[go: up one dir, main page]

JP2633716B2 - Power flow calculation method with voltage adjustment - Google Patents

Power flow calculation method with voltage adjustment

Info

Publication number
JP2633716B2
JP2633716B2 JP2192351A JP19235190A JP2633716B2 JP 2633716 B2 JP2633716 B2 JP 2633716B2 JP 2192351 A JP2192351 A JP 2192351A JP 19235190 A JP19235190 A JP 19235190A JP 2633716 B2 JP2633716 B2 JP 2633716B2
Authority
JP
Japan
Prior art keywords
voltage
node
calculation
value
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2192351A
Other languages
Japanese (ja)
Other versions
JPH0479726A (en
Inventor
守 鈴木
進 和田
忠 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2192351A priority Critical patent/JP2633716B2/en
Publication of JPH0479726A publication Critical patent/JPH0479726A/en
Application granted granted Critical
Publication of JP2633716B2 publication Critical patent/JP2633716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、適正な母線電圧と、適正な電圧調整機器の
制御量を算出する電圧調整付潮流計算方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a power flow calculation method with voltage adjustment for calculating an appropriate bus voltage and an appropriate control amount of a voltage adjustment device.

(従来の技術) 電圧潮流計算の結果として、解析者が希望する条件を
満たした電圧解を得るためには、解析者は発電機端子電
圧,調相設備量,変圧器タップ位置等の計算条件を調整
して電圧潮流計算を実行し、結果を確認するという過程
を繰り返して、満足な結果を得る。
(Prior art) In order to obtain a voltage solution that satisfies the conditions desired by the analyst as a result of the voltage flow calculation, the analyst needs to calculate the generator terminal voltage, phase adjustment equipment amount, transformer tap position, etc. Is adjusted, and the process of executing the voltage flow calculation and confirming the result is repeated to obtain a satisfactory result.

線形計画法や2次計画法などの最適化手法を応用した
最適潮流計算手段は、目的関数を送電損失最小や、電圧
偏差最小とすることにより、電圧無効電力均衡を調整し
て、適正な電圧値とそのときの電圧調整機器の制御量を
算出することが可能であり、計算機による総合電圧制御
等に応用されている。
The optimal power flow calculation means applying an optimization method such as linear programming or quadratic programming adjusts the voltage reactive power balance by minimizing the transmission function or the voltage deviation of the objective function, and adjusts the appropriate voltage. It is possible to calculate the value and the control amount of the voltage adjusting device at that time, and it is applied to a total voltage control and the like by a computer.

(発明が解決しようとする課題) 計算条件を調整しながら電圧潮流計算を繰り返し実行
して、満足な電圧解を得るためには、解析者には高度な
知識と経験が必要で、特に複雑な電力系統のもとでは、
電圧潮流計算を収束させることすら困難な場合があり、
電気事情の実務においても、この作業に多くの労力を費
している。
(Problems to be Solved by the Invention) In order to repeatedly execute the voltage flow calculation while adjusting the calculation conditions to obtain a satisfactory voltage solution, the analyst requires advanced knowledge and experience, and particularly complicated Under the power system,
Even converging voltage flow calculations can be difficult,
A lot of effort has been spent on this work in the field of electricity.

一方、最適潮流計算手法は、初期値として電圧潮流計
算の収束解が必要であるため前記同様の困難を生じる場
合がある。
On the other hand, the optimal power flow calculation method may cause the same difficulty as described above because a convergence solution of the voltage power flow calculation is required as an initial value.

近年、給電指令所の計算機シスムによって、数時間先
の需給状態を予測し、その条件で電圧潮流計算を実行し
て、信頼度監視や制御に活用するという技術動向がある
が、その際に支障となるのでは電圧無効電力均衡の調整
であり、従来技術ではこれを自動的に行なって、収束解
を得ることは困難であった。
In recent years, there has been a technological trend in which the supply and demand situation is predicted several hours ahead by the computer system at the dispatching center, and voltage power flow calculations are performed under these conditions to utilize it for reliability monitoring and control. In this case, it is difficult to obtain a convergence solution by automatically performing the adjustment of the voltage reactive power balance.

本発明は上記事情に鑑みてなされたものであり、従来
の電圧潮流計算が収束不能な条件のもとでも、自動的に
電圧調整機器の制御量を調節して計算条件を整え、適正
な電圧解と、そのために必要な電圧調整機器の制御量を
算出する機能を有することによって、系統運用計画の実
務を一層効率化することはもとより、計算機システムに
よる電力系統の信頼度監視,信頼度制御にも応用するこ
とが可能な、電圧調整付潮流計算方式を提供することを
目的としている。
The present invention has been made in view of the above circumstances, and even under conditions where conventional voltage flow calculation cannot be converged, the control amount of the voltage adjustment device is automatically adjusted to adjust the calculation conditions, and the appropriate voltage is adjusted. The solution and the function to calculate the control amount of the voltage regulator required for that purpose not only make the operation of the system operation plan more efficient, but also monitor the reliability of the power system by computer system and control the reliability. It is an object of the present invention to provide a power flow calculation method with voltage adjustment that can also be applied.

[発明の構成] (課題を解決するための手段) 電力方程式を反復近似法によって解き、母線電圧の絶
対値と位相角を求める電圧潮流計算方式において、反復
近似解が母線電圧の運用上下限内に維持されているかど
うかチェックし、逸脱している場合には、近似解が電圧
許容上下限値を満足するように調整設備群の投入量を予
め設定した制御個所数を限度にして調整すると共にノー
ドアドミタンス行列を変更する調相設備群調整手段と、
同じく電圧許容上下限値を満足するように変圧器のタッ
プ位置を調整すると共にノードアドミタンス行列を変更
する変圧器タップ調整手段と、前記反復近似解より求め
た発電機無効電力出力が発電機定格の範囲を逸脱してい
る場合には、前記定格範囲を逸脱しないように発電機母
線を無効電力出力値で拘束して、これに平衡し得る端子
電圧を自動電圧調整器の基準値として求めると共に前記
ノード拘束条件を変更する発電機端子圧調整手段とから
構成した。
[Structure of the Invention] (Means for Solving the Problems) In a voltage power flow calculation method for solving an electric power equation by an iterative approximation method and obtaining an absolute value and a phase angle of a bus voltage, an iterative approximation solution is within the lower and upper limits of operation of the bus voltage. Check if it is maintained, and if it deviates, adjust the input amount of the adjustment equipment group up to the preset number of control points so that the approximate solution satisfies the voltage allowable upper and lower limits, and Phase adjustment equipment group adjusting means for changing the node admittance matrix;
Similarly, the transformer tap adjusting means for adjusting the tap position of the transformer and changing the node admittance matrix so as to satisfy the voltage allowable upper and lower limit values, and the generator reactive power output obtained from the iterative approximate solution is the generator rated power. If it is out of the range, the generator bus is constrained by the reactive power output value so as not to deviate from the rated range, and a terminal voltage that can be balanced with the reactive power output value is obtained as a reference value of the automatic voltage regulator. And generator terminal pressure adjusting means for changing the node constraint condition.

(作 用) 反復近似法によって逐次、精度を改善された反復近似
解に、運用上下限からの逸脱が認められた場合には、電
圧調整機器の適切な制御を実施して計算条件を更新す
る。反復次回では更新された計算条件のもとで反復近似
解が算出されるため、逸脱が小さくなるか、あるいは解
消される。
(Operation) If deviations from the upper and lower limits are found in the iterative approximate solution whose accuracy has been successively improved by the iterative approximation method, appropriate control of the voltage regulator is performed to update the calculation conditions. . In the next iteration, since the iterative approximate solution is calculated under the updated calculation conditions, the deviation is reduced or eliminated.

上記の過程を繰り返し実行して、運用上下限からの逸
脱が皆無となり、さらに反復近似解の誤差が十分に小さ
く、真の解と見做されるとき、収束と判定して計算を終
了する。
When the above process is repeatedly performed, and there is no deviation from the lower limit in operation, and the error of the iterative approximate solution is sufficiently small and considered as a true solution, it is determined to be convergence, and the calculation is terminated.

このようにして、運用上下限を満足した電圧解を得
る。
In this way, a voltage solution that satisfies the lower limit of operation is obtained.

(実施例) 本発明の一実施例を図面を参照して以下に説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明による電圧調整付潮流計算方式の一
実施例を説明するためのフローチャートである。
FIG. 1 is a flowchart for explaining one embodiment of a power flow calculation method with voltage adjustment according to the present invention.

第1図において、1は計算条件入力処理、2は電圧潮
流計算前処理、3は調相設備群制御個所数決定処理、4
は反復近似解算出処理、5は調相設備群調整処理、6は
変圧器タップ調整処理、7は発電機端子電圧調整処理、
8は収束判定処理、9は計算結果出力処理、10はノード
アドミタンス行列、11はノード拘束条件、12は電圧近似
解、13は調相設備群制御個所数である。
In FIG. 1, 1 is a calculation condition input process, 2 is a voltage flow calculation pre-process, 3 is a process for determining the number of control points of the phase adjustment equipment group, 4
Is an iterative approximate solution calculation process, 5 is a phase adjustment facility group adjustment process, 6 is a transformer tap adjustment process, 7 is a generator terminal voltage adjustment process,
8 is a convergence determination process, 9 is a calculation result output process, 10 is a node admittance matrix, 11 is a node constraint condition, 12 is an approximate voltage solution, and 13 is the number of control points of the phase adjustment equipment group.

先ず、第1図に従って実施例の概要を説明する。な
お、実施例において本発明の特徴を明らかとするため、
一般に知られる従来の電圧潮流計算は、計算条件入力処
理1,電圧潮流計算前処理2,反復近似解算出処理4,収束判
定処理8,計算結果出力処理9,ノードアドミタンス行列1
0,ノード拘束条件11,電圧近似解12から構成されている
ことを、ここに記しておく。
First, an outline of the embodiment will be described with reference to FIG. In order to clarify the features of the present invention in the examples,
Conventionally known voltage power flow calculation includes calculation condition input processing 1, voltage power flow calculation preprocessing 2, iterative approximate solution calculation processing 4, convergence judgment processing 8, calculation result output processing 9, node admittance matrix 1
It is noted here that it is composed of 0, node constraint condition 11, and approximate voltage solution 12.

電力系統の各設備の接続状態,運転状態、各設備の定
格定数を定義したデータを、計算条件入力処理1が入力
し、内部データとして編集,格納する。次いで電圧潮流
計算前処理2は、反復近似解算出処理4における逆行列
計算を高速化するためのノードNo.最適順序を行なっ
て、各ノードの電圧,有効電力,無効電力の指定値を定
義するノード拘束条件11と、電力系統の接続状態と回路
定数を定義するノードアドミタンス行列10を作成し、反
復近似解算出処理4へ渡す。
Calculation condition input processing 1 inputs data defining the connection state and operation state of each facility of the power system and the rated constant of each facility, and edits and stores the data as internal data. Next, the voltage flow calculation preprocessing 2 performs a node No. optimal order for speeding up the inverse matrix calculation in the iterative approximate solution calculation processing 4, and defines specified values of voltage, active power, and reactive power of each node. A node admittance matrix 10 that defines the node constraint condition 11, the connection state of the power system, and the circuit constant is created and passed to the iterative approximate solution calculation processing 4.

調相設備群制御個所数決定処理3は、計算条件として
与えられた入力データに、どれくらいの電圧無効電力不
均衡があるのかを求め、これに従って、調相設備群調整
処理5における調相設備の制御個所数13を決定する。
The phase adjustment equipment group control point number determination processing 3 determines how much voltage reactive power imbalance exists in the input data given as the calculation condition, and accordingly, the phase adjustment equipment group adjustment processing 5 determines the voltage reactive power imbalance. The number of control points 13 is determined.

電力系統の電力方程式は、電圧に関する非線形連立方
程式として成立されるため、これは反復近似手法によっ
て解くこととし、以降の処理は繰り返しのループの中で
実行される。
Since the power equation of the power system is established as a non-linear simultaneous equation relating to voltage, this is solved by an iterative approximation method, and the subsequent processing is executed in an iterative loop.

反復近似解算出処理4は、逐次、精度を改善した電圧
近似解12を求める。調相設備群調整処理5は、電圧近似
解12の誤差が許容範囲以下となったときに、電圧近似解
12が電圧許容上下限値を満足するよう調相設備群の投入
量を調整し、これに伴なってノードアドミタンス行列10
を変更する。
The iterative approximate solution calculation process 4 sequentially obtains a voltage approximate solution 12 with improved accuracy. The phase adjustment equipment group adjustment processing 5 performs the voltage approximation solution when the error of the voltage approximation solution 12 falls below the allowable range.
The input amount of the phase adjustment equipment group is adjusted so that 12 satisfies the voltage allowable upper and lower limits, and accordingly, the node admittance matrix 10
To change.

なお、このとき調相設備群の調整個所数は調整個所数
13で設定された数を越えないよう制限する。
At this time, the number of adjustment points of the phase adjustment equipment group is the number of adjustment points
Limit not to exceed the number set in 13.

変圧器タップ調整処理6は、電圧近似解12の誤差が許
容範囲以下となったときに、電圧近似解12が電圧許容上
下限値を満足するよう変圧器タップ位置を調整し、これ
に伴なってノードアドミタンス行列10を変更する。
The transformer tap adjusting process 6 adjusts the transformer tap position so that the voltage approximate solution 12 satisfies the voltage allowable upper and lower limit values when the error of the voltage approximate solution 12 falls below the allowable range. To change the node admittance matrix 10.

発電機端子電圧調整処理7は、電圧近似解12の画素が
許容範囲以下となったときに、発電機無効電力出力が定
格範囲を逸脱しないように端子電圧を調整し、これに伴
なってノード拘束条件11を変更する。
The generator terminal voltage adjustment process 7 adjusts the terminal voltage so that the generator reactive power output does not deviate from the rated range when the pixel of the voltage approximate solution 12 falls below the allowable range. Change the constraint condition 11.

電圧近似解12の誤差が十分小さく、真の解に等しいと
見做せる場合には、収束判定処理8により繰り返しのル
ープを抜けて計算結果出力処理9へ進み、計算結果を所
定の形式に編集して出力し、処理を終了するが、そうで
ない場合は反復近似解算出処理4へ戻る。なお、説明の
都合上省略したが、繰り返しの回数には制限値を設け、
これを越えても収束しない場合は、繰り返しのループを
抜けて終了する。
If the error of the voltage approximation solution 12 is sufficiently small and can be considered to be equal to the true solution, the convergence determination processing 8 exits the repetition loop and proceeds to the calculation result output processing 9 to edit the calculation result into a predetermined format. Then, the process is terminated. If not, the process returns to the iterative approximate solution calculation process 4. Although omitted for convenience of explanation, a limit value is set for the number of repetitions,
If convergence does not occur even after exceeding this, the processing exits from the repetitive loop and ends.

次に、各処理の詳細な説明をする。 Next, each process will be described in detail.

第2図は、本実施例を実行するための簡単なモデル系
統である。
FIG. 2 shows a simple model system for executing the present embodiment.

第2図において調相設備群C1,C2は、それぞれノードN
2,N3の電圧が電圧許容値上下限内にとどまるように制御
されるものとし、変圧器T1,T2,T3のタップは、ノードN
5,N6,N8の電圧が電圧許容値上下限内にとどまるように
制御されるものとする。また、ノードN1の電圧は、発電
機G1の無効電力出力が定格上下限を逸脱しない限りは、
発電機G1によって拘束されるものとする。なお、ノード
N4は、スウィングノードとする。
In FIG. 2, the phase adjustment equipment groups C1 and C2
2, the voltage of N3 is controlled so as to stay within the upper and lower limits of the voltage allowable value, and the taps of the transformers T1, T2, T3 are connected to the node N.
It is assumed that the voltages of 5, N6 and N8 are controlled so as to stay within the upper and lower limits of the allowable voltage value. Also, the voltage of the node N1 is set as long as the reactive power output of the generator G1 does not deviate from the upper and lower limits of the rating.
It shall be restrained by the generator G1. Note that the node
N4 is a swing node.

第3図は第2図に示すモデル系統のもとで、計算条件
入力処理1が入力する計算条件データを示す図面であ
る。第3図において、調相設備群データD4について説明
すると、調相設備群C1はノードN5に接続しており、その
内訳は単位容量0.08(p.u)のキャパシタが4群と単位
容量0.04(p.u)のリアクトルが2群で、初期状態とし
ては、キャパシタが2群投入されている。本実施例を実
行し、ノードN2の電圧が1.035〜1.065(p.u)の範囲を
逸脱した場合には、逸脱を解消するに必要なだけのキャ
パシタ,リアクトルの投入/開放が行なわれるべきであ
ることを示す。
FIG. 3 is a drawing showing calculation condition data input by the calculation condition input process 1 under the model system shown in FIG. Referring to FIG. 3, the phase adjustment equipment group data D4 will be described. The phase adjustment equipment group C1 is connected to the node N5, which is composed of four capacitors having a unit capacity of 0.08 (pu) and a unit capacity of 0.04 (pu). Are two groups, and as an initial state, two groups of capacitors are turned on. When the present embodiment is executed and the voltage of the node N2 deviates from the range of 1.035 to 1.065 (pu), as many capacitors and reactors as necessary to eliminate the deviation should be turned on / off. Is shown.

電圧潮流計算前処理2は、反復近似解算出処理4にお
ける逆行列計算を高速化するためのノード番号最適順序
付と、ノードアドミタンス行列の作成を行なうが、これ
らの詳細については、電力系統の解析技術の分野では周
知であり、本実施例が説明する説明の特徴にも関連しな
いためここでは説明を省略する。また反復近似解算出処
理4及び収束判定処理8も、共に電圧潮流計算の一般的
な処理機能として周知であるため、上記と同様の主旨に
より説明を省略する。
The voltage power flow calculation preprocessing 2 performs node number optimal ordering and speeds up the inverse matrix calculation in the iterative approximate solution calculation processing 4 and creates a node admittance matrix. The description is omitted here because it is well known in the technical field and does not relate to the features of the description described in the present embodiment. Also, the iterative approximate solution calculation processing 4 and the convergence determination processing 8 are both well-known as general processing functions of the voltage power flow calculation, and therefore description thereof is omitted for the same purpose as described above.

調相設備群制御個所数決定処理3は、計算条件におけ
る負荷有効電力の合計を先ず算出する。
The phase control equipment group control point number determination processing 3 first calculates the total load active power under the calculation conditions.

実際の電力系統では、総需要と調相合計は第4図に示
すような関係にあるため、本実施例ではこのような情報
を予め記憶しておき、先に算出した負荷有効電力の合計
に対して、電力系統全体でどれくらいの調相設備群が投
入されていれば妥当なのかを求める。次に、計算条件に
おける調相設備群の初期投入量の合計を算出すれば、計
算条件に含まれる調相設備量の過不足量が求まるため、
これに応じて過不足量が大きければ制御個所数を多く
し、過不足量が小さければ、制御個所数を少なくする。
In an actual power system, the total demand and the sum of the phases are in a relationship as shown in FIG. 4, so in the present embodiment, such information is stored in advance, and the sum of the load active power calculated in advance is calculated. On the other hand, it is necessary to find out how many phase adjustment equipment groups are appropriate in the entire power system. Next, if the sum of the initial input amounts of the phase adjustment equipment group under the calculation conditions is calculated, the excess or deficiency of the phase adjustment equipment quantity included in the calculation conditions is obtained,
Accordingly, if the excess or deficiency is large, the number of control points is increased, and if the excess or deficiency is small, the number of control points is reduced.

次に第5図を参照して調相設備群調整処理5の詳細を
説明する。ステップS51では各ノードの無効電力残差の
最大値をチェックし、これが許容値以下であれば調整可
能と見做す。この理由は、無効電力残差が大きい状態で
は電圧近似解の精度が不十分なので、調相設備群の適切
な調整が不可能なためである。ステップS52では各調相
設備群の監視ノードの電圧をチェックし、もし運用上下
限値を逸脱していた場合に、逸脱量を運用上下限の幅
(不感帯幅)で割り、正規化した偏差を求め、これをス
テップS53に渡す。ステップS53は正規化した偏差の絶対
値が大きい順に調相設備群を並びかえ、この順序に従っ
て、ステップS54とステップS55が、調相設備群制御個所
数決定処理3で求めた制御個所数の分だけ、繰り返し処
理される。ステップS54は電圧低下、すなわち正規化し
た偏差が負値であればキャパシタ1群投入、又はリアク
トル1群開放を行ない、電圧過昇、すなわち正規化した
偏差が正値であればキャパシタ1群開放、又はリアクト
ル1群投入を実施する。いずれの場合もその結果は、ノ
ードアドミタンス行列10の対角成分に反映される。ステ
ップS55は先ず、今回、ステップS54で操作した調相設備
群が、反復近似計算の切り返しの前回にも、操作されて
いたかどうかを調べ、もし、前回も操作が行なわれてい
て、それが今回とは逆の操作であった場合、調相設備群
の動作にハンチングが発生していると見做し、この旨を
ステップS56に渡す。ステップS56は今回の一連の調相設
備群の操作において、1個所でもハンチングが検出され
ていた場合、ステップS57を実行し、ステップS57では制
御個所数を1減じて、反復近似計算の繰り返しの次の回
での調相設備群の制御個所数を制限する。
Next, the phase adjustment equipment group adjustment processing 5 will be described in detail with reference to FIG. In step S51, the maximum value of the reactive power residual of each node is checked, and if this is equal to or less than the allowable value, it is considered that the adjustment is possible. The reason for this is that when the reactive power residual is large, the accuracy of the voltage approximation solution is insufficient, so that it is impossible to appropriately adjust the phase adjustment equipment group. In step S52, the voltage of the monitoring node of each phase adjustment facility group is checked. If the voltage deviates from the upper and lower operation limits, the deviation is divided by the width of the upper and lower limits (dead zone width), and the normalized deviation is calculated. And passes it to step S53. In step S53, the phase adjustment equipment groups are rearranged in ascending order of the absolute value of the normalized deviation. According to this order, steps S54 and S55 determine the number of control points determined in the phase adjustment equipment group control point determination processing 3 by the number of control points. Is only repeated. In step S54, if the voltage drop, that is, the normalized deviation is a negative value, the capacitor 1 group is turned on or the reactor 1 group is opened, and if the voltage rises, that is, if the normalized deviation is a positive value, the capacitor 1 group is opened. Alternatively, one reactor is charged. In either case, the result is reflected in the diagonal components of the node admittance matrix 10. In step S55, first, it is checked whether or not the phase adjustment equipment group operated in step S54 has been operated at the last time before the return of the iterative approximation calculation.If the operation has been performed last time, If the operation is the reverse of the above, it is considered that hunting has occurred in the operation of the phase adjustment facility group, and the fact is passed to step S56. In step S56, if hunting is detected at any one point in the series of operation of the phase adjustment equipment group, step S57 is executed.In step S57, the number of control points is reduced by 1 and the next step of the iterative approximation calculation is repeated. Limit the number of control points of the phase adjustment equipment group in the first time.

本実施例では、調相設備群は監視ノードの電圧値に応
じて制御されるが、実際には監視ノードの電圧値は近傍
に設置された全ての調相設備群の効果を受けるため、電
圧値が上限,下限の逸脱を交互に繰り返して。収束不能
におちいる可能性がある。この場合は、調相設備群の制
御量を抑制することが効果を持つので、ステップS55〜S
57の各処理は非常に有効である。
In the present embodiment, the phase adjustment equipment group is controlled according to the voltage value of the monitoring node. However, the voltage value of the monitoring node is actually affected by all the phase adjustment equipment groups installed in the vicinity. The value alternates between the upper and lower limits. It may be impossible to converge. In this case, since it is effective to suppress the control amount of the phase adjustment equipment group, steps S55 to S
Each of the 57 processes is very effective.

次に、第6図を参照して変圧器タップ調整処理6の詳
細を説明する。
Next, the transformer tap adjustment processing 6 will be described in detail with reference to FIG.

ステップS61では各ノードの無効電力残差の最大値を
チェックし、これが許容値以下であれば、調整可能と見
做す。すなわち、前記ステップS51と同様の処理であ
る。ステップS61で調整可能と判定されると、以降ステ
ップS62〜66を、全ての変圧器について実行する。ステ
ップS62では監視ノードの電圧値をチェックし、もし上
下限値から逸脱していた場合、その逸脱量を記憶する。
ここで、ステップS63に示されるように逸脱がなけれ
ば、その変圧器の制御は行なわれない。
In step S61, the maximum value of the reactive power residual of each node is checked, and if it is equal to or smaller than the allowable value, it is considered that the adjustment is possible. That is, the process is the same as that in step S51. If it is determined in step S61 that the adjustment is possible, steps S62 to S66 are executed for all the transformers. In step S62, the voltage value of the monitoring node is checked. If the voltage value deviates from the upper and lower limit values, the deviation amount is stored.
Here, if there is no deviation as shown in step S63, the control of the transformer is not performed.

次にステップS64は変圧器のタップを単位量操作した
場合の監視ノードの電圧値への効果、すなわち電圧感度
係数を求める。
Next, in step S64, the effect on the voltage value of the monitoring node when the tap of the transformer is operated by the unit amount, that is, the voltage sensitivity coefficient is obtained.

電圧感度係数は次の方法で求める。調整前も調整後も
ノードに流出入する有効電力の和Fと無効電力の和Gが
常に0であることにより、 調整前: F(V,Cq,θ)=0 ……(1) G(V,Cq,θ)=0 ……(2) ここで、F,Gはベクトルである。
The voltage sensitivity coefficient is obtained by the following method. Before and after adjustment, the sum F of active power and the sum G of reactive power flowing into and out of the node are always 0. Before adjustment: F (V, C q , θ) = 0... (1) G (V, C q , θ) = 0 (2) Here, F and G are vectors.

調整後: F(V+ΔV,Cq+ΔCq,θ+Δθ)=0 ……(3) G(V+ΔV,Cq+ΔCq,θ+Δθ)=0 ……(4) となる。ここで、Δは調整前後の各量の変化を示し、 V:ノード電圧 θ:ノード電圧の位相角 Cq:変圧器タップの無効電力関連調整変数である。Adjusted: the F (V + ΔV, C q + ΔC q, θ + Δθ) = 0 ...... (3) G (V + ΔV, C q + ΔC q, θ + Δθ) = 0 ...... (4). Here, Δ indicates a change in each amount before and after the adjustment, V: node voltage θ: phase angle of the node voltage C q : reactive power related adjustment variable of the transformer tap.

次に(3),(4)式をテーラ展開すると、 F(V+ΔV,Cq+ΔCq,θ+Δθ) =F(V,Cq,θ)+Fv・ΔV +Fcq・ΔCq+Fθ・Δθ ……(5) G(V+ΔV,Cq+ΔCq,θ+Δθ) =G(V,Cq,θ)+Gv・ΔV +Fcq・ΔCq+Gθ・Δθ ……(6) となる。ここで、 Fv,Fcq,Fθ,Gv,Gcq,Gθ:テーラ展開関係のマトリッ
クスである。
Next (3), Expanding retailer to (4), F (V + ΔV, C q + ΔC q, θ + Δθ) = F (V, C q, θ) + F v · ΔV + F cq · ΔC q + F θ · Δθ ... ... the (5) G (V + ΔV , C q + ΔC q, θ + Δθ) = G (V, C q, θ) + G v · ΔV + F cq · ΔC q + G θ · Δθ ...... (6). Here, F v , F cq , F θ , G v , G cq , G θ : a matrix of the Taylor expansion relation.

したがって、 Fv・ΔV+Fcq・ΔCq+Fθ・Δθ=0 ……(7) Gv・ΔV+Gcq・ΔCq+Gθ・Δθ=0 ……(8) であり、タップ位置変更の場合はFcq=0であるから
(7),(8)式よりΔθを消去して、 ΔV/ΔCq=−(Gv−Fθ -1・Fv・Gθ-1・Gcq ……(9) となる。ここでVとθは電圧近似解12を用いる(9)式
より、電圧感度係数はマトリックスΔV/ΔCqの要素とし
て求まる。
Therefore, F v a · ΔV + F cq · ΔC q + F θ · Δθ = 0 ...... (7) G v · ΔV + G cq · ΔC q + G θ · Δθ = 0 ...... (8), in the case of tap position changes F because it is cq = 0 (7), erases the Δθ from equation (8), ΔV / ΔC q = - ( G v -F θ -1 · F v · G θ) -1 · G cq ...... ( 9) From where V and θ uses a voltage approximate solution 12 (9), the voltage sensitivity coefficient obtained as elements of the matrix [Delta] V / [Delta] C q.

ステップS65はステップS64で求めた電圧感度係数をも
って、電圧逸脱を解消するに必要なタップの制御量を求
める。すなわち、 Δn=ΔV/S ……(10) ここに、 Δn:電圧逸脱を解消するに必要なタップ比制御量 ΔV:電圧逸脱量 S:監視ノードの電圧値に対するタップの電圧感度係数 次に、ステップS66はステップS65で求めらタップの制
御量にしたがって、タップを制御する。このとき、タッ
プ刻みをもって、電圧低下状態であれば電圧上げ方向に
切上げ、電圧過昇状態であれば電圧下げ方向に切捨てと
して、タップ比は離散値として求める。
In step S65, the control amount of the tap necessary to eliminate the voltage deviation is obtained using the voltage sensitivity coefficient obtained in step S64. That is, Δn = ΔV / S (10) where, Δn: tap ratio control amount required to eliminate voltage deviation ΔV: voltage deviation amount S: voltage sensitivity coefficient of tap to voltage value of monitoring node In step S66, the tap is controlled according to the tap control amount obtained in step S65. At this time, the tap ratio is determined as a discrete value by cutting up in the voltage increasing direction if the voltage is low and cutting off the voltage in the voltage decreasing direction if the voltage is excessively high.

タップ制御の結果は、ノードアドミタンス行列10の変
圧器両端のノードの対角成分と、ノード間の遷移成分に
反映する。
The result of the tap control is reflected on the diagonal components of the nodes at both ends of the transformer in the node admittance matrix 10 and the transition components between the nodes.

次に、第7図を参照して発電機端子電圧調整処理7の
詳細を説明する。
Next, the details of the generator terminal voltage adjustment processing 7 will be described with reference to FIG.

ステップS71は前記のステップS51,S61同様、各ノード
の無効電力残差の最大値をチェックして、調整可能かど
うかを判定する。なお、ここで追記するならば、チェッ
クのための判定値は、ステップS51,S61,S71で同じ値を
参照するのではなく、それぞれ個別の値として定義す
る。これについては説明の最後に触れることとする。
In step S71, as in steps S51 and S61, the maximum value of the reactive power residual of each node is checked to determine whether adjustment is possible. It should be noted that if added here, the judgment value for the check is defined as an individual value instead of referring to the same value in steps S51, S61, and S71. This will be mentioned at the end of the description.

ステップS71で調整可能と判定した場合、全ての発電
機についてステップS72〜S74を実行する。
If it is determined in step S71 that adjustment is possible, steps S72 to S74 are executed for all generators.

なお、ここで、全ての発電機は初期状態としては、PV
指定ノードとして定義されているものとする。また、ス
ウィングノードはここでは対象外とする。ステップS72
では発電機ノードがPV指定か否かを判定するが、前記に
より、初めて本ステップを実行する時には、必ずPV指定
であるため、ステップS73を実行する。
Here, all generators are initially set to PV
It is assumed that it is defined as a designated node. In addition, swing nodes are excluded here. Step S72
Then, it is determined whether or not the generator node specifies the PV. When the step is executed for the first time as described above, the step S73 is executed because the PV is always specified.

ステップS73では電圧近似解より発電機無効電力出力
を求めて、これを発電機無効電力上下限値と比較し、次
に従って処理する。
In step S73, a generator reactive power output is obtained from the approximate voltage solution, and this is compared with the generator reactive power upper and lower limits, and the process is performed as follows.

(1)上限値を逸脱した場合 発電機ノードを P=指定値 Q=上限値 で拘束するように変更し、ノード拘束条件11を更新す
る。
(1) When deviating from the upper limit value The generator node is changed to be constrained by P = specified value Q = upper limit value, and node constraint condition 11 is updated.

(2)下限値を逸脱した場合 発電機ノードを P=指定値 Q=下限値 で拘束するように変更し、ノード拘束条件11を更新す
る。
(2) When deviating from the lower limit value The generator node is changed to be constrained by P = specified value Q = lower limit value, and node constraint condition 11 is updated.

いぞれの場合も、電圧指定値は記憶しておく。 In each case, the specified voltage value is stored.

このようにステップS73でPQ指定に変更された発電機
については、反復近似計算の以降の繰り返しにおいて、
ステップS74が実行される。ステップS74では電圧近似解
をチェックして、端子電圧がステプS73で拘束条件を変
更する前の電圧指定値まで回復したかどうかを判定し、
もし回復していれば、再び初期のPV指定に戻してノード
拘束条件11を更新する。
Thus, for the generator changed to PQ designation in step S73, in the subsequent iteration of the iterative approximation calculation,
Step S74 is executed. In step S74, the voltage approximate solution is checked, and it is determined whether the terminal voltage has recovered to the specified voltage value before changing the constraint condition in step S73,
If it has recovered, it returns to the initial PV designation and updates the node constraint condition 11 again.

上記により、発電機端子電圧は無効電力出力が定格上
下限を逸脱しない範囲で、できるだけ元の指定値を維持
するように保たれる。
As described above, the generator terminal voltage is maintained so as to maintain the original specified value as much as possible within a range where the reactive power output does not deviate from the upper and lower limits of the rating.

以上のような一連の処理により、計算が収束した場
合、計算結果出力処理9が電圧絶対値,位相角,ブラン
チ潮流などと共に、各電圧調整機器の制御量を所定の形
式に編集して出力し、本実施例による計算を終了する。
When the calculation is converged by a series of processes as described above, the calculation result output process 9 edits the control amount of each voltage adjusting device into a predetermined format together with the voltage absolute value, the phase angle, the branch power flow, and outputs the result. Then, the calculation according to the present embodiment ends.

最後に、ステップS51,S61,S71で無効電力残差最大値
をもって調整可能か否かを判定するための判定定数につ
いて、以下に説明する。
Finally, a determination constant for determining whether or not adjustment is possible with the maximum reactive power residual value in steps S51, S61, and S71 will be described below.

これらの定数は一般的に言えば、収束判定定数であっ
て、解の精度が許容できるか否かを判定するための値で
ある。但し、収束判定処理8で用いる収束判定定数より
は、10倍から100倍程度大きな値とした。その理由は、
電圧無効電力不均衡が大きくて収束不能な条件のもと
で、電圧調整機能によって収束解を得るためである。ま
た、各判定定数は値の大小により、電圧調整機器に優先
度を付けることができる。例えば調相設備群調整処理5
におけるステップS51の判定定数を他の2つより大とす
れば、調相設備群の調整効果が支配的となることは本発
明の原理から自明である。そこで本実施例では、各判定
定数はそれぞれ独立に定義することとした。
Generally speaking, these constants are convergence determination constants, and are values for determining whether the accuracy of the solution is acceptable. However, the value is about 10 to 100 times larger than the convergence determination constant used in the convergence determination processing 8. The reason is,
This is because a convergence solution is obtained by the voltage adjustment function under the condition that the voltage reactive power imbalance is large and cannot converge. In addition, each determination constant can be given a priority to the voltage regulator depending on the magnitude of the value. For example, phase adjustment equipment group adjustment processing 5
It is obvious from the principle of the present invention that the adjustment effect of the phase adjustment equipment group becomes dominant if the determination constant in step S51 in is larger than the other two. Therefore, in the present embodiment, each determination constant is defined independently.

[発明の効果] 以上説明したように、本発明によれば電圧無効電力不
均衡に起因する収束困難な条件や、はたして電圧値が適
正かどうか不安のある条件のもとでも、自動的に電圧調
整機器を調整して、適正な電圧解を算出することが可能
となる。
[Effects of the Invention] As described above, according to the present invention, the voltage is automatically adjusted under the condition that the convergence is difficult due to the voltage reactive power imbalance or the condition that the voltage value is uncertain. By adjusting the adjusting device, it is possible to calculate an appropriate voltage solution.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による電圧調整付潮流計算方式の一実施
例を説明するためのフローチャート、第2図は実施例が
計算を行なうためのモデル系統図、第3図は第2図に示
すモデル系統のもとづく計算条件入力データ、第4図は
電力系統における調相合計量と電力総需要の関係を示す
特性図、第5図は調相設備群調整処理の詳細を説明する
ためのフローチャート、第6図は変圧器タップ調整処理
の詳細を説明するためのフローチャート、第7図は発電
機端子電圧調整処理の詳細を説明するためのフローチャ
ートである。 1……計算条件入力処理 2……電圧潮流計算前処理 3……調相設備群制御個所数決定処理 4……反復近似解算出処理 5……調相設備群調整処理 6……変圧器タップ調整処理 7……発電機端子電圧調整処理 8……収束判定処理、9……計算結果出力処理 10……ノードアドミタンス行列 11……ノード拘束条件、12……電圧近似解
FIG. 1 is a flowchart for explaining one embodiment of a power flow calculation method with voltage adjustment according to the present invention, FIG. 2 is a model system diagram for performing calculations in the embodiment, and FIG. 3 is a model diagram shown in FIG. FIG. 4 is a characteristic diagram showing the relationship between the total amount of phase adjustment and the total power demand in the power system, FIG. 5 is a flowchart for explaining details of the phase adjustment equipment group adjustment processing, FIG. FIG. 6 is a flowchart for explaining the details of the transformer tap adjustment process, and FIG. 7 is a flowchart for explaining the details of the generator terminal voltage adjustment process. 1 ... Calculation condition input processing 2 ... Voltage flow calculation preprocessing 3 ... Phase equipment group control number determination processing 4 ... Iterative approximate solution calculation processing 5 ... Phase equipment group adjustment processing 6 ... Transformer tap Adjustment process 7: Generator terminal voltage adjustment process 8: Convergence determination process, 9: Calculation result output process 10: Node admittance matrix 11: Node constraint condition, 12: Approximate voltage solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市川 忠 東京都府中市東芝町1 株式会社東芝府 中工場内 (56)参考文献 特開 昭63−18928(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tadashi Ichikawa 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu factory (56) References JP-A-63-18928 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力系統を構成する各設備の接続状態,運
転状態を入力すると共に、電圧潮流計算前処理にてノー
ド拘束条件及びノードアドミタンス行列を作成し、これ
らの各条件をもとに電力方程式を求め、初期解を始点に
反復近似計算法を用いてこれを解き、重力系統の母線電
圧の大きさと位相角を求める電圧潮流計算方式におい
て、計算条件として与えられた入力データにどの程度の
電圧無効電力不均衡があるかを求め、この量に応じて調
相設備の制御個所数を決定する調相設備群制御個所数決
定手段と、前記反復近似解の誤差が一定値以内に収まっ
たとき、前記反復近似解が母線電圧の運用上下限値を満
足するか否かを判定し、これが満足しない場合には前記
電圧近似解が電圧許容上下限値を満足するように調相設
備群の投入量を予め設定した前記制御個所数を限度にし
て調整すると共に前記ノードアトミタンス行列を変更す
る調相設備群調整手段と、同じく電圧許容上下限値を満
足するように変圧器のタップ位置を調整すると共に前記
ノードアドミタンス行列を変更する変圧器調整手段と、
前記反復近似解より求めた発電機無効電力出力が発電機
定格の範囲を逸脱している場合には、前記定格範囲を逸
脱しないように発電機母線を無効電力出力限界値で拘束
して、これに平衡し得る端子電圧を自動電圧調整器の基
準値として求めると共に前記ノード拘束条件を変更する
発電機端子電圧調整手段とを備えたことを特徴とする電
圧調整付潮流計算方式。
1. A connection state and an operation state of each equipment constituting a power system are inputted, and a node constraint condition and a node admittance matrix are created in a pre-processing of a voltage flow calculation, and a power consumption is calculated based on these conditions. In the voltage power flow calculation method that solves the equation using the iterative approximation calculation method with the initial solution as the starting point and obtains the magnitude and phase angle of the bus voltage of the gravity system, how much input data given as calculation conditions Determines whether there is a voltage reactive power imbalance, determines the number of control points of the phase adjustment equipment according to this amount, and the number of phase control equipment group control point determination means, and the error of the iterative approximate solution is within a certain value. When it is determined whether or not the iterative approximate solution satisfies the operational upper and lower limit value of the bus voltage, if this is not satisfied, the phase adjustment equipment group so that the voltage approximate solution satisfies the voltage allowable upper and lower limit value. Pre-input amount A phase adjustment equipment group adjusting means for adjusting the set number of control points as a limit and changing the node atom matrix, and adjusting a tap position of the transformer so as to satisfy the voltage allowable upper and lower limits. Transformer adjusting means for changing the node admittance matrix;
When the generator reactive power output obtained from the iterative approximate solution is out of the range of the generator rating, the generator bus is constrained by the reactive power output limit value so as not to deviate from the rated range. And a generator terminal voltage adjusting means for obtaining a terminal voltage which can be balanced as a reference value of the automatic voltage regulator and changing the node constraint condition.
JP2192351A 1990-07-20 1990-07-20 Power flow calculation method with voltage adjustment Expired - Lifetime JP2633716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192351A JP2633716B2 (en) 1990-07-20 1990-07-20 Power flow calculation method with voltage adjustment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192351A JP2633716B2 (en) 1990-07-20 1990-07-20 Power flow calculation method with voltage adjustment

Publications (2)

Publication Number Publication Date
JPH0479726A JPH0479726A (en) 1992-03-13
JP2633716B2 true JP2633716B2 (en) 1997-07-23

Family

ID=16289834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192351A Expired - Lifetime JP2633716B2 (en) 1990-07-20 1990-07-20 Power flow calculation method with voltage adjustment

Country Status (1)

Country Link
JP (1) JP2633716B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310632B2 (en) * 1999-06-24 2002-08-05 建生 河村 Optimal Power Flow Calculation System by Nonlinear Programming
GB2410386A (en) * 2004-01-22 2005-07-27 Areva T & D Uk Ltd Controlling reactive power output
CN114552620B (en) * 2022-02-24 2024-10-01 国网安徽省电力有限公司电力科学研究院 Line parameter error allowable range quantification method considering influence of direct current of receiving end

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318928A (en) * 1986-07-08 1988-01-26 三菱電機株式会社 Caluculation system of allotment of compensated reactive power source of convergeon of power flow calculation

Also Published As

Publication number Publication date
JPH0479726A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
Venayagamoorthy et al. Comparison of heuristic dynamic programming and dual heuristic programming adaptive critics for neurocontrol of a turbogenerator
Lim et al. Robust decentralised load–frequency control of multi-area power systems
Astic et al. The mixed Adams-BDF variable step size algorithm to simulate transient and long term phenomena in power systems
EP0256842B1 (en) Adaptive process control system
US4994981A (en) Method and apparatus for controlling a power converter
WO2022121446A1 (en) Control system, reactive voltage control method and device, medium, and calculation device
De Marco et al. Damped nyquist plot for the phase and gain optimization of power system stabilizers
Zandi et al. Voltage control of a quasi Z-source converter under constant power load condition using reinforcement learning
JP2633716B2 (en) Power flow calculation method with voltage adjustment
JPH09131087A (en) Equipment and method for adjusting control gain of servo system
US20250079837A1 (en) Model prediction-based control method for grid forming of multi-port autonomous reconfigurable solar plants
US5606248A (en) Device for desensitized regulation of the stator voltage of an alternator
Setiawan et al. Control strategy based on associative memory networks for a grid-side converter in on-grid renewable generation systems under generalized unbalanced grid voltage conditions
Mohagheghian et al. Synchronous generator excitation system controller design using feedback linearization and H-infinity methods
KR100298867B1 (en) Method for enhancing the damping of the generator and stabilizing the frequency control system by using a modified PID control
CN112688350A (en) Power spring voltage regulation strategy and system based on fractional calculus control and power distribution network
US11916396B2 (en) Systems and methods for control of power generation assets
Nwoke et al. Performance assessment of fractional-order control of non-minimum phase power converter systems
Ray et al. Frequency Domain Tuning of a Fractional Order PI/PID Controller Using Moth-Flame Optimization Algorithm
Radman Design of power system stabilizer based on LQG/LTR formulations
Mondal et al. On Non-Integer Order Internal Model Control of Non-Minimum Phase Systems and Plants with Transport Delay
Mohagheghi et al. Indirect adaptive neurocontrol scheme for a static compensator connected to a power system
Hung Voltage Stability Improvement of Synchronous Generator by Using AVR Self Turning Based on the Adaptive Fuzzy-PID Controller.
Hogg et al. Optimal PID automatic voltage regulator for synchronous machines
JPH0638379A (en) Voltage/reactive power control system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14