JP2622175B2 - Heterogeneously mixed conjugate fiber and method for producing the same - Google Patents
Heterogeneously mixed conjugate fiber and method for producing the sameInfo
- Publication number
- JP2622175B2 JP2622175B2 JP1233590A JP23359089A JP2622175B2 JP 2622175 B2 JP2622175 B2 JP 2622175B2 JP 1233590 A JP1233590 A JP 1233590A JP 23359089 A JP23359089 A JP 23359089A JP 2622175 B2 JP2622175 B2 JP 2622175B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- component
- spinning nozzle
- polyester
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 title claims description 120
- 238000004519 manufacturing process Methods 0.000 title description 5
- 229920000728 polyester Polymers 0.000 claims description 46
- 238000009987 spinning Methods 0.000 claims description 35
- 230000003068 static effect Effects 0.000 claims description 22
- -1 polyethylene terephthalate Polymers 0.000 claims description 20
- 239000003513 alkali Substances 0.000 claims description 19
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 16
- 239000005977 Ethylene Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 11
- 238000007127 saponification reaction Methods 0.000 claims description 11
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 10
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 10
- 239000013585 weight reducing agent Substances 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 7
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 7
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 5
- 239000004416 thermosoftening plastic Substances 0.000 claims description 5
- 238000001125 extrusion Methods 0.000 claims description 4
- 230000001788 irregular Effects 0.000 claims description 3
- 238000002156 mixing Methods 0.000 description 31
- 239000004744 fabric Substances 0.000 description 26
- 229920000642 polymer Polymers 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 21
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 13
- 230000008961 swelling Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 208000016261 weight loss Diseases 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- 239000002759 woven fabric Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000009828 non-uniform distribution Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 244000035744 Hura crepitans Species 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000986 disperse dye Substances 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 239000008241 heterogeneous mixture Substances 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- SHSGDXCJYVZFTP-UHFFFAOYSA-N 4-ethoxybenzoic acid Chemical compound CCOC1=CC=C(C(O)=O)C=C1 SHSGDXCJYVZFTP-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 240000008027 Akebia quinata Species 0.000 description 1
- 235000007756 Akebia quinata Nutrition 0.000 description 1
- 101000705607 Homo sapiens Protein PET100 homolog, mitochondrial Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 102100031244 Protein PET100 homolog, mitochondrial Human genes 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- SBPBAQFWLVIOKP-UHFFFAOYSA-N chlorpyrifos Chemical compound CCOP(=S)(OCC)OC1=NC(Cl)=C(Cl)C=C1Cl SBPBAQFWLVIOKP-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- IBBQVGDGTMTZRA-UHFFFAOYSA-N sodium;2-sulfobenzene-1,3-dicarboxylic acid Chemical compound [Na].OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O IBBQVGDGTMTZRA-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Multicomponent Fibers (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はエチレン酢酸ビニル共重合体けん化物とポリ
エステルとの、混合組成物よりなる機能性と審美性に優
れた複合繊維とその製造方法に関する。Description: FIELD OF THE INVENTION The present invention relates to a composite fiber of a saponified ethylene-vinyl acetate copolymer and polyester, which is excellent in functionality and aesthetics, and a method for producing the same. .
(従来の技術) ポリエステル繊維は天然繊維に見られない優れた強度
弾性、耐摩耗性、耐薬品性、耐候性、形態安定性など、
そのすぐれた汎用特性により、繊維としてきわめて多量
に生産、消費されている。しかしその反面高級感のある
布地、衣服としての用途については、ポリエステルの色
彩面、繊維の形態、糸の構造面の多くの努力にもかかわ
らず、天然繊維の審美性や高級感の点で及んでいない面
がある。また一方、洗濯の繰返しによる白生地の黒ずみ
は再汚染の問題として木綿の機能に劣る点であり、油性
汚れも付きやすくさらにウレタン等コーテイング物では
分散染料が移行し、色移りする等汚れや汚染の問題は依
然として残されたままである。この様なポリエステル繊
維の問題について多方面に亘り鋭意研究してきたが、親
水基を持たないか、極めてわずかしか共重合もしくは分
子末端しか改質できていないポリエステル繊維では上記
問題点を解決することは不十分であることが判明した。
また一方、親水基を多量に導入すると繊維基材の本来の
性質が損ねられ実用に供し得ないものとなり、単なる共
重合等のポリマー改質にはその限界があることも判明し
た。(Conventional technology) Polyester fiber has excellent strength elasticity, abrasion resistance, chemical resistance, weather resistance, form stability, etc. not found in natural fibers.
Due to its excellent general-purpose properties, it is produced and consumed in extremely large quantities as fiber. However, on the other hand, the use of high-quality fabrics and garments in terms of the aesthetics and luxuriousness of natural fibers is notwithstanding many efforts in terms of polyester color, fiber morphology, and yarn structure. There is a side that does not work. On the other hand, the darkening of the white fabric due to repeated washing is a problem of recontamination, which is inferior to the function of cotton. The problem remains. Although various studies have been made on the problem of such polyester fibers in various fields, it is difficult to solve the above-mentioned problems with polyester fibers having no hydrophilic group or having only a very small amount of copolymerized or modified molecular terminals. It turned out to be insufficient.
On the other hand, when a large amount of a hydrophilic group is introduced, the intrinsic properties of the fiber base material are impaired and cannot be put to practical use, and it has also been found that polymer modification such as simple copolymerization has its limitations.
木綿、絹、羊毛等の天然繊維が何故優れた風合や審美
性、あるいは汚れに対する機能性を有するかという点に
ついて研究した結果、天然繊維はいずれも親水基を持つ
ているため水を媒体とする加工に特徴を発揮している事
が明確になつた。As a result of studying why natural fibers such as cotton, silk, and wool have excellent feeling, aesthetics, and functionality against dirt, water is used as a medium because all natural fibers have hydrophilic groups. It has become clear that it has a characteristic in the processing that it does.
天然繊維はいずれも水を含むと膨潤し見掛け太さがフ
アイバー1本が3割り近く太くなる一方、膨潤時微小変
形(ウールはバイラテラル構造によるクリンプ、木綿は
コンボリユーシヨンによるねじれ、絹な不均斉ウエーブ
等)歪により糸はより一層太くなつて、織目や編目が屈
曲固定される。しかる後、乾燥を受けると膨潤時での見
掛け太さが減少するのでその繊維間の空隙が残されて織
目や編目が固定される。従つて繊維間や交差糸間の接触
圧力が小さくなり、布の曲げや剪断、引張り変形及び回
復過程で拘束力が働きにくく、ヒステリシスロスが小さ
いため反発性良く、いきいきとして生地になつているも
のが多い事が明らかとなつた。Each natural fiber swells when it contains water, and the apparent thickness of one fiber becomes nearly 30% thicker, while the fiber slightly deforms when swollen (wool is crimped by a bilateral structure, cotton is twisted by convolution, twisted by silk) The yarn becomes even thicker due to distortion, and the texture and stitch are bent and fixed. Thereafter, when the fabric is dried, the apparent thickness at the time of swelling is reduced, so that voids between the fibers are left, and the weaves and stitches are fixed. Therefore, the contact pressure between fibers or crossed yarns is small, the restraining force is hard to work in the process of bending, shearing, tensile deformation and recovery of the fabric, and the hysteresis loss is small, so it has good resilience and it is a lively fabric. It became clear that there were many.
また一方油性汚れや洗濯再汚染による黒ずみあるいは
分散染料昇華移行汚染等の問題はポリエステル繊維表面
は親水性ポリマーを被覆した形態とする事により格段に
改善されることがわかつた。On the other hand, it has been found that problems such as oily soiling, darkening due to washing recontamination, and disperse dye sublimation transfer staining can be remarkably improved by forming the surface of the polyester fiber with a hydrophilic polymer.
本発明者等は、以上の点をふまえ、エチレン酢酸ビニ
ル共重合体けん化物のポリエステル繊維への適用に着目
したものである。即ち、エチレン酢酸ビニル共重合体け
ん化物は、水系膨潤ポリマーであり、親水基をもつ故
に、前述のポリエステル繊維で発生する油性汚れや洗濯
再汚染による黒ずみの問題が解決でき、かつ分散染料昇
華移行汚染等の問題がないものであり、したがつて本発
明は、この特性を活かしつつポリエステルの特性が活か
した繊維とするために、両ポリマーからいかなる繊維と
したらよいかを追求し、解明したものである。The present inventors have focused on the application of the saponified ethylene-vinyl acetate copolymer to polyester fibers based on the above points. That is, the saponified ethylene-vinyl acetate copolymer is a water-based swelling polymer and has a hydrophilic group, so that the problem of oily stains generated on the polyester fibers and darkening due to washing recontamination can be solved, and disperse dye sublimation transfer. Therefore, the present invention pursued and clarified what kind of fiber should be used from both polymers in order to obtain a fiber utilizing the properties of polyester while utilizing this property. It is.
(問題を解決するための手段) 従来ポリエステルの帯電性を改善する目的で吸湿性ポ
リマーであるエチレン・ビニルアルコール系樹脂を均一
に混合した成形物が公知である(特公昭46−5223)。(Means for Solving the Problem) Conventionally, there has been known a molded product obtained by uniformly mixing an ethylene / vinyl alcohol-based resin as a hygroscopic polymer for the purpose of improving the chargeability of polyester (Japanese Patent Publication No. 46-5223).
しかしながら繊維にした場合エチレンビニルアルコー
ル成分がポリエステル成分の中に充分混合し均一ブレン
ド構造とすると不均一に混合した繊維に比べ、織物や編
物のふくらみに欠け良好な風合の布になり得なかった。
何故このような挙動になつたのか解析を進めた結果、均
一ブレンド構造繊維は高温熱水に浸漬すると一様に縮む
挙動は見られるものの繊維の変形は少なかつた。However, in the case of fibers, if the ethylene vinyl alcohol component is sufficiently mixed with the polyester component to form a uniform blend structure, the fabric does not have a good texture because it lacks the swelling of the woven or knitted fabric compared to the non-uniformly mixed fibers. .
As a result of analyzing the reason why such a behavior was caused, it was found that the uniformly blended structural fibers shrink uniformly when immersed in high-temperature hot water, but the fibers did not deform much.
これに比し不均一混合した繊維は高温熱水に浸漬する
とある部分は曲がつたり、ある部分はねじれたりして微
少な変形が各所で発生する事が発見されたのである。水
を媒介として膨潤するエチレンビニルアルコールコポリ
マーが繊維断面中に偏在するため、熱水での膨潤による
膨潤歪がストレートなファイバーを局所で微小変形を与
え、これが繊維の集合体としてふくらみの良さや味の改
良につながつたものと考えられ、まさにこれは、前述し
た天然繊維が持つ膨潤時微小変形歪が発生する挙動に極
似するものとなつたのである。On the other hand, it was found that when the fibers mixed unevenly were immersed in high-temperature hot water, some parts were bent and some parts were twisted, causing slight deformation at various places. Since the ethylene vinyl alcohol copolymer swelling through water is unevenly distributed in the fiber cross section, the swelling strain due to swelling with hot water locally deforms the straight fiber, which gives the fiber a good swelling and taste. It is thought that this very closely resembled the behavior of the natural fibers described above, which causes micro-deformation strain upon swelling.
即ち、本発明はエチレン含有量30〜70モル%、けん化
度95%以上であって、JIS K 6730−1977に準拠した1
90℃下、2160gの荷重下でのメルトインデックスが20以
下であるエチレン酢酸ビニル共重合体けん化物(A)
(以下、エチレンビニルアルコールコポリマーまたはEV
ALと称する場合がある)と、ポリエチレンテレフタレー
トおよび/またはポリブチレンテレフタレートを主成分
とする熱可塑性ポリエステル(B)とを別々に溶融押出
し、紡糸ノズルに至る直前で静止型混合器を用いて重量
比率A:B=5:95〜40:60の範囲、分割数が23〜215となる
ように不均一混合し、しかる後、混合物を分割細化部材
を通して紡糸ノズルより押出して繊維化してなる繊維で
あって、その繊維断面形状が不均一混合形態である複合
繊維である。すなわち、繊維断面内においてA成分が島
状態に分布し、A成分の存在しないB成分領域には繊維
直径の少なくとも1/20の直径の円が描ける不均一混合形
態の複合繊維である。That is, the present invention has an ethylene content of 30 to 70 mol% and a degree of saponification of 95% or more, and is based on JIS K 6730-1977.
Saponified ethylene vinyl acetate copolymer (A) having a melt index of 20 or less under a load of 2160 g at 90 ° C
(Hereafter, ethylene vinyl alcohol copolymer or EV
AL), and a thermoplastic polyester (B) containing polyethylene terephthalate and / or polybutylene terephthalate as a main component are separately melt-extruded, and the weight ratio is determined using a static mixer immediately before reaching a spinning nozzle. a: B = 5: 95~40: 60 range, the division number is 2 3-2 15 become so mixed heterogeneous, thereafter, formed by fiberizing extruded from a spinning nozzle the mixture through a split thinning member It is a fiber, and is a conjugate fiber whose fiber cross-sectional shape is a non-uniform mixed form. That is, it is a non-uniformly mixed conjugate fiber in which the A component is distributed in an island state in the fiber cross section, and a circle having a diameter of at least 1/20 of the fiber diameter can be drawn in the B component region where the A component does not exist.
繊維断面内のA、B成分の分布状態は透過型光学顕微
鏡写真で判別される。図面第1〜4図は該写真を模写し
た図面で、第1図、第2図、第3図には本発明例が例示
され、また第4図には均一混合の比較例が例示される。
該断面図において、黒点はエチレンビニルアルコールコ
ポリマー(A)成分を、また黒点以外の白地部分がポリ
エステル(B)成分を示す。The distribution state of the A and B components in the fiber cross section is determined by a transmission optical microscope photograph. FIGS. 1 to 4 are reproductions of the photograph, and FIGS. 1, 2, and 3 illustrate examples of the present invention, and FIG. 4 illustrates a comparative example of uniform mixing. .
In the cross-sectional view, black dots indicate the ethylene vinyl alcohol copolymer (A) component, and white portions other than the black dot indicate the polyester (B) component.
本発明の複合繊維においては、繊維断面内において、
A成分が細化された島状態で分布していると共にかつそ
の分布が不均斉であり、したがつてその島部分に対応す
る海部分、即ち、B成分も繊維断面内において偏在状態
となつていることが特徴である。そしてこのA成分ある
いはB成分の不均斉分布あるいは偏在状態を表わすの
に、本発明においては、繊維断面内のA成分の存在しな
いB成分領域において、繊維直径Dの少なくとも1/20の
直径(L)の円が描けるか否かで判別するものである。
ここで繊維直径Dとは、第1〜4図で示されるように繊
維断面が円形の場合にはその直径を、また異形の場合に
はその外接円の直径とする。In the composite fiber of the present invention, in the fiber cross section,
The A component is distributed in a thinned island state, and the distribution is uneven, so that the sea portion corresponding to the island portion, that is, the B component is also unevenly distributed in the fiber cross section. The feature is that there is. In order to express the non-uniform distribution or uneven distribution of the A component or the B component, in the present invention, in the B component region where the A component does not exist in the fiber cross section, the diameter (L) of at least 1/20 of the fiber diameter D is used. ) Is determined based on whether or not the circle can be drawn.
Here, the fiber diameter D is the diameter of the fiber when the fiber cross section is circular as shown in FIGS. 1 to 4, and the diameter of the circumscribed circle when the fiber cross section is irregular.
本発明の繊維において、A成分の存在しないB成分領
域に存在する見掛け円の直径Lの大きさは少くともD/20
であり、より好ましくはD/10〜D/2である。これはA成
分とB成分の混合比率によつても変わるため一律には言
えないが、LがD/20未満になると均一混合繊維とあまり
差がなくなり効果が薄れるからである。D/20以上となる
見掛け円が存在するB成分領域は、1個所であると特定
されるものでなく数個所が局所もしくは偏在すれば良
い。かつまた本発明の不均一混合複合繊維の繊維断面の
不均一化は各フアイバー間、フアイバー間の長さ方向に
一様ではないが、LがD/10〜D/5であればより好ましい
風合や良好なタツチの布となる。このような不均一混合
形態の断面を有する繊維は(A)および(B)それぞれ
のポリマーを別々に溶融押出し、紡糸ノズルに至る直前
で静止型混合器を用いて不均一混合し、しかる後混合物
を分割細化部材を通して紡糸ノズルより紡出して繊維化
することにより得られる。そして、静止型混合器では、
それぞれのポリマーがA:B=5:95〜40:60の範囲の混合比
率(重量比率)、かつ分割数が23〜215となるように不
均一混合されるのである。In the fiber of the present invention, the size of the diameter L of the apparent circle existing in the B component region where the A component does not exist is at least D / 20.
And more preferably D / 10 to D / 2. This cannot be said uniformly because it varies depending on the mixing ratio of the component A and the component B. However, when L is less than D / 20, there is not much difference from the uniformly mixed fiber and the effect is weakened. The B component region in which the apparent circle of D / 20 or more exists is not specified as one location, and several locations may be localized or unevenly distributed. In addition, the unevenness of the fiber cross section of the heterogeneous mixed conjugate fiber of the present invention is not uniform between the fibers and in the length direction between the fibers, but it is more preferable if L is D / 10 to D / 5. Good and good touch cloth. Fibers having a cross section of such a heterogeneous mixed form are melt-extruded separately from the respective polymers (A) and (B), and are mixed unevenly using a static mixer immediately before reaching a spinning nozzle. Is spun from a spinning nozzle through a dividing and thinning member to be fiberized. And in a static mixer,
Each polymer is A: B = 5: 95~40: 60 mixing ratio (weight ratio) in the range of, and the division number is being unevenly mixed such that 2 3-2 15.
このような製造方法で得られ、断面形状に特徴のある
繊維を、アルカリ減量加工によりポリエステル側の表面
浸蝕処理を付与すると不均斉な分布となつているB成分
のため、繊維表面の筋状凹凸はきわめてランダムな粗い
凹凸となる。これは湿式紡糸で得られる条筋状粗面もし
くはそれ以上の粗面形状の発生と風合となり、ワキシー
感の無くなつた良好なタツチの向上に貢献する。しかも
アルカリで浸蝕され得なかつたエチレン・ビニルアルコ
ールコポリマーが表皮に沈着し、あたかも、繊維表面に
エチレンビニルアルコールコポリマーを薄膜コートした
かのような繊維構造となるのである。即ち、この表面に
沈着コートされたA成分により油性汚れを防止し、洗濯
再汚染防止や、染料移行防止効果といつた機能を発現し
うるようになるのである。一方均一混合した繊維の場合
はアルカリ減量後の筋状凹凸が比較的軽度なためB成分
が表皮に残つても良好な風合という程にはならない。特
に染色加工工程の如く高温高圧染色ではエチレン・ビニ
ルアルコールコポリマーは十分膨潤効果をもたらすた
め、不均一混合された当該繊維の織物や編物はふくらみ
とタツチの良い、かつまたドレープ性とシルエツトのす
ぐれた生地となるのに比し、均一混合はその様な向上効
果が認められない。Due to the B component which is obtained by such a manufacturing method and has a characteristic cross-sectional shape, when the surface erosion treatment on the polyester side is applied by alkali weight reduction processing, the B component has a non-uniform distribution. Is very random and rough. This results in the appearance of a streak-like rough surface or a rough surface shape obtained by wet spinning, which contributes to the improvement of good touch without waxy feeling. In addition, the ethylene-vinyl alcohol copolymer, which cannot be eroded by alkali, is deposited on the epidermis, resulting in a fiber structure as if a thin film of ethylene-vinyl alcohol copolymer was coated on the fiber surface. That is, the component A deposited on the surface prevents oily stains, and can exhibit functions such as prevention of washing re-contamination and prevention of dye transfer. On the other hand, in the case of uniformly mixed fibers, the streaky irregularities after the alkali weight loss is relatively light, so that even if the B component remains on the epidermis, the texture is not so good. Especially in high-temperature and high-pressure dyeing such as in the dyeing process, since the ethylene / vinyl alcohol copolymer has a sufficient swelling effect, the woven or knitted fabric of the non-uniformly mixed fiber has good swelling and stickiness, and also has excellent drapability and silette. Compared with the dough, the uniform mixing does not show such an improving effect.
本発明で言う熱可塑性ポリエステルとは、例えばテレ
フタール酸、イソフタール酸、ナフタリン2,6−ジカル
ボン酸、フタール酸、α,β−(4−カルボキシフエノ
キシ)エタン、4,4′−ジカルボキシジフエニル、5−
ナトリウムスルホイソフタル酸などの芳香族ジカルボン
酸もしくはアジピン酸、セバシン酸などの脂肪族ジカル
ボン酸、またはこれらのエステル類と、エチレングリコ
ール、ジエチレングリコール、1,4−ブタンジオール、
ネオペンチルグリコール、シクロヘキサン−1,4−ジメ
タノール、ポリエチレングリコール、ポリテトラメチレ
ングリコールなどのジオール化合物とから合成される繊
維形成性ポリエステルであり、構成単位の80モル%以上
が、特には90モル%以上がポリエチレンテレフタレート
単位又はポリブチレンテレフタレート単位であるポリエ
ステルが好ましい。またポリエステル中には、少量の添
加剤、螢光増白剤、安定剤あるいは紫外線吸収剤などを
含んでいても良い。The thermoplastic polyester referred to in the present invention includes, for example, terephthalic acid, isophthalic acid, naphthalene 2,6-dicarboxylic acid, phthalic acid, α, β- (4-carboxyphenoxy) ethane, 4,4′-dicarboxydiphthalic acid Enil, 5-
Aromatic dicarboxylic acids such as sodium sulfoisophthalic acid or adipic acid, aliphatic dicarboxylic acids such as sebacic acid, or esters thereof, ethylene glycol, diethylene glycol, 1,4-butanediol,
A fiber-forming polyester synthesized from a diol compound such as neopentyl glycol, cyclohexane-1,4-dimethanol, polyethylene glycol, or polytetramethylene glycol, wherein 80 mol% or more of the structural units are 90 mol% Polyesters in which the above is a polyethylene terephthalate unit or a polybutylene terephthalate unit are preferred. Further, the polyester may contain a small amount of additives, fluorescent brighteners, stabilizers, ultraviolet absorbers and the like.
EVALとしては、エチレン含有量30〜70モル%、けん化
度が95%以上の高けん化度のものが最適である。EVAL中
のビニルアルコール成分含量が低くなれば、当然に水酸
基(OH)の減少のために親水性などの特性が低下し、目
的とする良好な天然麻繊維ライクの風合が得られなくな
り好ましくない。また、ビニルアルコール成分含量が多
くなりすぎると、溶融成型性が低下するとともに、ポリ
エステルと紡糸直前に混合した後繊維化する際、曳糸性
が不良となり、単糸着れ、断糸が多くなり好ましくな
い。また、ポリエステルの紡糸温度である250℃以上で
の耐熱性も不十分となることからも適当でない。従つて
高けん化度EVALでビニルアルコール成分含量が30〜70モ
ル%のものが本目的の繊維を得るためには、適している
といえる。As the EVAL, the one having a high degree of saponification with an ethylene content of 30 to 70 mol% and a degree of saponification of 95% or more is optimal. If the vinyl alcohol component content in EVAL is low, the properties such as hydrophilicity are naturally reduced due to the reduction of hydroxyl groups (OH), and the desired good natural hemp fiber-like feeling cannot be obtained. . Further, when the content of the vinyl alcohol component is too large, the melt moldability decreases, and when mixed with the polyester immediately before spinning to form a fiber, the spinnability becomes poor, single yarns are attached, and the number of yarns is preferably increased. Absent. Further, the heat resistance at 250 ° C. or higher, which is the spinning temperature of polyester, becomes insufficient, which is not suitable. Therefore, those having a high saponification degree EVAL and a vinyl alcohol component content of 30 to 70 mol% are suitable for obtaining the fiber of the present invention.
第5図には、本発明の不均一混合された複合繊維のア
ルカリ減量加工後の断面写真の一例を示す。エチレン含
有量48モル%、けん化度99%のEVALとポリエチレンテレ
フタレートとをその重量比が15:85の比率で、紡糸ノズ
ルに至る直前で静止型混合器を用いて不均一混合し、し
かる後混合物を分割細化部材を通して紡糸ノズルより紡
出して繊維化したものを、通常の方法により、延伸等の
工程をへたのち、該繊維を約20%アルカリ減量処理をし
たものの断面である。繊維断面形状がそれぞれ異なつた
ランダムな表面凹凸形状を有し、今迄のポリエステルの
溶融紡糸ではなしえなかつたような形状が発現してい
る。即ち、第5図は、繊維の長さ方向である箇所を無作
為に選択して観察した時の断面写真の一例であり、選択
する箇所が異なれば、また異なつた形状の断面形状の集
まりとなり、全く同一の断面形状が繊維長さ方向に長く
連続していないことが観察されている。このことは、本
発明複合繊維の大きな特徴の一つであり、不均一に分布
して存在するEVALが高温熱水に浸漬されたり、蒸気等に
触れると水分を吸い膨潤を生起するため、繊維のある部
分は間がつたり、ある部分はねじれたりして微少な変形
が各所で発生し、これが繊維の長さ方向や繊維間で一様
でなく、不規則的に発生する。これは、自然な不規則性
が本発明複合繊維にはそなわつていることを意味してお
り、従来の合成繊維ではなしえなかつたことである。本
発明複合繊維の風合が従来の合成繊維を脱却し、天然繊
維に非常に似た風合を備えている理由の一つであると推
定される。FIG. 5 shows an example of a cross-sectional photograph of the heterogeneously mixed conjugate fiber of the present invention after the alkali weight reduction processing. A mixture of EVAL having an ethylene content of 48 mol% and a degree of saponification of 99% and polyethylene terephthalate in a weight ratio of 15:85, using a static mixer immediately before reaching the spinning nozzle, followed by a mixture. This is a cross-section of a fiber obtained by spinning from a spinning nozzle through a dividing and thinning member into a fiber, subjecting the fiber to a process such as stretching by an ordinary method, and then subjecting the fiber to an approximately 20% alkali weight reduction treatment. The fibers have random surface irregularities with different cross-sectional shapes, and have a shape that cannot be achieved by conventional melt spinning of polyester. That is, FIG. 5 is an example of a cross-sectional photograph when a portion in the length direction of the fiber is randomly selected and observed, and if the selected portion is different, a cross-sectional shape having a different shape is obtained. It has been observed that identical cross-sectional shapes are not long and continuous in the fiber length direction. This is one of the major characteristics of the conjugate fiber of the present invention.Since EVAL which is present in a non-uniform distribution is immersed in high-temperature hot water or comes in contact with steam, etc., it absorbs moisture and causes swelling. Some parts are separated and some parts are twisted, and minute deformation occurs at various places. This occurs irregularly and irregularly in the fiber length direction and between the fibers. This means that natural irregularities are present in the composite fibers of the present invention, which is not possible with conventional synthetic fibers. This is presumed to be one of the reasons why the texture of the composite fiber of the present invention escapes from conventional synthetic fibers and has a texture very similar to natural fibers.
なぜ第5図で示したような断面形状が発現するかとい
う点については、我々は以下のような考えている。すな
わち、エチレンビニルアルコールコポリマーとポリエス
テルが不均一状態で混合されているために、該繊維をア
ルカリ減量処理を加えることにより、ポリエステルが選
択的に表面層から溶出除去されて行き、アルカリに全く
浸されないEVALの集合体層が繊維表層にほぼそのままの
形で残留していくために、複雑な表面凹凸異形形状が発
現してくると思われる。しかも二成分ポリマーの混合状
態が繊維断面方向へも、また繊維長さ方向へも不均一性
を保持しているために、フイラメント間でも断面形状が
異なり、長さ方向でも異なつてくることになり、今迄の
合成繊維では備なわつていなかつた自然な不規則性が発
現してくると考えられる。We consider the reason why the cross-sectional shape as shown in FIG. 5 appears as follows. That is, since the ethylene vinyl alcohol copolymer and the polyester are mixed in a non-uniform state, the polyester is selectively eluted and removed from the surface layer by applying an alkali weight reduction treatment to the fiber, and is not immersed in the alkali at all. Since the aggregate layer of EVAL remains on the surface of the fiber almost as it is, a complex irregular shape of the surface is likely to appear. In addition, since the mixed state of the two-component polymer retains non-uniformity both in the fiber cross-section direction and in the fiber length direction, the cross-section shape differs between filaments, and it differs in the length direction. However, it is thought that natural irregularities which have not been provided with the conventional synthetic fibers appear.
本発明は長繊維の織物や編物に100%使いで効果ある
だけでなく他の繊維と混繊、交撚、交織、交編して活性
することもでき、さらにまた短繊維として用いても同様
の効果が期待できることは言うまでもない。またさらに
本発明は、仮撚捲縮加工等の高次加工により、5角、6
角に類似した形状になつたり、紡糸時の異形断面ノズル
により3葉形、T形、4葉形、5葉形、6葉形、7葉
形、8葉形等多葉形や各種の断面形状となつても要は今
迄説明してきた繊維構造が発現されていれば、本発明の
良好な風合や機能効果を保持した複合繊維を得ることが
できる。The present invention is not only effective at 100% use for long fiber woven or knitted fabrics, but also can be activated by blending with other fibers, intertwisting, interweaving, interlacing, and even when used as short fibers. Needless to say, the effect can be expected. Further, the present invention provides a pentagon, 6
It has a shape similar to a corner, and has a multi-leaf shape such as three-lobe, T-shape, four-leaf, five-leaf, six-leaf, seven-leaf, eight-leaf, etc. Regarding the shape, as long as the fiber structure described so far is expressed, the conjugate fiber of the present invention having good feeling and functional effects can be obtained.
次に、前述した本発明の複合繊維の製造方法を詳細に
説明する。本発明の目的とする繊維構造を発現させるた
めには、大まかにいえば、紡糸時にポリエステルとEVAL
の2成分のポリマーがそれぞれのポリマーの集合状態が
ある程度に残つた、つまり不均一混合状態を保持した状
態を維持しつつ繊維化することが重要である。第6図
は、その紡糸方法の一例を実施するための混合紡糸口金
装置で、別々の溶融押出機よりそれぞれ押出されたポリ
エステル及びEVAL溶融流は、別々の計量機により所定量
計量された後、導入板1の導入孔2、3からそれぞれ導
入され、ミキシングプレート4、5に設けられた静止型
混合器11で所定条件下で混合され、中間板6を経てサン
ドボツクス7の過部12で過されたあと、フイルター
8、整流板9を経て口金板10から紡出される。Next, the method for producing the conjugate fiber of the present invention described above will be described in detail. In order to develop the fiber structure aimed at by the present invention, roughly speaking, polyester and EVAL are used during spinning.
It is important that the two-component polymer is formed into a fiber while maintaining the state of aggregation of the respective polymers to a certain extent, that is, the state of maintaining a heterogeneous mixed state. FIG. 6 shows a mixed spinneret device for carrying out an example of the spinning method, in which polyester and EVAL melt streams respectively extruded from separate melt extruders are weighed in predetermined amounts by separate weighing machines, The mixture is introduced from the introduction holes 2 and 3 of the introduction plate 1, mixed under predetermined conditions by the static mixer 11 provided on the mixing plates 4 and 5, passed through the intermediate plate 6, and passed through the intermediate portion 12 of the sandbox 7. After that, it is spun from the die plate 10 through the filter 8 and the current plate 9.
ここで静止型混合器11の混合素子の数を適切に選択す
ることが非常に重要である。この混合過程で2成分のポ
リマー層が23〜215層に分割されることが本発明にとっ
て重要である。Here, it is very important to appropriately select the number of mixing elements of the static mixer 11. That the polymer layer of the two components in this mixing process is divided into 2 3-2 15 layers is important to the present invention.
現在実用化されている静止型混合器は数種類あり、代
表的なものとしてケニックス(Kenics)社の180゜左右
に捩じった羽根を90゜ずらして配列した混合素子を有す
るスタチックミキサーを挙げることができる。かかるス
タチックミキサーでは混合素子数n個を通過させると2n
層に分割するので、23〜215層に分割させるには混合素
子数が3〜15の範囲であることが必要である。該スタチ
ックミキサーにおいて、混合素子数が16個以上の場合、
ポリエステルとEVALとの混合性がよくなりすぎて、均一
混合に近い状態となり、繊維化して後加工処理しても目
的とする繊維構造が発現しにくくなる。また、エレメン
ト数を16個以上にすると前述したポリエステルとEVALと
の繊維断面領域パラメーターであるLがD/20よりも小さ
くなり、不都合となる。There are several types of static mixers currently in practical use, and a typical example is a Kenics static mixer having a mixing element in which 180 ° twisted blades are arranged 90 ° shifted from each other. be able to. In such a static mixer, 2 n
Since it is divided into layers, it is necessary that the number of mixing elements is in the range of 3 to 15 in order to divide into 23 to 215 layers. In the static mixer, when the number of mixing elements is 16 or more,
The mixing property between the polyester and the EVAL becomes too good, resulting in a state close to uniform mixing, and it becomes difficult to develop the desired fiber structure even if the fiber is formed and post-processed. Further, when the number of elements is 16 or more, L, which is the fiber cross-sectional area parameter between the polyester and EVAL, becomes smaller than D / 20, which is inconvenient.
他に東レ社製ハイミキサー(Hi−Mixer)やチャール
ス・アンドロス(Charless & Ross)社製のロスIGSミ
キサー等を挙げることができる。これらのスタチックミ
キサーはn個の混合素子を通過すると4n層に分割される
ので、23〜215層に分割させるには混合素子数を2〜8
の範囲に設定すればよい。Other examples include a high-mixer (Hi-Mixer) manufactured by Toray and a loss IGS mixer manufactured by Charles & Ross. These static mixer is divided into 4 n layer passes through the n-number of mixing elements, the number of mixing elements To split into 2 3-2 15 layers 2-8
May be set in the range.
本発明において不均一混合状態を示す分割数は23〜2
15層であることが必要であるが、より不均一混合状態を
発現させるには分割数が24〜2N層であることが好まし
い。Division number indicating the heterogeneous mixture state in the present invention is 2 3-2
It is necessary that a 15-layer, it is preferred that the number of divisions for the expression of more heterogeneous mixture state 2 4 to 2 N layer.
また生産工程性の面からポリマーの分割数が多くなり
すぎると、ポリエステルとEVALとが均一混合しすぎて、
溶融混合時にポリエステルのエステル結合とEVALの水酸
基との間で化学反応が一部進み、ポリエステルの低分子
分解物と、ポリエステルとEVALとの反応した3次元架橋
のゲル化物が急激に発生してき、紡糸不能となつてくる
ことがわかつた。ゲル化物が発生するのを防ぐために
も、ポリエステルとEVALの混合を紡糸直前で実施し、単
時間で不均一混合し紡糸ノズルより押し出すことは2成
分ポリマー間でのゲル化反応の確率を減少させるという
点からも非常に有効な手段である。これにより、初めて
安定にポリエステルとEVALの混合ポリマーの繊維化が操
業化レベルで可能となつたのである。Also, if the number of polymer divisions is too large from the viewpoint of production processability, polyester and EVAL will be mixed too uniformly,
During the melt mixing, a chemical reaction partially progresses between the ester bond of the polyester and the hydroxyl group of the EVAL, and a low-molecular decomposed product of the polyester and a gelled product of the three-dimensional cross-linked product of the polyester and the EVAL are rapidly generated. I realized that it would be impossible. Mixing polyester and EVAL immediately before spinning to prevent the formation of gelled matter, non-uniform mixing in a single hour and extrusion from the spinning nozzle reduces the probability of gelation reaction between the two-component polymers. This is also a very effective means. As a result, for the first time, it has become possible to stabilize the fiberization of a mixed polymer of polyester and EVAL at the operational level.
なお本方法においては、静止型混合器で不均一混合さ
れた2成分からなるポリマーを、静止混合器を経てノズ
ルに至るまでの間で、金網、金属不織布フイルター、サ
ンドフイルター等混合物の分割細化部材を通すことが必
要である。即ち、静止混合器を経てノズルに至るまでの
間に前記の如き分割細化部材を通すことによつて、A成
分であるEVALが大きな集合単位の層状になることを防
ぎ、A成分とB成分の界面の細かい島状分散を付与し、
2成分ポリマーの不均一混合状態を安定化させ、紡糸性
が良好となるからである。In this method, the two-component polymer mixed inhomogeneously in the static mixer is divided into thinner pieces of a mixture such as a wire mesh, a metal non-woven fabric filter, and a sand filter before reaching the nozzle through the static mixer. It is necessary to pass the member. That is, by passing through the above-mentioned divided thinning member before reaching the nozzle through the static mixer, EVAL as the A component is prevented from forming a large aggregate unit layer, and the A component and the B component are prevented. To provide fine island dispersion at the interface of
This is because the heterogeneous mixing state of the two-component polymer is stabilized, and the spinnability is improved.
EVALとポリエステルの静止型混合器における混合比率
は、その重量比で5:95〜40:60の範囲にする必要があ
る。EVALの混合比率が5重量%以下になると、本発明の
EVALのポリマー物性に基づく天然繊維の風合が十分に顕
在化してこなくなり好ましくない。また40重量%以上に
なると、紡糸工程性、延伸工程性が低下してくるため好
ましくないとともに、繊維物性的にも本来のポリエステ
ルの性能が低下し、強度が低くなるため好ましくない。
また、用いるEVALの重合度はあまり低くなると、紡糸時
にポリエステルとの溶融粘度差が大きくなりすぎ、不均
一混合ポリマーのバランスが悪くなり、紡糸性が低下し
好ましくない。また、紡糸性の点でEVALのメルトインデ
ックス(JIS K−6730−1977に準拠した190℃下、2160
gの荷重下)は20以下であることが必要である。The mixing ratio of the EVAL and the polyester in the static mixer should be in the range of 5:95 to 40:60 by weight. When the mixing ratio of EVAL becomes 5% by weight or less, the present invention
The feeling of natural fibers based on the polymer properties of EVAL does not sufficiently appear, which is not preferable. On the other hand, if the content is more than 40% by weight, the spinning processability and the stretching processability are unfavorably reduced, and also the physical properties of the polyester are undesirably reduced, and the strength is undesirably reduced.
On the other hand, if the polymerization degree of the EVAL used is too low, the difference in melt viscosity from the polyester during spinning becomes too large, and the balance of the heterogeneous mixed polymer becomes poor, and the spinnability decreases, which is not preferable. In addition, in terms of spinnability, the melt index of EVAL (at 190 ° C. in accordance with JIS K-6730-1977, 2160
g) under load must be 20 or less.
また不均一混合複合繊維へのアルカリ減量処理は、ポ
リエステル繊維に対して行なわれる通常のアルカリ処理
条件が採用できる。In addition, the alkali reduction treatment for the heterogeneous mixed conjugate fibers can be performed under the usual alkali treatment conditions performed for polyester fibers.
(実施例) 次に本発明を実施例により具体的に説明するが、これ
によつて本発明はなんら限定されるものではない。(Examples) Next, the present invention will be described specifically with reference to examples, but the present invention is not limited thereto.
尚以下の実施例および比較例において、ポリエステル
の固有粘度の測定は、フエノールとテトラクロルエタン
の等量混合溶媒を用い30℃恒温槽中で、エーベローテ型
粘度計を用いて測定した。In the following Examples and Comparative Examples, the intrinsic viscosity of the polyester was measured using an Evelote viscometer in a constant temperature bath at 30 ° C. using a mixed solvent of phenol and tetrachloroethane in equivalent amounts.
また洗濯再汚染性テストは、汚染液としてステアリン
酸、オレイン酸、牛脂、オリーブ油、セチルアルコー
ル、固形パラフイン、コレステロール、カーボンブラツ
ク、粘土、シリカ、酸化第2鉄、n−デカン、ポルトラ
ンドセメントを適当割合で混合し合成洗剤と水を加えて
ホモミキサーで混合攪拌して汚染液とし、ラウンダオメ
ーターを用いて汚染液中で汚染させ、ついで水道水の流
水洗で洗浄後乾燥させて、JIS汚染用グレースケールで
判定評価したものである。In addition, the washing recontamination test was carried out by using stearic acid, oleic acid, beef tallow, olive oil, cetyl alcohol, solid paraffin, cholesterol, carbon black, clay, silica, ferric oxide, n-decane, and portland cement as contaminants in an appropriate ratio. Mixed with a synthetic detergent and water, mixed and stirred with a homomixer to make a contaminated liquid, contaminated in the contaminated liquid using a round-dometer, then washed with running tap water, dried, and used for JIS contamination. This is determined and evaluated in a gray scale.
実施例1 エチレン成分48モル%、けん化度99%でメルトインデ
ツクスが14.0g/10minのエチレンビニルアルコールコポ
リマー(A)と、固有粘度が0.70のポリエチレンテレフ
タレート(B)とをそれぞれ別々の押出機にて溶融押出
し、A対Bの比率が15対85重量%となるようにそれぞれ
ギヤポンプで計量した後、紡糸パツクへ供給し、その後
第6図に示した装置により紡糸パツク内でケニツクス社
製の4エレメントスタチツクミキサーで不均一混練し、
その後サンドフイルターを経て、丸孔ノズルより口金温
度290℃で吐出し、捲取速度1000m/minで溶融紡糸した。
得られた紡糸原糸を通常のローラープレート方式の延伸
機により、ホツトローラー75℃、ホツトプレート120
℃、延伸倍率3.2倍により延伸し75d/36fのマルチフイラ
メントを得た。紡糸性、延伸性は良好で問題なかつた。
得られたマルチフイラメントを経糸及び緯糸として使い
1/1の平織物を製織した。製織工程も特に問題なく実施
できた。該生機平織物を通常の方法により処理した後、
アルカリ減量処理を実施し、約20%減量の平織物を得、
その後通常の方法により染色を実施した。Example 1 An ethylene vinyl alcohol copolymer (A) having an ethylene component of 48 mol%, a saponification degree of 99% and a melt index of 14.0 g / 10 min, and a polyethylene terephthalate (B) having an intrinsic viscosity of 0.70 were separately extruded. The mixture was melt-extruded and weighed by a gear pump so that the ratio of A to B became 15: 85% by weight, and then supplied to the spinning pack. Thereafter, the product shown in FIG. Knead unevenly with an element static mixer,
Thereafter, the mixture was discharged from a round hole nozzle at a die temperature of 290 ° C. through a sand filter, and was melt-spun at a winding speed of 1000 m / min.
The obtained spun yarn is heated with a hot roller 75 ° C. and a hot plate 120 by a usual roller plate type drawing machine.
The film was stretched at 3.2 ° C. and a stretching ratio of 3.2 to obtain a 75d / 36f multifilament. The spinnability and stretchability were good and no problem.
Using the obtained multifilament as warp and weft
Weave a 1/1 plain weave. The weaving process could be performed without any problem. After processing the greige plain fabric by a usual method,
We carry out alkali weight loss treatment and get plain fabric of weight loss of approximately 20%,
Thereafter, staining was performed by a usual method.
比較例1 実施例1と同様のエチレンビニルアルコールコポリマ
ー(A)を用い、ポリエチレンテレフタレート(B)と
をチツプの状態で成分重量比15:85に混合し、1本の押
出機にて溶融押出して、ギヤーポンプで計量した後、紡
糸パツクへ供給し、サンドフイルターを経て丸孔ノズル
より口金温度290℃で吐出し、巻取速度1000m/minで溶融
紡糸した。以後実施例1と同様の方法で75d/36fのマル
チフイラメントを得て1/1平織物を同様に作成し、アル
カリ減量処理を実施した。また対照用にPET100%の75d/
36fフイラメント糸の同一組織、目付のアルカリ減量処
理した織物を評価の比較に用いた。Comparative Example 1 Using the same ethylene-vinyl alcohol copolymer (A) as in Example 1, mixed with polyethylene terephthalate (B) at a component weight ratio of 15:85 in the state of a chip and melt-extruded with one extruder. After being measured by a gear pump, the mixture was supplied to a spinning pack, discharged through a round hole nozzle through a sand filter at a die temperature of 290 ° C., and melt-spun at a winding speed of 1000 m / min. Thereafter, in the same manner as in Example 1, a 75d / 36f multifilament was obtained, a 1/1 plain fabric was similarly prepared, and an alkali weight reduction treatment was performed. For control, PET100% 75d /
A fabric having the same structure as that of the 36f filament yarn and a basis weight reduced alkali treatment was used for comparison of evaluation.
実施例1と比較例1の結果を第1表に示す。また実施
例1で得られた紡糸原糸の繊維断面が第1図に、比較例
1で得られた紡糸原糸のそれが第4図に示される。第1
表に示すように比較例1は工程性の面で、EVALがゲル化
しパツクづまりを生じ3時間程度で紡糸性不良になるの
に対して実施例1でのその状況も発生せず良好であつ
た。一方繊維断面のA、B成分の偏在パセメーターは となり染加工後の織ウエーブは良く縮んで風合はふくら
み、しなやかさ共に良好で、比較例1や対照のサンプル
が、ペーパーライクな織物になつたのに比し、ソフト感
と反発感を有し高級感のある生地となつた。また機能性
の面では洗濯汚染液による再汚染評価でも比較例や対照
サンプルに比べ抜群の効果であつた。Table 1 shows the results of Example 1 and Comparative Example 1. The fiber cross section of the spun yarn obtained in Example 1 is shown in FIG. 1, and that of the spun yarn obtained in Comparative Example 1 is shown in FIG. First
As shown in the table, Comparative Example 1 was good in terms of processability, although EVAL gelled and packing became jammed, resulting in poor spinnability in about 3 hours. . On the other hand, the uneven distribution of the A and B components of the fiber cross section is The woven wave after the dyeing process shrinks well and the texture is swelled and the suppleness is good, and the sample of Comparative Example 1 and the control has softness and resilience as compared to the paper-like fabric. And high-quality cloth and came together. In terms of functionality, the recontamination evaluation with the washing contaminant was also remarkably effective as compared with the comparative example and the control sample.
なお実施例1の織物を構成している繊維(即ち、アル
カリ減量後の繊維)について、顕微鏡により繊維断面を
調べたところ第5図の写真のような断面形状が観察さ
れ、各単繊維間で異なつた形状のランダムな表面凹凸形
状を有していることがわかつた。When the cross section of the fiber constituting the woven fabric of Example 1 (that is, the fiber after alkali reduction) was examined with a microscope, a cross-sectional shape as shown in the photograph of FIG. 5 was observed. It was found that it had random surface irregularities of different shapes.
実施例2〜5、比較例2、3 本実施例は、繊維にアルカリ減量処理を行なわない場
合のものである。実施例1と同一のエチレンビニルアル
コールコポリマーとポリエチレンテレフタレートを用い
第2表に示す条件で実施例1と同様の方法により繊維化
を実施し、実施例1と同様にして平織物を作成し染色仕
上加工を行つた。EVALの混合比率の小さい比較例2は工
程性良好で問題なかつたが得られた織物の風合に特徴が
なく、機能性の面でも特徴がなく好ましいものが得られ
なかつた。EVALの混合比率の大きい比較例3は紡糸性が
不安定でビス落ちによる単糸切れが多く良好な紡糸原糸
が得られなかつた。そのため延伸性も不良で、風合を評
価できるような織物が得られなかつた。実施例2と3は
EVAL(A)とポリエステル(B)との混合比率A/Bを7/9
3及び30/70として実施したがいずれも工程性は良好で織
物の風合洗濯再汚染防止性も良好であつた。実施例4と
5は紡糸パツク内のスタテイツクミキサーのエレメント
数をそれぞれ8エレメント、12エレメントとして他は実
施例1と同様の方法で製糸としたものであるが、いずれ
も工程性は良好であつた。紡糸原糸でのA、B成分偏在
パラメーターD/Lは5〜25と有効な偏在部を有してお
り、平均的には7〜15の数値が得られ、風合や機能性の
面で特徴が得られた。 Examples 2 to 5 and Comparative Examples 2 and 3 In this example, the fibers were not subjected to the alkali reduction treatment. Using the same ethylene vinyl alcohol copolymer and polyethylene terephthalate as in Example 1, fiberization was carried out in the same manner as in Example 1 under the conditions shown in Table 2, and a plain fabric was prepared and dyed in the same manner as in Example 1. Processing was done. In Comparative Example 2 in which the mixing ratio of EVAL was small, the processability was good and there was no problem, but there was no characteristic in the feeling of the obtained woven fabric, and there was no characteristic in terms of functionality, and a favorable one could not be obtained. In Comparative Example 3 in which the mixing ratio of EVAL was large, the spinning property was unstable, and the single yarn breakage due to screw drop was large, and a good spun yarn could not be obtained. Therefore, the stretchability was also poor, and a woven fabric whose texture could be evaluated could not be obtained. Examples 2 and 3
The mixing ratio A / B of EVAL (A) and polyester (B) is 7/9
The tests were carried out at 3 and 30/70, but the processability was good and the fabric was good in preventing the washing and re-staining of the fabric. In Examples 4 and 5, the number of elements of the static mixer in the spinning pack was changed to 8 and 12, respectively, and the spinning was performed in the same manner as in Example 1 except that the processability was good. Was. The A / B component uneven distribution parameter D / L in the spun yarn has an effective uneven portion of 5 to 25, and a numerical value of 7 to 15 is obtained on average. Features were obtained.
実施例6、7 エチレン成分52モル%、けん化度9.9%でメルトイン
デツクス(MI値)が6.0のエチレンビニルアルコールコ
ポリマー(A)を用い他は実施例1と同様の条件で繊維
化を実施した。ただし紡糸ノズルと混合比A/Bの比率の
2点を変え、実施例6はT型ノズルを用い混合比A/B=1
0/90と、実施例7はドツグボーン型ノズルを用い、混合
比A/B=18/82とした。 Examples 6 and 7 Fiberization was performed under the same conditions as in Example 1 except that an ethylene vinyl alcohol copolymer (A) having an ethylene component of 52 mol% and a saponification degree of 9.9% and a melt index (MI value) of 6.0 was used. . However, the two points of the spinning nozzle and the mixing ratio A / B were changed, and in Example 6, the mixing ratio A / B = 1 using a T-type nozzle.
In Example 7, a dog bone type nozzle was used, and the mixing ratio A / B was set to 18/82.
各々、製糸後に得られた繊維(紡糸原糸)の断面図が
第2図と第3図に示される。紡糸性、延伸性、製織製等
工程性は良好であつた。延伸後の糸条を熱水中に浸漬す
ると真直ぐであつたフイラメントは微弱な歪を各所で生
じ、ランダムな湾曲をもつてゆがみを生じていた。織物
を25%のアルカリ減量加工すると、両者共ふくらみのあ
る、野蛮糸織物調となり、好ましい風合のものが得られ
た。FIGS. 2 and 3 are cross-sectional views of the fibers (spun raw yarns) obtained after the spinning. The processability such as spinnability, stretchability and weaving was good. When the drawn yarn was immersed in hot water, the straightened filaments generated slight distortions at various places, causing distortion with random curvature. When the woven fabric was subjected to a 25% alkali weight reduction treatment, both had a swelling, barbarian yarn-like fabric and a favorable texture.
実施例8、9比較例4、5 エチレン成分含量の異なつたエチレンビニルアルコー
ルコポリマーを用いポリエステルB成分として[η]=
0.68のPETを用い他は実施例1と同様の方法により繊維
化を実施し、ついで織物を作成し染色加工を行つた。た
だしプレセツト後に熱水130℃30分の高温高圧熱水処理
実施し、膨潤加工を行つた後に、15%のアルカリ減量を
行つた。しかる後に染仕上して風合評価した。Examples 8 and 9 Comparative Examples 4 and 5 Using an ethylene vinyl alcohol copolymer having a different ethylene component content, [η] = polyester B component was used.
Except using 0.68 PET, fiberization was carried out in the same manner as in Example 1, and then a woven fabric was prepared and dyed. However, after the pre-setting, a high-temperature and high-pressure hot water treatment was performed at 130 ° C. for 30 minutes, and after swelling processing, an alkali weight reduction of 15% was performed. Thereafter, the fabric was dyed and evaluated for texture.
比較例4はエチレン含量25モル%MI値0.6 実施例8はエチレン含量32モル%MI値1.6 実施例9はエチレン含量44モル%MI値6.0 比較例5はエチレン含量80モル%MI値40.0 のものを用いて実施した。結果を第3表に示すように比
較例4は曳糸性不良のためと、Aポリマーのゲル化物が
紡糸フイルターに詰つて圧力上昇すると共に繊維中にゲ
ル化物が混入して、延伸性も悪く、風合評価しうる編物
はできなかつた。一方ビニルアルコール分量モル%の少
ない比較例5では工程性は問題なかつたが、得られた編
物の風合はふくらみがなく、乾燥工程で編地の形態が変
化しタツチの良いものに仕上がらなかつた。実施例8、
9は工程性良好でかつ編地は麻混スパンニツトの如き良
好な風合とタツチになつた。Comparative Example 4 has an ethylene content of 25 mol% MI value of 0.6 Example 8 has an ethylene content of 32 mol% MI value of 1.6 Example 9 has an ethylene content of 44 mol% MI value of 6.0 Comparative Example 5 has an ethylene content of 80 mol% MI value of 40.0 Was carried out using As shown in Table 3, the result of Comparative Example 4 was poor due to poor spinnability, and the gelled product of the A polymer was clogged in the spinning filter, the pressure increased, and the gelled product was mixed into the fiber, resulting in poor drawability. No knitted fabric whose texture can be evaluated has been produced. On the other hand, in Comparative Example 5 in which the vinyl alcohol content was small in mole%, the processability was not a problem, but the texture of the obtained knitted fabric did not swell, and the form of the knitted fabric changed in the drying process, so that the product did not have a good touch. . Example 8
No. 9 had good processability, and the knitted fabric had a good feeling and touch like hemp-mixed spannit.
比較例6、7 紡糸パツク内のスタテイツクキミサーエレメント数を
変更し他の条件は実施例1と全く同じ条件で繊維化を実
施した。比較例6は16エレメントに、比較例7は20エレ
メントにして繊維化した。両者共にAポリマー(EVAL)
とBポリマー(ポリエステル)との混練性が良くなす
ぎ、EVALの水酸基とポリエステルのエステル結合が2成
分ポリマーの溶融混合状態下で反応が発生し、混合ポリ
マー中にゲル化物が多く生成するためと考えられ紡糸フ
イルター詰りが発生しやすくなり、紡糸パツクを頻繁に
交換しなければ紡糸の連続運転ができなかつた。特にエ
レメント数が20の比較例7では紡糸時の単糸切れ、延伸
時の毛羽発生が多くなり収率が低下し、工程性は不良で
あつた。一方紡糸原糸におけるA、B偏在パラメーター
であるD/Lは部分的に20未満のものも含まれていたがほ
とんど20以上となり、編物を作成して実施例8と同様に
加工したがペーパーライクなふくらみのない風合のもの
にしかならなかつた。 Comparative Examples 6 and 7 Fiberization was carried out under the same conditions as in Example 1 except that the number of the static mixer elements in the spinning pack was changed. Comparative Example 6 had 16 elements, and Comparative Example 7 had 20 elements. Both are A polymers (EVAL)
The kneadability of the polymer and the B polymer (polyester) is too good, and the reaction between the hydroxyl group of EVAL and the ester bond of the polyester occurs in the melt-mixed state of the two-component polymer, and a large amount of gelled matter is generated in the mixed polymer. It is considered that clogging of the spinning filter is likely to occur, and continuous operation of spinning cannot be performed unless the spinning pack is frequently replaced. In particular, in Comparative Example 7, in which the number of elements was 20, the single yarn breakage during spinning and the generation of fluff during stretching increased, the yield was reduced, and the processability was poor. On the other hand, the D / L, which is a parameter of uneven distribution of A and B in the spun yarn, was partially included even though it was less than 20, but was almost 20 or more, and a knitted fabric was prepared and processed in the same manner as in Example 8; It was nothing but a swelling feeling.
実施例10、11 ポリエステルとして固有粘度[η]0.90のポリブチレ
ンテレフタレートを用い、エチレンビニルアルコールコ
ポリマーとしては、エチレン成分52モル%、けん化度99
%で実施例10はメルトインデツクス14.0、実施例11はメ
ルトインデツクス6.0のものを用い、実施例1と同様の
方法により繊維化を実施した。紡糸口金温度270℃で実
施し、実施例10はポリマー混合比率はA/B 15/85、実施
例11はA/B 30/70で捲取速度1200m/minで紡糸原糸採取を
行なつた。得られた紡糸原糸を通常のローラープレート
方式の延伸機により、ホツトローラー50℃、ホツトプレ
ート120℃、延伸倍率2.0倍により延伸し75d/36fのマル
チフイラメントを得た。紡糸性、延伸性は良好で問題な
かつた。Examples 10 and 11 Polybutylene terephthalate having an intrinsic viscosity [η] of 0.90 was used as the polyester, and 52 mol% of the ethylene component and 99% of the saponification degree were used as the ethylene-vinyl alcohol copolymer.
In Example 10, the melt index was 14.0, and in Example 11, the melt index was 6.0, and fiberization was carried out in the same manner as in Example 1. This was carried out at a spinneret temperature of 270 ° C., and in Example 10, the mixing ratio of the polymer was A / B 15/85, and in Example 11, the spinning original yarn was collected at a winding speed of 1200 m / min at A / B 30/70. . The obtained spun yarn was drawn by a usual roller plate type drawing machine at a hot roller of 50 ° C., a hot plate of 120 ° C. and a draw ratio of 2.0 to obtain a 75d / 36f multifilament. The spinnability and stretchability were good and no problem.
得られたマルチフイラメントを経糸及び緯糸として使
い1/1の平織物を製織した。製織工程も特に問題なく実
施できた。該生機平織物を通常の方法により処理した
後、アルカリ減量をポリエチレンテレフタレートの場合
より長い時間実施し、約20%減量の平織物を得、その後
実施例1と同様の方法により120℃で染色を実施した。
得られた織物は良好は風合を有する柔らかく、しかもシ
ヤリ感を有した天然麻繊維に似たものが得られた。Using the obtained multifilament as a warp and a weft, a 1/1 plain weave was woven. The weaving process could be performed without any problem. After the plain woven fabric is treated in the usual manner, alkali weight reduction is carried out for a longer time than in the case of polyethylene terephthalate to obtain a plain woven fabric with a weight loss of about 20%. Carried out.
The obtained woven fabric was soft and had a good feeling, and was similar to natural hemp fiber having a shiny feeling.
第1図、第2図、第3図は本発明繊維の断面写真の模写
図である。第4図は均一混合の比較例繊維の断面写真の
模写図であり、その断面の外接円の繊維直径DとB成分
偏在の見掛け円の直径Lを例示したものである。第5図
は繊維の形状を示す図面に代る写真で、アルカリ処理し
た後の本発明繊維の断面形状を示し、B成分がアルカリ
溶液で浸蝕されて繊維表面を凹凸をなした形状を示す。
第6図は本発明繊維を製造するための紡糸口金装置の一
例を示す断面図で、1が導入板、2、3はポリマー導入
孔、4、5はミキシングプレート、6は中間板、7はサ
ンドボツクス、8はフイルター、9は整流板、10は口金
板、11は静止型混合器、12は過部を示す。1, 2 and 3 are schematic views of cross-sectional photographs of the fiber of the present invention. FIG. 4 is a simulated view of a cross-sectional photograph of a comparative example fiber of uniform mixing, which illustrates the fiber diameter D of a circumscribed circle and the apparent diameter L of a B component unevenly distributed in the cross section. FIG. 5 is a photograph instead of a drawing showing the shape of the fiber, and shows the cross-sectional shape of the fiber of the present invention after alkali treatment, and shows the shape of the fiber surface made uneven by the erosion of the B component with an alkaline solution.
FIG. 6 is a cross-sectional view showing an example of a spinneret device for producing the fiber of the present invention, wherein 1 is an introduction plate, 2 and 3 are polymer introduction holes, 4 and 5 are mixing plates, 6 is an intermediate plate, and 7 is Sandboxes, 8 is a filter, 9 is a current plate, 10 is a base plate, 11 is a static mixer, and 12 is an excess part.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹上 智康 愛媛県西条市朔日市892番地 株式会社 クラレ内 合議体 審判長 宮本 晴視 審判官 河合 厚夫 審判官 船越 巧子 (56)参考文献 特開 昭58−4820(JP,A) 特開 平1−132830(JP,A) 特公 昭56−5846(JP,B2) 特公 昭47−40888(JP,B1) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tomoyasu Takegami 892, Sakuhi-shi, Saijo-shi, Ehime Prefecture Kuraray Co., Ltd. JP-A-58-4820 (JP, A) JP-A-1-132830 (JP, A) JP-B-56-5846 (JP, B2) JP-B-47-40888 (JP, B1)
Claims (3)
%以上であって、JIS K 6730−1977に準拠した190℃
下、2160gの荷重下でのメルトインデックスが20以下で
あるエチレン酢酸ビニル共重合体けん化物(A)と、ポ
リエチレンテレフタレートおよび/またはポリブチレン
テレフタレートを主成分とする熱可塑性ポリエステル
(B)とを別々に溶融押出し、紡糸ノズルに至る直前で
静止型混合器を用いて重量比率A:B=5:95〜40:60の範
囲、分割数が23〜215となるように不均一混合し、しか
る後、混合物を分割細化部材を通して紡糸ノズルより押
出して繊維化してなる繊維であって、繊維断面内におい
てA成分が島状態に分布し、A成分の存在しないB成分
領域には繊維直径の少なくとも1/20の直径の円が描ける
複合繊維。1. An ethylene content of 30 to 70 mol% and a saponification degree of 95.
% Or more and 190 ° C in accordance with JIS K 6730-1977
Separately, a saponified ethylene vinyl acetate copolymer (A) having a melt index of 20 or less under a load of 2160 g and a thermoplastic polyester (B) containing polyethylene terephthalate and / or polybutylene terephthalate as a main component are separately separated. melt extrusion, the weight ratio using a static mixer immediately before reaching the spinning nozzle a to: B = 5: 95~40: 60 range, the division number is 2 3-2 15 become so mixed heterogeneous, Thereafter, the mixture is a fiber formed by extruding the mixture from the spinning nozzle through a dividing thinning member and forming a fiber. In the fiber cross section, the A component is distributed in an island state, and the B component region where the A component does not exist has a fiber diameter of A composite fiber that can draw a circle with a diameter of at least 1/20.
%以上であって、JIS K 6730−1977に準拠した190℃
下、2160gの荷重下でのメルトインデックスが20以下で
あるエチレン酢酸ビニル共重合体けん化物(A)と、ポ
リエチレンテレフタレートおよび/またはポリブチレン
テレフタレートを主成分とする熱可塑性ポリエステル
(B)とを別々に溶融押出し、紡糸ノズルに至る直前で
静止型混合器を用いて重量比率A:B=5:95〜40:60の範
囲、分割数が23〜215となるように不均一混合し、しか
る後、混合物を分割細化部材を通して紡糸ノズルより押
出して繊維化してなる繊維であって、繊維断面内におい
てA成分が島状態に分布し、A成分の存在しないB成分
領域には繊維直径の少なくとも1/20の直径の円が描ける
複合繊維を、 アルカリ減量加工することにより、断面形状が単繊維間
でそれぞれ異なったランダムな表面凹凸異形形状を形成
してなる複合繊維。2. An ethylene content of 30 to 70 mol% and a saponification degree of 95.
% Or more and 190 ° C in accordance with JIS K 6730-1977
Separately, a saponified ethylene vinyl acetate copolymer (A) having a melt index of 20 or less under a load of 2160 g and a thermoplastic polyester (B) containing polyethylene terephthalate and / or polybutylene terephthalate as a main component are separately separated. melt extrusion, the weight ratio using a static mixer immediately before reaching the spinning nozzle a to: B = 5: 95~40: 60 range, the division number is 2 3-2 15 become so mixed heterogeneous, Thereafter, the mixture is a fiber formed by extruding the mixture from the spinning nozzle through a dividing thinning member and forming a fiber. In the fiber cross section, the A component is distributed in an island state, and the B component region where the A component does not exist has a fiber diameter of A composite fiber formed by forming a random surface irregular shape with different cross-sectional shapes between single fibers by subjecting a composite fiber that can draw a circle of at least 1/20 in diameter to alkali weight reduction processing
%以上であって、JIS K 6730−1977に準拠した190℃
下、2160gの荷重下でのメルトインデックスが20以下で
あるエチレン酢酸ビニル共重合体けん化物(A)と、ポ
リエチレンテレフタレートおよび/またはポリブチレン
テレフタレートを主成分とする熱可塑性ポリエステル
(B)とを別々に溶融押出し、紡糸ノズルに至る直前で
静止型混合器を用いて重量比率A:B=5:95〜40:60の範
囲、分割数が23〜215となるように不均一混合し、しか
る後、混合物を分割細化部材を通して紡糸ノズルより押
出して繊維化することを特徴とする複合繊維の製造方
法。3. An ethylene content of 30 to 70 mol% and a saponification degree of 95.
% Or more and 190 ° C in accordance with JIS K 6730-1977
Separately, a saponified ethylene vinyl acetate copolymer (A) having a melt index of 20 or less under a load of 2160 g and a thermoplastic polyester (B) containing polyethylene terephthalate and / or polybutylene terephthalate as a main component are separately separated. melt extrusion, the weight ratio using a static mixer immediately before reaching the spinning nozzle a to: B = 5: 95~40: 60 range, the division number is 2 3-2 15 become so mixed heterogeneous, Thereafter, the mixture is extruded from a spinning nozzle through a division thinning member to be fiberized, thereby producing a conjugate fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1233590A JP2622175B2 (en) | 1988-09-13 | 1989-09-07 | Heterogeneously mixed conjugate fiber and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23029688 | 1988-09-13 | ||
JP63-230296 | 1988-09-13 | ||
JP1233590A JP2622175B2 (en) | 1988-09-13 | 1989-09-07 | Heterogeneously mixed conjugate fiber and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02169721A JPH02169721A (en) | 1990-06-29 |
JP2622175B2 true JP2622175B2 (en) | 1997-06-18 |
Family
ID=26529265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1233590A Expired - Fee Related JP2622175B2 (en) | 1988-09-13 | 1989-09-07 | Heterogeneously mixed conjugate fiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2622175B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3665288B2 (en) * | 2001-12-10 | 2005-06-29 | 株式会社クラレ | Blended yarn |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS551379A (en) * | 1979-01-10 | 1980-01-08 | Nippon Synthetic Chem Ind Co Ltd:The | Conjugate fiber |
JPS565846A (en) * | 1979-06-27 | 1981-01-21 | Matsushita Electric Works Ltd | Molding phenolic resin material |
JPS584820A (en) * | 1981-06-26 | 1983-01-12 | Kuraray Co Ltd | Production of thermally fusible low-shrinkage conjugate spun yarn |
JPH01132830A (en) * | 1987-11-13 | 1989-05-25 | Daiwabo Co Ltd | Conjugate fiber and production method thereof |
-
1989
- 1989-09-07 JP JP1233590A patent/JP2622175B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02169721A (en) | 1990-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0361191B1 (en) | Composite fiber and process for producing the same | |
WO2009088008A1 (en) | Normal pressure cation dyeable polyester and fiber | |
KR20030028571A (en) | Composite fiber | |
JP2544783B2 (en) | Composite fiber and manufacturing method thereof | |
JP2622175B2 (en) | Heterogeneously mixed conjugate fiber and method for producing the same | |
AU709523B2 (en) | Method for manufacturing suede-like woven fabrics | |
JP2571834B2 (en) | Polyester fiber having hemp-like feeling and method for producing the same | |
JP3665171B2 (en) | Composite split filament and assembly comprising the same | |
JPH0625918A (en) | Easy-raising polyester fiber and its production | |
JP2882692B2 (en) | Composite fiber aggregate and method for treating fabric using the fiber | |
JP4667632B2 (en) | Fibrilized fiber and method for producing fibrillated fiber | |
JP3727419B2 (en) | Hygroscopic polyester fiber and its production method | |
JP4236775B2 (en) | Special polyester-based structurally processed yarn with high void development performance | |
JP3638707B2 (en) | Polyester multifilament patch and method for producing the same | |
JPH08209443A (en) | Differently shrinkable polyester blended yarn | |
JPS6339686B2 (en) | ||
JPH01272862A (en) | Cation dyeable polyester fiber excellent in feeling and production thereof | |
JP3029682B2 (en) | Composite fiber aggregate having excellent retardation crimp | |
JP3106896B2 (en) | False twisted yarn | |
JPH0665762B2 (en) | Special composite fiber and method for producing the same | |
JPH10266029A (en) | Combined yarn of polyester filaments with different shrinkage | |
JP2870700B2 (en) | Cationic dyeable fiber | |
JPH09279417A (en) | Polyester fiber and combined filament yarn having different shrinkage | |
JPH0737682B2 (en) | Polyester fiber having excellent anti-frictional property and method for producing the same | |
JP2000239931A (en) | Combined filament yarn of core-sheath type conjugate fiber which can be fibrillated, with components with different shrinkage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |