JP2631493B2 - Manufacturing method of corrosion resistant permanent magnet - Google Patents
Manufacturing method of corrosion resistant permanent magnetInfo
- Publication number
- JP2631493B2 JP2631493B2 JP63050507A JP5050788A JP2631493B2 JP 2631493 B2 JP2631493 B2 JP 2631493B2 JP 63050507 A JP63050507 A JP 63050507A JP 5050788 A JP5050788 A JP 5050788A JP 2631493 B2 JP2631493 B2 JP 2631493B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- less
- atomic
- plating
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Electroplating Methods And Accessories (AREA)
- Chemical Treatment Of Metals (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】 利用産業分野 この発明は、高磁気特性を有し、かつ耐塩水噴霧性に
すぐれた耐酸化性被膜を有するFe−B−R系永久磁石の
製造方法に係り、特に自動車用磁石如き装着部所により
塩害などの影響を受ける使用条件において、耐塩水性の
すぐれた被膜を有し、実用時の被膜剥離がなく極めて安
定した磁石特性を有する耐食性永久磁石の製造方法に関
する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Fe-BR-based permanent magnet having high magnetic properties and having an oxidation-resistant coating excellent in salt spray resistance, and in particular, The present invention relates to a method for producing a corrosion-resistant permanent magnet having a coating with excellent salt water resistance and having extremely stable magnet properties without coating peeling in practical use under a use condition such as an automobile magnet which is affected by salt damage and the like.
背景技術 先に、NdやPrを中心とする資源的に豊富な軽希土類を
用いてB,Feを主成分とし、高価なSmやCoを必須とせず、
従来の希土類コバルト磁石の最高特性を大幅に越える新
しい高性能永久磁石として、Fe−B−R系永久磁石が提
案されている(特開昭59−46008号公報、特開昭59−894
01号公報)。BACKGROUND ART First, B and Fe are used as main components using lightly rare earths that are resource-rich, mainly Nd and Pr, and expensive Sm and Co are not essential.
Fe-BR-based permanent magnets have been proposed as new high-performance permanent magnets that greatly exceed the highest characteristics of conventional rare-earth cobalt magnets (JP-A-59-46008, JP-A-59-894).
No. 01).
しかしながら、上記のすぐれた磁気特性を有するFe−
B−R系磁気異方性焼結体からなる永久磁石は主成分と
して、空気中で酸化し次第に安定な酸化物を生成し易い
希土類元素及び鉄を大量に含有するため、磁気回路に組
込んだ場合に、磁石表面に生成する酸化物により、磁気
回路の出力低下及び磁気回路間のばらつきを惹起し、ま
た、表面酸化物の脱落による周辺機器への汚染の問題が
あった。However, Fe-
Permanent magnets made of BR-based magnetically anisotropic sintered bodies contain a large amount of rare earth elements and iron, which are easily oxidized in the air and gradually produce stable oxides. In such a case, the oxides generated on the surface of the magnet cause a decrease in the output of the magnetic circuit and variations between the magnetic circuits, and there is a problem of contamination of peripheral devices due to the loss of the surface oxide.
従来技術の問題点 上記のFe−B−R系永久磁石の耐食性の改善のため、
磁石体表面に無電解めっき法あるいは電解めっき法によ
り耐食性金属めっき層を被覆した永久磁石(特開昭60−
54406号)、及び磁石体表面に耐酸化性被膜と樹脂層を
積層した耐酸化性のすぐれた永久磁石(特開昭60−6390
2号)が提案されているが、このめっき法では、めっき
の前処理方法として酸性溶液またはアルカリ溶液を用い
ており、永久磁石体が焼結体で有孔性のため、この孔内
にめっき前処理での酸性溶液またはアルカリ溶液が残留
し、経年変化とともに腐食する恐れがあった。Problems of the prior art To improve the corrosion resistance of the above Fe-BR permanent magnet,
A permanent magnet in which the surface of a magnet body is coated with a corrosion-resistant metal plating layer by an electroless plating method or an electrolytic plating method (JP-A-60-1985)
No. 54406) and a permanent magnet having excellent oxidation resistance obtained by laminating an oxidation-resistant coating and a resin layer on the surface of a magnet body (JP-A-60-6390).
No. 2) has been proposed, but in this plating method, an acidic solution or an alkaline solution is used as a pretreatment method for plating, and since the permanent magnet body is a sintered body and is porous, plating is performed in this hole. An acidic solution or an alkaline solution remained in the pretreatment, and there was a possibility of corrosion with aging.
また、焼結磁石体表面に、黒皮、酸化層等の金属性異
物が存在するため、めっきの不均一性、密着性、防食性
が劣る問題があり、さらに、磁石体の耐薬品性が劣るた
め、めっき時に磁石表面が腐食される問題がある。In addition, since there are metallic foreign substances such as black scales and oxide layers on the surface of the sintered magnet body, there is a problem that plating nonuniformity, adhesion and corrosion resistance are inferior. Inferior, there is a problem that the magnet surface is corroded during plating.
また、温度125℃、相対湿度85%の雰囲気中に長時間
放置(P・C・T試験)した際に、耐酸化性皮膜が剥離
して、試験後の磁石特性が初期磁石特性より劣化し、特
性が不安定であった。In addition, when left in an atmosphere at a temperature of 125 ° C and a relative humidity of 85% for a long time (PC / T test), the oxidation-resistant coating peels off, and the magnet properties after the test deteriorate from the initial magnet properties. The characteristics were unstable.
さらに、後者の磁石体表面には化成被膜と樹脂層を積
層した耐酸化性の永久磁石は塩水噴霧試験において、10
0時間以下にて発錆する問題があった。Further, an oxidation-resistant permanent magnet formed by laminating a conversion coating and a resin layer on the surface of the magnet body was tested in a salt spray test for 10 minutes.
There was a problem of rusting in less than 0 hours.
発明の目的 この発明は、Fe−B−R系永久磁石に設けた耐塩水性
被膜の密着性を改善し、前記の実用上の問題を解消する
ことを目的とし、特に、JIS Z 2371に準拠する塩水噴霧
試験(SMT)を含む、恒温恒湿サイクルテスト(C・C
・T)を行なった場合において、耐塩水性被膜が剥離す
ることなく初期特性からの劣化が少なく、ZnもしくはZn
合金めっきからの白錆の発生また、白錆の脱落を防止
し、安定した高磁石特性を有するFe−B−R系永久磁石
を安価に提供できる製造方法を目的としている 発明の構成 この発明は、Fe−B−R系永久磁石に設けた耐酸化性
皮膜のすぐれた密着性、特に、塩水噴霧試験を含む恒温
恒湿サイクルテストにおいて、また、温度125℃、相対
湿度85%の雰囲気条件下で長時間放置した場合において
も、その密着性は劣化せず、耐酸化性被膜の剥離のない
安定したFe−B−R系永久磁石を目的に、永久磁石の表
面処理について種々検討した結果、特定成分を有するFe
−B−R系焼結永久磁石表面を、ショットブラスト処理
にて清浄化したのち、電解めっきによりZnあるいはZn合
金を被覆した後、クロメート処理を施し、さらに、耐酸
化樹脂を積層することにより、すぐれた密着性を有し、
極めて耐食性のすぐれた安定した磁石特性が得られるこ
とを知見し、この発明を完成した。Object of the Invention The present invention aims to improve the adhesion of the salt water resistant coating provided on the Fe-BR permanent magnet and to solve the above-mentioned practical problems, and in particular, conforms to JIS Z 2371. Constant temperature and humidity cycle test (CC ・ C) including salt spray test (SMT)
-In the case of performing T), the salt water resistant coating is not peeled off, the deterioration from the initial characteristics is small, and Zn or Zn
The present invention aims at a production method capable of preventing the generation of white rust from alloy plating and preventing the white rust from falling off and providing an Fe-BR-based permanent magnet having stable high magnet properties at low cost. Excellent adhesion of the oxidation-resistant coating provided on the Fe-BR-based permanent magnet, especially in a constant-temperature and constant-humidity cycle test including a salt spray test, and at ambient conditions of a temperature of 125 ° C and a relative humidity of 85% Even if left for a long time, its adhesion does not deteriorate, and for the purpose of a stable Fe-BR-based permanent magnet without peeling of the oxidation resistant film, as a result of various studies on the surface treatment of the permanent magnet, Fe with specific components
After cleaning the surface of the -BR type sintered permanent magnet by shot blasting, after coating Zn or Zn alloy by electrolytic plating, performing chromate treatment, and further laminating an oxidation resistant resin, Has excellent adhesion,
The inventors have found that stable and excellent magnet properties with excellent corrosion resistance can be obtained, and have completed the present invention.
すなわち、この発明は、 R(RはNd、Pr、Dy、Ho、Tbのうち少なくとも1種あ
るいはさらに、La、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、
Yのうち少なくとも1種からなる)10%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相
からなる焼結永久磁石体表面を、 ショットブラスト処理して清浄化、すなわち、 磁石体表面に、平均粒径20μm〜350μm、モース硬
度5以上の粉末の少なくとも1種からなる硬質粉末を、 圧力1.0kg/cm2〜6.0kg/cm2の加圧気体とともに、0.5
分〜60分間噴射し、 前記磁石体表面の酸化層や加工歪層を除去した後、 電解めっき法により、ZnあるいはZn合金の金属層を単
層又は積層して形成した後、 前記金属層上にクロメート処理し、 さらに、所要濃度に不揮発残分を低減した樹脂溶液に
浸漬または電着塗装、あるいは樹脂塗装して耐酸化樹脂
層を形成することを特徴とする耐食性永久磁石の製造方
法である。That is, the present invention relates to R (R is at least one of Nd, Pr, Dy, Ho, and Tb, or La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu,
The surface of the sintered permanent magnet body mainly composed of 10% to 30% by atom, B2% to 28% by atom, and 65% to 80% by atom of Fe, and the main phase is a tetragonal phase Is cleaned by shot blasting, that is, a hard powder composed of at least one powder having an average particle size of 20 μm to 350 μm and a Mohs hardness of 5 or more is applied to the surface of the magnet body at a pressure of 1.0 kg / cm 2 to 6.0 kg / of pressurized gas with cm 2, 0.5
Min to 60 minutes, after removing the oxidized layer and the work strain layer on the surface of the magnet body, and then forming a single layer or a laminated metal layer of Zn or Zn alloy by an electrolytic plating method, on the metal layer A method for producing a corrosion-resistant permanent magnet, characterized by forming a oxidation-resistant resin layer by dipping or electrodeposition coating in a resin solution in which the non-volatile residue is reduced to a required concentration, or by resin coating. .
発明の効果 この発明の製造方法によると、磁石を温度35℃、濃度
5%の食塩水を噴霧した状態の中に長時間放置した際、
樹脂及び金属被覆層からなる耐塩水性被膜の白錆の発
生、脱落が防止され、膜密着性の劣化がない、実用性の
高いFe−B−R系永久磁石が得られる。Effects of the Invention According to the manufacturing method of the present invention, when the magnet is left for a long time in a state of spraying a salt solution having a temperature of 35 ° C. and a concentration of 5%,
It is possible to obtain a highly practical Fe-BR-based permanent magnet in which the generation and detachment of white rust of the salt water-resistant coating composed of the resin and the metal coating layer are prevented, and the film adhesion is not deteriorated.
ところで、前記Fe−B−R系焼結磁石体表面に、Znも
しくはZn合金の金属層を被着し、クロメート処理を施し
た従来方法の場合は、焼結磁石体表面に残存する黒皮、
あるいは加工層により、耐食性試験前の粘着テープによ
る被膜剥離試験において、被膜が簡単に剥離する問題
と、恒温恒湿試験(60℃×90%)において発生する白錆
が脱落し、被膜の密着性が劣化する問題があった。By the way, in the case of the conventional method in which a metal layer of Zn or a Zn alloy is applied to the surface of the Fe-BR based sintered magnet body and subjected to chromate treatment, black scale remaining on the surface of the sintered magnet body,
Or, depending on the processed layer, in the film peeling test using an adhesive tape before the corrosion resistance test, the problem that the film easily peels off, and the white rust generated in the constant temperature and humidity test (60 ° C x 90%) drops off, and the adhesion of the film Had a problem of deterioration.
しかし、この発明において、前記焼結磁石体表面に、
ZnもしくはZn合金の金属層を電解めっきする前に、前記
焼結磁石体表面にショットブラスト処理を施し、また、
前記金属層の形成後にクロメート処理し、さらにその上
に樹脂層を含浸もしくは塗布にて形成することによっ
て、単に清浄化された磁石体表面にめっきする場合と比
較して、めっき膜の初期密着性は向上するとともに、白
錆発生時間を大幅に遅延することができ、さらに、発生
した白錆を樹脂により固定化し、湿気,ガス等の外部環
境の変化に対して、永久磁石を完全に保護することがで
きる。However, in the present invention, on the surface of the sintered magnet body,
Before electroplating a metal layer of Zn or Zn alloy, the surface of the sintered magnet body is subjected to a shot blast treatment,
By performing a chromate treatment after the formation of the metal layer and further impregnating or applying a resin layer thereon, the initial adhesion of the plating film as compared with the case of simply plating the cleaned magnet body surface The rust generation time can be greatly delayed, and the generated white rust can be fixed with resin to completely protect the permanent magnet against changes in the external environment such as humidity and gas. be able to.
発明の構成 この発明のショットブラスト条件において、モース硬
度5以上の硬質粉末としては、Al2O3系、炭化けい素
系、ZrO2系、炭化硼素系、ガーネット系等の粉末が利用
でき、特に、硬度の高いAl2O3系粉末が好ましく、粉末
形状としては不定形のものが好ましい。Constitution of the invention Under the shot blast condition of the present invention, as the hard powder having a Mohs hardness of 5 or more, powders of Al 2 O 3 system, silicon carbide system, ZrO 2 system, boron carbide system, garnet system, etc. can be used. high Al 2 O 3 system powder are preferred hardness, as the powder form that amorphous are preferred.
ショットブラスト用硬質粉末のモース硬度が、5未満
では研削力が小さすぎて、研削処理時間に長時間を要し
て好ましくない。If the Mohs hardness of the hard powder for shot blasting is less than 5, the grinding power is too small, and the grinding process takes a long time, which is not preferable.
また、硬質粉末の平均粒度を20μm〜350μmとする
のは、20μm未満では、研削力が小さすぎて研削に長時
間を要し、また、350μmを超えると、焼結磁石体表面
の面粗度が粗くなりすぎ、研削量が不均一となり、好ま
しくない。When the average particle size of the hard powder is set to 20 μm to 350 μm, if the average particle size is less than 20 μm, the grinding force is too small and a long time is required for grinding, and if it exceeds 350 μm, the surface roughness of the surface of the sintered magnet body is increased. Is too coarse, and the grinding amount is not uniform, which is not preferable.
硬質粉末の噴射条件としては、圧力が1.0kg/cm2未満
では、研削処理に長時間を要し、また圧力が6.0kg/cm2
を超えると磁石体表面の研削量が不均一となり、面粗度
の悪化が懸念される。When the pressure of the hard powder is less than 1.0 kg / cm 2 , the grinding process requires a long time, and the pressure is 6.0 kg / cm 2.
If it exceeds, the amount of grinding of the magnet body surface becomes non-uniform, and there is a concern that the surface roughness may deteriorate.
さらに、噴射時間が0.5分間未満では、研削量が少な
くなり、かつ不均一になり、また、60分を超えると磁石
体表面の研削量が多くなり、面粗度が悪化して好ましく
ない。Further, if the injection time is less than 0.5 minute, the amount of grinding becomes small and non-uniform, and if it exceeds 60 minutes, the amount of grinding on the surface of the magnet body becomes large and the surface roughness is unfavorably deteriorated.
また、硬質粉末の噴射用加圧流体としては、空気ある
いはAr、N2ガス等の不活性ガスが利用できるが、磁石体
の酸化防止のためには、不活性ガスが好ましく、また、
空気を用いる場合は、除湿を行なった空気が望ましい。As the pressurized fluid for injection of the hard powder, air or an inert gas such as Ar or N 2 gas can be used.In order to prevent oxidation of the magnet body, an inert gas is preferable.
When air is used, dehumidified air is desirable.
ショットブラスト処理により除去すべき表面層の厚み
は10μm〜20μmが好ましく、また得られる磁石体の面
粗度としては1μm〜3μmが好ましい。The thickness of the surface layer to be removed by the shot blasting is preferably 10 μm to 20 μm, and the surface roughness of the obtained magnet body is preferably 1 μm to 3 μm.
この発明において、電解めっき法により、ショットブ
ラスト処理した磁石体表面にZnまたはZn合金めっきを単
層に被覆するか、またはZn合金めっき上にZnめっき層を
積層して被覆する。In the present invention, a single layer of Zn or a Zn alloy plating is coated on the surface of the shot-blasted magnet body by electrolytic plating, or a Zn plating layer is laminated and coated on the Zn alloy plating.
Zn合金層としては、 Zn−Ni合金の場合、Niの含有率が5〜20wt%が好まし
く、 Zn−Co合金の場合、Coの含有率が0.5〜1wt%が好まし
く、 Zn−Cr合金の場合は、Crの含有率が1wt%以下が好ま
しく、 また、Zn−Fe合金の場合にはFeの含有率が5wt%〜30w
t%が好ましい。As the Zn alloy layer, in the case of a Zn-Ni alloy, the Ni content is preferably 5 to 20 wt%, in the case of a Zn-Co alloy, the Co content is preferably 0.5 to 1 wt%, and in the case of a Zn-Cr alloy, The Cr content is preferably 1 wt% or less, and in the case of a Zn—Fe alloy, the Fe content is 5 wt% to 30 watts.
t% is preferred.
電解めっきを行なうためのめっき液のpHは、pH3〜10
のものを用い、浴組成は硫酸酸性浴、塩化アンモニウム
浴が好ましい。The pH of the plating solution for performing electroplating is pH 3 to 10
The bath composition is preferably a sulfuric acid acidic bath or an ammonium chloride bath.
また、めっき層のつき回りを改善すべくゼラチンやデ
モストリン等の高分子を添加し、その他のpH調製用の試
薬などを混合する。Further, a polymer such as gelatin or demostrin is added to improve the throwing power of the plating layer, and other pH adjusting reagents and the like are mixed.
この発明においては、ショットブラストにより、焼結
磁石体表面に残存する黒皮あるいは加工層などを物理的
に除去するため、従来法の如き酸性、アルカリ性溶液に
よる前処理による劣化がない。In the present invention, shot blasting physically removes black scales or processed layers remaining on the surface of the sintered magnet body, so that there is no deterioration due to pretreatment with an acidic or alkaline solution as in the conventional method.
めっきの膜厚は、15μm以下の厚みに被着されるのが
好ましく、さらに好ましくは、Zn−Niめっきを3〜5μ
m厚みとなしたのち、1μm厚み以下のZnめっきを施
す。The thickness of the plating is preferably 15 μm or less, more preferably 3-5 μm of Zn-Ni plating.
After having a thickness of m, Zn plating of 1 μm or less is applied.
前記Znめっき後に、硝酸1〜5vol%を用いて、10〜30
秒間の浸漬処理後、水洗し、直ちにクロメート処理を行
なう。After the Zn plating, 10 to 30 vol.
After immersion treatment for 2 seconds, it is washed with water and immediately subjected to chromate treatment.
このクロメート溶液は、クロム量が1〜20g/l、その
他硫酸、硝酸、酢酸、リン酸などを含む。This chromate solution has a chromium content of 1 to 20 g / l and further contains sulfuric acid, nitric acid, acetic acid, phosphoric acid, and the like.
クロメート被膜層としては、0.1μm以下の厚みがよ
い。The thickness of the chromate coating layer is preferably 0.1 μm or less.
また、この発明において、クロメート被膜層に塗布す
る樹脂としては、エポキシ樹脂、フッ素樹脂、熱硬化型
アクリル樹脂、フェノール樹脂、メラミン樹脂、シリコ
ン樹脂等の塗料用樹脂を用い、固形樹脂含量を5wt%〜2
0wt%とし、溶剤にて希釈することにより、クロメート
被膜への浸透性の効果を大きくすることができる。In the present invention, the resin to be applied to the chromate coating layer is a coating resin such as an epoxy resin, a fluororesin, a thermosetting acrylic resin, a phenol resin, a melamine resin, and a silicone resin. The solid resin content is 5 wt%. ~ 2
By making it 0 wt% and diluting with a solvent, the effect of permeability to the chromate film can be increased.
前記樹脂液の固形樹脂含量が、5wt%未満では焼結磁
石体のクロメート被膜面に形成の樹脂層が薄く、耐食性
の効果が少なく、また、20wt%を超えると、樹脂溶液の
粘性が大きくなり、クロメート被膜への浸透性が低下
し、耐食性を劣化するので好ましくない。If the solid resin content of the resin liquid is less than 5 wt%, the resin layer formed on the chromate coating surface of the sintered magnet body is thin and the corrosion resistance effect is small, and if it exceeds 20 wt%, the viscosity of the resin solution increases. This is not preferable because the permeability to the chromate film decreases and the corrosion resistance deteriorates.
クロメート被膜層への塗布は、前記樹脂溶液を真空含
浸、浸漬法、スプレー法等により、焼結磁石体のクロメ
ート被膜層に塗布したのち、焼き付けるものであるが、
この樹脂層1μm以上塗布することにより、耐湿性は向
上するが、すぐれた寸法精度を得るためには5μm以下
の厚みとすることが好ましい。The application to the chromate coating layer is performed by vacuum impregnation of the resin solution, by a dipping method, a spraying method, etc., after applying to the chromate coating layer of the sintered magnet body, followed by baking.
By applying this resin layer at a thickness of 1 μm or more, the moisture resistance is improved, but in order to obtain excellent dimensional accuracy, the thickness is preferably 5 μm or less.
永久磁石の成分限定理由 この発明の永久磁石に用いる希土類元素Rは、組成の
10原子%〜30原子%を占めるが、Nd、Pr、Dy、Ho、Tbの
うち少なくとも1種、あるいはさらに、La、Ce、Sm、G
d、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含
むものが好ましい。Reasons for Limiting Components of Permanent Magnet The rare earth element R used in the permanent magnet of the present invention has a composition
Occupies at least 10 at% to 30 at%, but at least one of Nd, Pr, Dy, Ho, and Tb, or further, La, Ce, Sm, G
Those containing at least one of d, Er, Eu, Tm, Yb, Lu, and Y are preferable.
また、通常Rのうち1種をもって足りるが、実用上は
2種以上の混合物(ミッシュメタル,ジジム等)を入手
上の便宜等の理由により用いることができる。Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining.
なお、このRは純希土類元素でなくてもよく、工業上
入手可能な範囲で製造上不可避な不純物を含有するもの
でも差支えない。Note that R may not be a pure rare earth element, and may contain impurities which are unavoidable in production within the industrially available range.
Rは、上記系永久磁石における、必須元素であって、
10原子%未満では、結晶構造がα−鉄と同一構造の立方
晶組織となるため、高磁気特性、特に高保磁力が得られ
ず、30原子%を越えると、Rリッチな非磁性相が多くな
り、残留磁束密度(Br)が低下して、すぐれた特性の永
久磁石が得られない。よって、希土類元素は、10原子%
〜30原子%の範囲とする。R is an essential element in the above permanent magnet,
If the content is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as that of α-iron, so that high magnetic properties, particularly high coercive force cannot be obtained. As a result, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, the rare earth element is 10 atomic%
Within the range of 30 atomic%.
Bは、この発明による永久磁石における、必須元素で
あって、2原子%未満では、菱面体構造が主相となり、
高い保磁力(iHc)は得られず、28原子%を越えると、
Bリッチな非磁性相が多くなり、残留磁束密度(Br)が
低下するため、すぐれた永久磁石が得られない。よっ
て、Bは、2原子%〜28原子%の範囲とする。B is an essential element in the permanent magnet according to the present invention, and if less than 2 atomic%, the rhombohedral structure becomes the main phase,
High coercive force (iHc) cannot be obtained.
Since a B-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 to 28 atomic%.
Feは、上記系永久磁石において、必須元素であり、65
原子%未満では残留磁束密度(Br)が低下し、80原子%
を越えると、高い保磁力が得られないので、Feは65原子
%〜80原子%の含有とする。Fe is an essential element in the above permanent magnets, and 65
If it is less than 80 atomic%, the residual magnetic flux density (Br) decreases,
If Fe exceeds 3, a high coercive force cannot be obtained, so Fe is contained in an amount of 65 to 80 atomic%.
また、この発明の永久磁石において、Feの一部をCoで
置換することは、得られる磁石の磁気特性を損うことな
く、温度特性を改善することができるが、Co置換量がFe
の20%を越えると、逆に磁気特性が劣化するため、好ま
しくない。Coの置換量がFeとCoの合計量で5原子%〜15
原子%の場合は、(Br)は置換しない場合に比較して増
加するため、高磁束密度を得るために好ましい。Further, in the permanent magnet of the present invention, substituting part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet, but the amount of Co substitution is reduced by Fe.
If it exceeds 20%, the magnetic characteristics deteriorate, which is not preferable. The substitution amount of Co is 5 atomic% to 15 in the total amount of Fe and Co.
In the case of atomic%, since (Br) increases as compared with the case without substitution, it is preferable to obtain a high magnetic flux density.
また、この発明の永久磁石は、R,B,Feの他、工業的生
産上、不可避的不純物の存在を許容できる。Further, the permanent magnet of the present invention can tolerate the presence of unavoidable impurities in industrial production in addition to R, B, and Fe.
例えば、Bの一部を4.0原子%以下のC、3.5原子%以
下のP、2.5原子%以下のS、3.5原子%以下のCuのうち
少なくとも1種、合計量で4.0原子%以下で置換するこ
とにより、永久磁石の製造性改善、低価格化が可能であ
る。For example, part of B is replaced with at least one of C of 4.0 atomic% or less, P of 3.5 atomic% or less, S of 2.5 atomic% or less, and Cu of 3.5 atomic% or less, with a total amount of 4.0 atomic% or less. As a result, the productivity of the permanent magnet can be improved and the price can be reduced.
また、下記添加元素のうち少なくとも1種は、Fe−B
−R系永久磁石に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。Further, at least one of the following additional elements is Fe-B
-It can be added to the R-based permanent magnet because it has an effect of improving the coercive force and the squareness of the demagnetization curve, improving the productivity, and reducing the price.
9.5原子%以下のAl、4.5原子%以下のTi、 9.5原子%以下のV、8.5原子%以下のCr、 8.0原子%以下のMn、5.0原子%以下のBi、 9.5原子%以下のNb、9.5原子%以下のTa、 9.5原子%以下のMo、9.5原子%以下のW、 2.5原子%以下のSb、7原子%以下のGe、 3.5原子%以下のSn、5.5原子%以下のZr、 9.0原子%以下のNi、9.0原子%以下のSi、 1.1原子%以下のZn、5.5原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下を含有させることにより、
永久磁石の高保磁力化が可能になる。9.5 at% or less Al, 4.5 at% or less Ti, 9.5 at% or less V, 8.5 at% or less Cr, 8.0 at% or less Mn, 5.0 at% or less Bi, 9.5 at% or less Nb, 9.5 at% or less Atomic% or less Ta, 9.5 atomic% or less Mo, 9.5 atomic% or less W, 2.5 atomic% or less Sb, 7 atomic% or less Ge, 3.5 atomic% or less Sn, 5.5 atomic% or less Zr, 9.0 atomic % Or less of Ni, 9.0 at% or less of Si, 1.1 at% or less of Zn, and 5.5 at% or less of Hf. However, when two or more kinds are contained, the maximum content is By containing at most atomic% of the additive element having the maximum value,
It is possible to increase the coercive force of the permanent magnet.
結晶相は主相が正方晶であることが、微細で均一な合
金粉末より、すぐれた磁気特性を有する焼結永久磁石を
作製するのに不可欠である。It is indispensable that the main phase of the crystal phase be tetragonal in order to produce a sintered permanent magnet having better magnetic properties than a fine and uniform alloy powder.
また、この発明の永久磁石は平均結晶粒径が1〜80μ
mの範囲にある正方晶系の結晶構造を有する化合物を主
相とし、体積比で1%〜50%の非磁性相(酸化物相を除
く)を含むことを特徴とする。The permanent magnet of the present invention has an average crystal grain size of 1 to 80 μm.
A compound having a tetragonal crystal structure in the range of m as a main phase and containing a nonmagnetic phase (excluding an oxide phase) of 1% to 50% by volume.
この発明による永久磁石は、保磁力iHc≧1kOe、残留
磁束密度Br>4kG、を示し、最大エネルギー積(BH)max
は、(BH)max≧10MGOeを示し、最大値は25MGOe以上に
達する。The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH) max
Indicates (BH) max ≧ 10MGOe, and the maximum value reaches 25MGOe or more.
また、この発明による永久磁石のRの主成分が、その
50%以上をNd及びPrを主とする軽希土類金属が占める場
合で、R12原子%〜20原子%、B4原子%〜24原子%、Fe7
4原子%〜80原子%、を主成分とするとき、(BH)max35
MGOe以上のすぐれた磁気特性を示し、特に軽希土類金属
がNdの場合には、その最大値が45MGOe以上に達する。The main component of R of the permanent magnet according to the present invention is
In the case where 50% or more is occupied by light rare earth metals mainly composed of Nd and Pr, R12 atomic% to 20 atomic%, B4 atomic% to 24 atomic%, Fe7
When 4 atomic% to 80 atomic% is the main component, (BH) max35
It shows excellent magnetic properties higher than MGOe, especially when the light rare earth metal is Nd, its maximum value reaches 45MGOe or more.
また、この発明において、80℃、相対湿度90%の環境
に、500時間以上の長時間放置する耐食試験で、極めて
高い耐食性を示す永久磁石として、Nd11at%〜15at%、
Dy0.2at%〜3.0at%、かつNdとDyの総量が12at%〜17at
%であり、B5at%〜8at%、Co0.5at%〜13at%、Al0.5a
t%〜4at%、C1000ppm以下を含有し、残部Fe及び不可避
的不純物からなる場合が好ましい。Further, in the present invention, in a corrosion resistance test in which an environment of 80 ° C. and a relative humidity of 90% is left for 500 hours or more for a long time, as permanent magnets exhibiting extremely high corrosion resistance, Nd 11 at% to 15 at%,
Dy0.2at% ~ 3.0at%, and the total amount of Nd and Dy is 12at% ~ 17at
%, B5at% ~ 8at%, Co0.5at% ~ 13at%, Al0.5a
It is preferable that the composition contains t% to 4 at%, C is 1000 ppm or less, and the balance is Fe and unavoidable impurities.
実 施 例 以下に、実施例及び比較例によりこの発明を説明す
る。EXAMPLES Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
出発原料として、純度99.9%の電解鉄、B19.4%含有
のフェロボロン合金、純度99.7%以上のNd、Dyを使用
し、これらを配合した後、高周波溶解して鋳造し、14Nd
−0.5Dy−7B−78.5Feなる組成(at%)の鋳塊を得た。As starting materials, 99.9% pure electrolytic iron, ferroboron alloy containing 19.4% B, Nd and Dy with a purity of 99.7% or more are used.
An ingot having a composition (at%) of -0.5Dy-7B-78.5Fe was obtained.
その後、この鋳塊を微粉砕し、平均粒度3μmの微粉
砕粉を得た。Thereafter, the ingot was finely pulverized to obtain a finely pulverized powder having an average particle size of 3 μm.
この微粉砕粉をプレス装置の金型に装入し、12kOeの
磁界中で配向し、磁界に平行方向に1.5ton/cm2の圧力で
形成して、得られた成形体を1100℃、2時間、Ar雰囲気
中の条件で焼結後、さらにAr雰囲気中で800℃×1時
間、575℃×1時間の2段時効処理を行ない、径12mm×
厚み2mm寸法の試験片を作成した。This finely pulverized powder is charged into a mold of a press device, oriented in a magnetic field of 12 kOe, and formed at a pressure of 1.5 ton / cm 2 in a direction parallel to the magnetic field. After sintering under the condition of Ar atmosphere for 2 hours, further aging treatment of 800 ° C x 1 hour and 575 ° C x 1 hour is performed in Ar atmosphere, diameter 12mm x
A test piece having a thickness of 2 mm was prepared.
次に、この磁石体に平均粒径100μmのAl2O3粉末を、
圧力2.0kg/cm2の除湿清浄空気とともに20分間噴射し、
表面の酸化層、加工歪層を約17μm厚み除去し、面粗度
が約1〜3μm程度となるようにした後、Zn−Ni合金め
っきを行なった。Next, Al 2 O 3 powder having an average particle size of 100 μm was
It injected 20 minutes with dehumidified clean air pressure 2.0 kg / cm 2,
The oxide layer and the work strain layer on the surface were removed to a thickness of about 17 μm, the surface roughness was adjusted to about 1 to 3 μm, and then Zn-Ni alloy plating was performed.
このZn−Ni合金めっきは、塩化亜鉛70g/l、塩化ニッ
ケル95g/l、塩化アンモニウム235g/l、その他光沢剤と
して、ナフタリンスルフォン酸ソーダー、ゼラチン等を
添加し、pH調製剤として、アンモニア水を用いて、第1
表の如きpH条件に調製する。This Zn-Ni alloy plating is performed by adding 70 g / l of zinc chloride, 95 g / l of nickel chloride, 235 g / l of ammonium chloride, sodium naphthalene sulfonate, gelatin and the like as a brightener, and ammonia water as a pH adjuster. Using the first
Adjust to pH conditions as shown in the table.
このZn−Ni合金めっき浴に前記磁石試験片を、第1表
の如き温度、めっき条件にて電解したのち、直ちに水洗
してZnめっきを行なった。The magnet test piece was electrolyzed in the Zn-Ni alloy plating bath at the temperature and plating conditions shown in Table 1 and immediately washed with water to perform Zn plating.
このZnめっきは、硫酸亜鉛410g/l、塩化アルミニウム
20g/l、硫酸ナトリウム75g/l、その他つき回りを向上さ
せるためにデキストリン、チオ尿素、サッカリンナトリ
ウム、硼酸などを添加し、pH調製剤として、硫酸を用い
て、第1表の如きpH条件に調製する。This Zn plating is zinc sulfate 410g / l, aluminum chloride
20g / l, sodium sulfate 75g / l, other dextrin, thiourea, sodium saccharin, boric acid, etc. are added to improve the throwing power. Using sulfuric acid as a pH adjuster, adjust to pH conditions as shown in Table 1. I do.
このZnめっき浴にてZn−Ni合金めっきを施した前記磁
石試験片を、第1表の如き温度、めっき条件にて電解し
たのち、直ちに水洗し、希硝酸(2vol%)に10〜30秒間
浸漬処理後、クロメート処理を行なう。The magnet test piece plated with Zn-Ni alloy in this Zn plating bath was electrolyzed at the temperature and plating conditions as shown in Table 1, immediately washed with water, and immersed in dilute nitric acid (2 vol%) for 10 to 30 seconds. After the immersion treatment, a chromate treatment is performed.
このクロメート液は、無水クロム酸10〜30g/lにリン
酸等を添加した液で30秒〜60秒処理する。This chromate solution is treated with a solution obtained by adding phosphoric acid or the like to 10 to 30 g / l of chromic anhydride for 30 to 60 seconds.
得られた磁石のZn−Ni合金膜、Zn膜を第1表に示す。 Table 1 shows Zn-Ni alloy films and Zn films of the obtained magnets.
さらに、前記磁石試験片を溶剤にて洗浄し乾燥させた
後、不揮発残部10wt%のシリコン樹脂溶液中に浸漬し、
磁石体表面に被着させて150℃で1時間の焼付けを施
し、クロメート被膜上に1〜5μmの耐酸化性樹脂を設
けた。Further, the magnet test piece was washed with a solvent and dried, and then immersed in a non-volatile residue 10 wt% silicone resin solution.
The coating was applied to the surface of the magnet body and baked at 150 ° C. for 1 hour, and an oxidation resistant resin of 1 to 5 μm was provided on the chromate film.
前記試験片に耐湿性試験を行ない、その結果を第1表
に表す。The test piece was subjected to a moisture resistance test, and the results are shown in Table 1.
比較例として、実施例1と同一組成の試験片を用い、
電解めっき被膜層を形成する前のショットブラスト処理
を行なわずに、焼結磁石体表面にZn−Ni合金電解めっき
層を形成した場合の耐塩水性試験、耐湿性試験を行な
い、その結果を第1表に表す。As a comparative example, a test piece having the same composition as in Example 1 was used.
A salt water test and a moisture resistance test were performed when a Zn—Ni alloy electrolytic plating layer was formed on the surface of the sintered magnet without performing shot blasting before forming the electrolytic plating film layer. Shown in the table.
第1表において、塩水噴霧試験(S・M・T)はJIS
Z 2371に準拠して、35℃の5%NaCl溶液の条件下及び温
度60℃、相対温度90%の条件での試験片の劣化状況を示
す。また密着性試験は、前記耐湿性試験後、碁盤目試験
にて評価し、接着強度試験はJIS 6852に準拠した。In Table 1, the salt spray test (SMT) is based on JIS
FIG. 6 shows the deterioration of the test piece under the conditions of a 5% NaCl solution at 35 ° C. and at a temperature of 60 ° C. and a relative temperature of 90% in accordance with Z 2371. The adhesion test was performed by a cross-cut test after the moisture resistance test, and the adhesion strength test was based on JIS 6852.
Claims (1)
とも1種あるいはさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種からなる)10原子
%〜30原子%、 B2原子%〜28原子%、 Fe65原子%〜80原子%を主成分とし、主相が正方晶相か
らなる焼結永久磁石体表面を、 ショットブラスト処理して清浄化した後、 電解めっき法によりZnまたはZn合金を単層あるいは積層
被覆した後、 前記金属層上にクロメート処理し、 さらに、耐酸化樹脂層を形成することを特徴とする耐食
性永久磁石の製造方法。1. R (R is at least one of Nd, Pr, Dy, Ho, Tb or La, Ce, Sm, Gd, Er, Eu, T
m, Yb, Lu, and Y) at least 10 at% to 30 at%, B 2 at% to 28 at%, Fe 65 at% to 80 at%, and the main phase is from tetragonal phase After the surface of the sintered permanent magnet body is cleaned by shot blasting, Zn or a Zn alloy is coated in a single layer or a laminated layer by electrolytic plating, and then the metal layer is subjected to chromate treatment. A method for producing a corrosion-resistant permanent magnet, comprising forming a layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63050507A JP2631493B2 (en) | 1988-03-03 | 1988-03-03 | Manufacturing method of corrosion resistant permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63050507A JP2631493B2 (en) | 1988-03-03 | 1988-03-03 | Manufacturing method of corrosion resistant permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01223712A JPH01223712A (en) | 1989-09-06 |
JP2631493B2 true JP2631493B2 (en) | 1997-07-16 |
Family
ID=12860872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63050507A Expired - Lifetime JP2631493B2 (en) | 1988-03-03 | 1988-03-03 | Manufacturing method of corrosion resistant permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2631493B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4600627B2 (en) * | 2001-06-14 | 2010-12-15 | 信越化学工業株式会社 | Rare earth permanent magnet manufacturing method |
JP7137531B2 (en) * | 2019-06-04 | 2022-09-14 | 株式会社鷺宮製作所 | Pressure sensor with corrosion resistant magnet |
CN114068121B (en) * | 2021-12-24 | 2023-04-07 | 余姚市宏伟磁材科技有限公司 | Sintered neodymium-iron-boron magnet with low boundary phase potential difference and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62120004A (en) * | 1985-11-20 | 1987-06-01 | Sumitomo Special Metals Co Ltd | Permanent magnet with excellent corrosion resistance and manufacture thereof |
JPS63110706A (en) * | 1986-10-29 | 1988-05-16 | Hitachi Metals Ltd | Permanent magnet and manufacture thereof |
-
1988
- 1988-03-03 JP JP63050507A patent/JP2631493B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62120004A (en) * | 1985-11-20 | 1987-06-01 | Sumitomo Special Metals Co Ltd | Permanent magnet with excellent corrosion resistance and manufacture thereof |
JPS63110706A (en) * | 1986-10-29 | 1988-05-16 | Hitachi Metals Ltd | Permanent magnet and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH01223712A (en) | 1989-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2791659B2 (en) | Manufacturing method of corrosion resistant permanent magnet | |
JP2631493B2 (en) | Manufacturing method of corrosion resistant permanent magnet | |
JP2631492B2 (en) | Manufacturing method of corrosion resistant permanent magnet | |
US6211762B1 (en) | Corrosion-resistant permanent magnet and method for manufacturing the same | |
JP3208057B2 (en) | Corrosion resistant permanent magnet | |
JPH0569282B2 (en) | ||
JPH0770382B2 (en) | Rare earth magnet having excellent corrosion resistance and method for manufacturing the same | |
JP3108400B2 (en) | Permanent magnet with excellent corrosion resistance | |
JPH0613211A (en) | Permanent magnet having excellent corrosion resistance and manufacture thereof | |
JPS62120004A (en) | Permanent magnet with excellent corrosion resistance and manufacture thereof | |
JP2720038B2 (en) | Manufacturing method of permanent magnet | |
JPH04288804A (en) | Permanent magnet and manufacture thereof | |
JPS61185910A (en) | Manufacture of permanent magnet with excellent corrosion-resisting property | |
JPH0752685B2 (en) | Corrosion resistant permanent magnet | |
JP3411605B2 (en) | Corrosion resistant permanent magnet | |
JPH0545045B2 (en) | ||
JPS62120003A (en) | Permanent magnet with excellent corrosion resistance and manufacture thereof | |
JPH06140226A (en) | Corrosion-resistant permanent magnet | |
JPH0666173B2 (en) | Permanent magnet having excellent corrosion resistance and method of manufacturing the same | |
JPS63254702A (en) | Manufacture of corrosion resisting permanent magnet | |
JP2003293190A (en) | Method for producing permanent magnet | |
JPS63166975A (en) | Production of permanent magnet having excellent oxidation resistance | |
JPH0770383B2 (en) | Rare earth magnet with excellent corrosion resistance | |
JPH0576521B2 (en) | ||
JP2003224024A (en) | Method for producing corrosion resistant permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |