising culturing a thermostable isocitrate dehydrogenase producing bacterium belonging to the genus Thermus and collecting the enzyme from the culture. Recipe. (B) Thermostability The enzyme has a residual activity of 40% or more after holding at 90 ° C. for 15 minutes. (B) Utilization of coenzyme This enzyme utilizes both NAD and NADP coenzymes. (C) Resistance to denaturing agents This enzyme shows an activity of 70% or more in 2M urea. (D) Molecular weight As a result of subjecting this enzyme to high performance liquid chromatography,
A sharp peak is obtained at a molecular weight of 85,000.
JP62045222A 1987-03-02 1987-03-02 Production of thermostable isocitrate dehydrogenase Expired - Lifetime JP2639803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62045222A JP2639803B2 (en) 1987-03-02 1987-03-02 Production of thermostable isocitrate dehydrogenase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62045222A JP2639803B2 (en) 1987-03-02 1987-03-02 Production of thermostable isocitrate dehydrogenase

Publications (2)

Publication Number Publication Date
JPS63214182A JPS63214182A (en) 1988-09-06
JP2639803B2 true JP2639803B2 (en) 1997-08-13

Family

ID=12713239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62045222A Expired - Lifetime JP2639803B2 (en) 1987-03-02 1987-03-02 Production of thermostable isocitrate dehydrogenase

Country Status (1)

Country Link
JP (1) JP2639803B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211138B2 (en) * 1995-06-22 2001-09-25 オリエンタル酵母工業株式会社 Ammonia scavenging reagent
JPH11346781A (en) 1998-06-09 1999-12-21 Agency Of Ind Science & Technol Ammonia-eliminated liquid reagent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152482A (en) * 1982-03-08 1983-09-10 Amano Pharmaceut Co Ltd Heat-resistant proteolytic enzyme aqualysin i and preparation thereof
JPS59227295A (en) * 1983-06-07 1984-12-20 Science & Tech Agency Dna ligase
JPS6211092A (en) * 1985-07-06 1987-01-20 Hokkaido Noukiyou Nyugyo Kk Novel aminopeptidase and method of purifying same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152482A (en) * 1982-03-08 1983-09-10 Amano Pharmaceut Co Ltd Heat-resistant proteolytic enzyme aqualysin i and preparation thereof
JPS59227295A (en) * 1983-06-07 1984-12-20 Science & Tech Agency Dna ligase
JPS6211092A (en) * 1985-07-06 1987-01-20 Hokkaido Noukiyou Nyugyo Kk Novel aminopeptidase and method of purifying same

Also Published As

Publication number Publication date
JPS63214182A (en) 1988-09-06

Similar Documents

Publication Publication Date Title
US3912588A (en) Creatine amidohydrolase in the conversion of creatinine to creatine
JP2639803B2 (en) Production of thermostable isocitrate dehydrogenase
EP0107400B1 (en) Hybrid plasmid and process for producing glutathione using said plasmid
JPS6360999B2 (en)
JP2603349B2 (en) Large-scale purification of high-purity heparinase
US3589982A (en) Production of l-asparaginase
JP3029915B2 (en) Thermostable adenosine-5'-phosphosulfate kinase and method for producing the same
US4080261A (en) Novel endonuclease and process for production thereof
JPH0474999B2 (en)
JPH01320995A (en) Production of nucleoside compound
JPH0998779A (en) Trehalose synthetase, its production and production of trehalose using the enzyme
JPH0761265B2 (en) New strain belonging to the genus Thomas, new β-galactosidase and method for producing the same
JPH0231686A (en) Production of trifluorothymidine
Rokugawa et al. Polynucleotide Phosphorylase from Acromobacter sp. KR 170-4
JP3285587B2 (en) Purification and characterization of alkaline phosphatase from Thermotoga Neapolitana
JPS6120268B2 (en)
JPH06277040A (en) Producion of yeast cell wall-lysing enzyme and method for lysing the same
JPH05137572A (en) Thermostable adenosine-5'-triphosphate sulfurylase and its production
JPS6140789A (en) New restriction enzyme and its production method
JPS5863386A (en) Restriction enzyme preparation method
JPS5863387A (en) Preparation of restriction enzyme
JPS59179094A (en) Production of triazol-deoxyribonucleoside
RU2032743C1 (en) Method for producing of yeast alcohol oxidase
JPS6326991B2 (en)
SU1731813A1 (en) Method of 3-hydroxybutyric acid dehydrogenase preparation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term