[go: up one dir, main page]

JP2624731B2 - Air-fuel ratio detector - Google Patents

Air-fuel ratio detector

Info

Publication number
JP2624731B2
JP2624731B2 JP62327026A JP32702687A JP2624731B2 JP 2624731 B2 JP2624731 B2 JP 2624731B2 JP 62327026 A JP62327026 A JP 62327026A JP 32702687 A JP32702687 A JP 32702687A JP 2624731 B2 JP2624731 B2 JP 2624731B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
detection
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62327026A
Other languages
Japanese (ja)
Other versions
JPH01169349A (en
Inventor
範男 市川
定寧 上野
正昭 斉藤
豊昭 中川
志誠 甲斐
貴之 井辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP62327026A priority Critical patent/JP2624731B2/en
Publication of JPH01169349A publication Critical patent/JPH01169349A/en
Application granted granted Critical
Publication of JP2624731B2 publication Critical patent/JP2624731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の空燃比検出装置に係り、特に限界
電流を検出する空燃比検出装置に関する。
Description: TECHNICAL FIELD The present invention relates to an air-fuel ratio detection device for an internal combustion engine, and more particularly to an air-fuel ratio detection device that detects a limit current.

〔従来の技術〕[Conventional technology]

従来の空燃比検出装置は、特開昭58-48749号公報に記
載のようにエンジンの運転状態に応じてリーン空燃比で
制御するか、λ=1で制御するかを決めそれに応じてセ
ンサの駆動を限界電流検知と起電力検知に切換えるとな
つていた。しかしエンジン始動直後の制御方法の点につ
いては考慮されていなかつた。
A conventional air-fuel ratio detection device determines whether control is performed with a lean air-fuel ratio or λ = 1 according to the operating state of an engine, as described in Japanese Patent Application Laid-Open No. 58-48749. The drive was switched to limit current detection and electromotive force detection. However, no consideration was given to the control method immediately after the engine was started.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、理論空燃比および希薄空燃比を測定
可能なリーンセンサの有する欠点、すなわちλ=1近傍
での検出精度が悪いため、λ=1でステツプ変化する起
電力測定型に切替えて検出精度を高めようとするもの
で、燃料リーン空燃比域ではジルコニアの酸素ポンプ作
用を利用して限界電流を測定する駆動回路を作動させ、
理論空燃比点近傍では濃淡電池の起電力を測定する駆動
回路に切替えて、それぞれ空燃比を検出するとなつてい
た。
In the above prior art, the disadvantage of the lean sensor capable of measuring the stoichiometric air-fuel ratio and the lean air-fuel ratio, that is, the detection accuracy near λ = 1 is poor, the detection is switched to the electromotive force measurement type in which the step changes at λ = 1. In order to improve the accuracy, in the fuel lean air-fuel ratio range, the drive circuit that measures the limit current using the oxygen pump action of zirconia is activated,
In the vicinity of the stoichiometric air-fuel ratio point, the driving circuit for measuring the electromotive force of the concentration cell is switched to detect the air-fuel ratio.

本発明の目的は、リニア空燃比センサの有する欠点、
すなわち酸素ポンピング電流は検出素子が650℃〜700℃
に加熱されないと正常に流れず、始動後暖機までの間は
検出精度が著しく低下するということを改善するもので
ある。
The object of the present invention is a drawback of the linear air-fuel ratio sensor,
In other words, the oxygen pumping current is 650 ° C to 700 ° C
Therefore, it is possible to improve that the detection accuracy is remarkably reduced until the engine is warmed up after the engine is started.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的は、基準極と検出極および固体電解質、前記
検出極にガス拡散を律速する部材を設けた検出素子と、
前記検出素子を加熱するヒータおよびその駆動回路部
と、前記検出素子の濃淡電池の起電力を測定する回路部
を、前記検出素子の限界電流を検出してガス成分を燃料
リッチから燃料リーンの全域にわたり測定する駆動回路
部とからなる燃料ガスの空気と燃料の混合比を計測する
内燃機関用空燃比検出装置において、前記空燃比検出装
置始動後、前記ヒータの駆動回路部に駆動を指示する手
段と、前記検出素子が、前記空燃比検出装置始動後、前
記検出素子の昇温特性に基づいて定められた期間は濃淡
電池の起電力で空燃比を計測し、前記期間経過後は限界
電池で空燃比を計測するように切り換えて使う手段と、
を備えたことにより達成される。
The above object, a reference electrode and a detection electrode and a solid electrolyte, a detection element provided with a member that controls the gas diffusion in the detection electrode,
A heater for heating the detection element and a drive circuit thereof, and a circuit for measuring the electromotive force of the concentration cell of the detection element, and detecting a limit current of the detection element to change a gas component from fuel rich to fuel lean. An air-fuel ratio detection device for an internal combustion engine for measuring a mixture ratio of air and fuel of a fuel gas, comprising: a driving circuit portion for measuring the air-fuel ratio of the fuel gas after starting the air-fuel ratio detection device. After the start of the air-fuel ratio detection device, the detection element measures the air-fuel ratio with the electromotive force of the concentration cell for a period determined based on the temperature rise characteristics of the detection element, and after the elapse of the period, the limit battery is used. Means for switching to measure the air-fuel ratio,
It is achieved by having.

〔作用〕[Action]

したがつて、始動暖機後検出素子が650℃〜700℃まで
加熱されるまでは起電力測定を行い、その後限界電流を
測定するように働くので、始動暖機時の検出精度を向上
できる。
Therefore, the electromotive force is measured until the detection element is heated to 650 ° C. to 700 ° C. after the start-up warm-up, and then the limit current is measured, so that the detection accuracy at the start-up warm-up can be improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。第1
図は本発明に係わる内燃機関の空燃比制御に係わる空燃
比検出装置のブロツク図である。空燃比センサ1は検出
電極11,基準電極12,排ガス導入孔13,大気導入室14とヒ
ータ部15から成つており、センサ温度検出回路部2と、
ヒータ駆動回路部3により温度調節される。空燃比検出
装置は内燃機関の始動と同時に作動を開始し、ヒータへ
の通電がオンされセンサの加熱が行なわれる。センサ1
は初め理論空燃比検出回路部4と接続され、酸素濃淡電
池の起電力信号を検出しその出力VSを空燃比制御装置10
へ与える。センサ1が十分加熱され、酸素イオンをポン
ピングして精度良く空燃比を測定可能になつたら、その
信号を切換スイツチ6に送り、起電力検出から酸素イオ
ン電流検出のリニア空燃比検出回路部5へ、センサ1の
接続を切替える。同時にセンサ温度検出回路部からは空
燃比制御装置10へ、切替え信号を与え、リニア出力信号
V0に切替え、以後このV0により空燃比制御を行なうよう
にした。この切替のタイミングとしては、センサの温度
が設定値に到達して温調が開始する時期を選ぶことが出
来る。すなわち初めヒータに通電が行なわれていたもの
が、設定値に達して通電が停止され、又再び通電のON-O
FFが繰返され温調されるので、最初の通電OFFの信号を
用いることが出来る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First
FIG. 1 is a block diagram of an air-fuel ratio detection device related to air-fuel ratio control of an internal combustion engine according to the present invention. The air-fuel ratio sensor 1 includes a detection electrode 11, a reference electrode 12, an exhaust gas introduction hole 13, an atmosphere introduction chamber 14, and a heater unit 15.
The temperature is adjusted by the heater drive circuit unit 3. The air-fuel ratio detection device starts operating simultaneously with the start of the internal combustion engine, and energization of the heater is turned on to heat the sensor. Sensor 1
Is initially connected to the stoichiometric air-fuel ratio detection circuit 4, detects the electromotive force signal of the oxygen concentration cell, and outputs its output V S to the air-fuel ratio
Give to. When the sensor 1 is sufficiently heated and it becomes possible to accurately measure the air-fuel ratio by pumping oxygen ions, the signal is sent to the switching switch 6, and from the electromotive force detection to the linear air-fuel ratio detection circuit 5 for oxygen ion current detection. The connection of the sensor 1 is switched. At the same time, a switch signal is given from the sensor temperature detection circuit unit to the air-fuel ratio control device 10, and a linear output signal
It switched to V 0, and to perform the air-fuel ratio control by the V 0 thereafter. As the switching timing, a timing at which the temperature of the sensor reaches the set value and the temperature control starts can be selected. In other words, the heater was initially energized, but the current reached the set value and the energization was stopped.
Since the FF is repeated and the temperature is adjusted, the first energization OFF signal can be used.

第2図は、タイマー回路部7により、理論空燃比検出
回路部4とリニア空燃比検出回路部5を切替える場合の
ブロツク図を示すものである。この場合の切替までの時
間は、始動時の内燃機関冷却水温等により厳密には異な
るが、最も冷却状態にある場合からのセンサ暖機に要す
る時間を使用することが出来る。
FIG. 2 is a block diagram in the case where the stoichiometric air-fuel ratio detection circuit unit 4 and the linear air-fuel ratio detection circuit unit 5 are switched by the timer circuit unit 7. In this case, the time until switching is strictly different depending on the temperature of the internal combustion engine cooling water at the time of starting, etc., but the time required for warming up the sensor from the most cooled state can be used.

第3図はセンサの昇温特性を示すもので、起電力測定
が可能となり理論空燃比検出が出来る温度約350℃に達
する時間がts(秒)であり、酸素イオンポンピングによ
りリニア空燃比検出が可能となる約700℃に達する時間
がt0(秒)である。実験によれば通常tsは10秒前後であ
りt0は30〜60秒と長いことが確認されている。従つて、
第1図あるいは第2図の実施例による空燃比検出の切替
えにより、始動直後は従来のオン−オフ形O2センサとし
て使用することにより空燃比検出が出来ない期間を短縮
することが出来高精度の空燃比制御が可能となつた。
Fig. 3 shows the temperature rise characteristics of the sensor. The time to reach the temperature of about 350 ° C, at which the electromotive force can be measured and the stoichiometric air-fuel ratio can be detected, is t s (second). The linear air-fuel ratio is detected by oxygen ion pumping. The time to reach about 700 ° C. is t 0 (sec). Experiments have confirmed that t s is usually around 10 seconds and t 0 is as long as 30 to 60 seconds. Therefore,
By switching the air-fuel ratio detection according to an embodiment of FIG. 1 or FIG. 2, immediately after starting of a conventional on-- shortening the period can not be air-fuel ratio detected by using as an off-type O 2 sensor is volume accuracy Air-fuel ratio control became possible.

第4図は起電力Vsの出力特性を示すものであり、第5
図はリニア空燃比検出回路による出力(V0)に示すもの
である。ポンプ電流IPはリツチ側でマイナス,リーン側
でプラスとなり理論空燃比点ではIP=0である。
Figure 4 is shows the output characteristics of the electromotive force V s, fifth
The figure shows the output (V 0 ) of the linear air-fuel ratio detection circuit. Pump current I P is negative, at the stoichiometric air-fuel ratio point becomes positive in the lean side Ritsuchi side is I P = 0.

〔発明の効果〕〔The invention's effect〕

本発明によれば、酸素イオンポンピング現象を利用し
た、リニア空燃比検出センサの欠点である活性化時間の
増大をカバーすることが出来るので高精度かつ効率の良
い空燃比制御が出来る。
According to the present invention, it is possible to cover an increase in the activation time, which is a drawback of the linear air-fuel ratio detection sensor utilizing the oxygen ion pumping phenomenon, so that highly accurate and efficient air-fuel ratio control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図は本発明の一実施例のブロツク図、第3
図はセンサ加熱時の昇温データの一例、第4図は理論空
燃比検出回路による空燃比−出力特性、第5図はリニア
空燃比検出回路による、空燃比−出力特性である。 1……空燃比センサ、2……センサ温度検出回路部、3
……ヒータ駆動回路部、4……理論空燃比検出回路部、
5……リニア空燃比検出回路部、6……切替スイツチ、
7……タイマー回路、10……空燃比制御装置。
1 and 2 are block diagrams of an embodiment of the present invention, and FIG.
FIG. 4 shows an example of temperature rise data at the time of sensor heating, FIG. 4 shows air-fuel ratio-output characteristics by a stoichiometric air-fuel ratio detection circuit, and FIG. 5 shows air-fuel ratio-output characteristics by a linear air-fuel ratio detection circuit. 1 ... air-fuel ratio sensor, 2 ... sensor temperature detection circuit section, 3
... Heater drive circuit, 4... Stoichiometric air-fuel ratio detection circuit
5: Linear air-fuel ratio detection circuit unit 6: Switching switch
7: Timer circuit, 10: Air-fuel ratio control device.

フロントページの続き (72)発明者 上野 定寧 茨城県勝田市大字高場2520番地 株式会 社日立製作所佐和工場内 (72)発明者 斉藤 正昭 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 中川 豊昭 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 甲斐 志誠 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 井辻 貴之 茨城県勝田市大字東石川西古内3085番地 5 日立オートモテイブエンジニアリン グ株式会社内 (56)参考文献 特開 昭60−111953(JP,A)Continuing from the front page (72) Inventor Sadayoshi Ueno 2520 Takada, Katsuta-shi, Ibaraki Inside Sawa Plant, Hitachi, Ltd. (72) Inventor Toyoaki Nakagawa 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. Takayuki Itsuji 3085, Nishikonai, Higashiishikawa, Katsuta-shi, Ibaraki 5 Within Hitachi Automotive Engineering Co., Ltd. (56) References JP-A-60-111953 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基準極と検出極および固体電解質、前記検
出極にガス拡散を律速する部材を設けた検出素子と、前
記検出素子を加熱するヒータおよびその駆動回路部と、
前記検出素子の濃淡電池の起電力を測定する回路部を、
前記検出素子の限界電流を検出してガス成分を燃料リッ
チから燃料リーンの全域にわたり測定する駆動回路部と
からなる燃焼ガスの空気と燃料の混合比を計測する内燃
機関用空燃比検出装置において、 前記空燃比検出装置始動後、前記ヒータの駆動回路部に
駆動を指示する手段と、 前記検出素子が、前記空燃比検出装置始動後、前記検出
素子の昇温特性に基づいて定められた期間は濃淡電池の
起電力で空燃比を計測し、前記期間経過後は限界電流で
空燃比を計測するように切り換えて使う手段と、 を備えたことを特徴とする内燃機関用空燃比検出装置。
1. A detecting element provided with a reference electrode, a detecting electrode, a solid electrolyte, a member for controlling the gas diffusion in the detecting electrode, a heater for heating the detecting element, and a drive circuit thereof.
A circuit unit for measuring the electromotive force of the concentration cell of the detection element,
An air-fuel ratio detection device for an internal combustion engine, which detects a limit current of the detection element and measures a mixture ratio of air and fuel of combustion gas, comprising a drive circuit unit for measuring a gas component over the entire range from fuel rich to fuel lean. Means for instructing the drive circuit unit of the heater to drive after the start of the air-fuel ratio detection device, and a period in which the detection element is determined based on a temperature rise characteristic of the detection element after the start of the air-fuel ratio detection device. Means for measuring the air-fuel ratio using the electromotive force of the concentration cell, and switching to measure the air-fuel ratio using the limit current after the lapse of the period, using the air-fuel ratio detection device for an internal combustion engine.
JP62327026A 1987-12-25 1987-12-25 Air-fuel ratio detector Expired - Lifetime JP2624731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327026A JP2624731B2 (en) 1987-12-25 1987-12-25 Air-fuel ratio detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327026A JP2624731B2 (en) 1987-12-25 1987-12-25 Air-fuel ratio detector

Publications (2)

Publication Number Publication Date
JPH01169349A JPH01169349A (en) 1989-07-04
JP2624731B2 true JP2624731B2 (en) 1997-06-25

Family

ID=18194479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327026A Expired - Lifetime JP2624731B2 (en) 1987-12-25 1987-12-25 Air-fuel ratio detector

Country Status (1)

Country Link
JP (1) JP2624731B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725481B2 (en) * 2006-10-16 2011-07-13 トヨタ自動車株式会社 Air-fuel ratio control device
JP4270286B2 (en) * 2007-02-07 2009-05-27 トヨタ自動車株式会社 Control device for gas sensor
JP4894829B2 (en) * 2007-09-07 2012-03-14 株式会社デンソー Gas sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142449A (en) * 1983-02-04 1984-08-15 Hitachi Ltd Air fuel ratio detecting device
JPS60111953A (en) * 1983-11-24 1985-06-18 Mitsubishi Electric Corp Air-fuel ratio sensor of engine
JPS61280560A (en) * 1985-06-06 1986-12-11 Fujikura Ltd Method for measuring concentration of oxygen

Also Published As

Publication number Publication date
JPH01169349A (en) 1989-07-04

Similar Documents

Publication Publication Date Title
US4721088A (en) Method for controlling an oxygen concentration detection apparatus with a heater element
JPH04313056A (en) Activation judging device for air-fuel-ratio sensor
JPH0680296B2 (en) Mixture composition control device for internal combustion engine
US6453720B1 (en) Activation diagnosis method and activation diagnosis apparatus for air-fuel ratio sensor
US4860712A (en) Method of controlling an oxygen concentration sensor
US4719895A (en) Method for controlling an oxygen concentration sensor
JP2548131B2 (en) Control method of oxygen concentration sensor
US7776194B2 (en) Gas concentration measuring apparatus designed to compensate for output error
US5895564A (en) Method and a device for controlling an air/fuel ratio sensor
JP2624731B2 (en) Air-fuel ratio detector
JP3524373B2 (en) Heater control device for air-fuel ratio sensor
JPS60239664A (en) Heating apparatus of oxygen sensor
JPH04313055A (en) Activation judging device for air-fuel-ratio sensor
JP2942445B2 (en) Air-fuel ratio sensor
JP2001074693A (en) Heater control device for gas concentration sensor
JPH07198679A (en) Control device for oxygen concentration sensor
US20190249616A1 (en) Control apparatus for an internal combustion engine
JPH03138560A (en) Heat type air/fuel ratio detector
JPH07117516B2 (en) Output correction method for oxygen concentration sensor for internal combustion engine
JP2511049B2 (en) Activity determination method for oxygen concentration sensor
JP2511048B2 (en) Control method of oxygen concentration sensor
JP3869629B2 (en) Air-fuel ratio sensor activity determination device
JP2896290B2 (en) Apparatus and method for detecting air-fuel ratio for internal combustion engine
JP5788834B2 (en) Gas sensor control device
KR100435751B1 (en) a method for heating feed back controlling of O2 sensor