JP2620202B2 - Electromagnetic flow meter detector - Google Patents
Electromagnetic flow meter detectorInfo
- Publication number
- JP2620202B2 JP2620202B2 JP15852294A JP15852294A JP2620202B2 JP 2620202 B2 JP2620202 B2 JP 2620202B2 JP 15852294 A JP15852294 A JP 15852294A JP 15852294 A JP15852294 A JP 15852294A JP 2620202 B2 JP2620202 B2 JP 2620202B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic pole
- axis
- pair
- core
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005284 excitation Effects 0.000 claims description 23
- 238000005259 measurement Methods 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims 1
- 230000004907 flux Effects 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は電磁流量計検出器に係
り、特に小口径のフランジレス形の電磁流量計検出器に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic flowmeter detector, and more particularly to a small-diameter flangeless electromagnetic flowmeter detector.
【0002】[0002]
【従来の技術】従来形のフランジレス形電磁流量形検出
器の構造を図5及び図6に示す。図5は測定管軸方向と
直角な方向の断面図で、図6は図5のY−Y′断面図で
ある。図5において電磁流量形検出器の構造は、測定管
1、電極2、励磁コイル3、コア4、ケース5によって
構成されている。そして励磁コイル3の軸には測定管1
外周面に沿ってコア4の励磁aが励磁コイル3の内側ま
でのびている。磁極寸法l2は流体の偏流による誤差を
小さくする磁束分布が得られるようl2=約0.8Dに設
定されている。励磁コイル3は測定管1に取付けられた
電極2の近傍まで測定管1の外周面に沿って、巻装され
ている。ケース5の外径は、図示していないが配管フラ
ンジのボルトケース5にぶつからないようフランジ規格
によって決められる。したがって励磁コイル3の断面積
はケース5の内径、測定管1の外径、磁極寸法l2によ
って決められてしまう。励磁コイル3、コア4の磁界発
生部によって生じる磁束密度は、このかぎられた励磁コ
イル3の断面積では巻回数が少なく、励磁コイル3の線
径を細くして、励磁コイル3の巻回数を多くするか、励
磁コイル3に流す励磁電流を大きくするかのいずれかに
より、必要な値を得る必要がある。2. Description of the Related Art The structure of a conventional flangeless electromagnetic flow rate detector is shown in FIGS. FIG. 5 is a sectional view in a direction perpendicular to the axial direction of the measuring tube, and FIG. 6 is a sectional view taken along line YY ′ of FIG. In FIG. 5, the structure of the electromagnetic flow rate detector includes a measurement tube 1, an electrode 2, an exciting coil 3, a core 4, and a case 5. The measuring tube 1 is mounted on the axis of the exciting coil 3.
The excitation a of the core 4 extends to the inside of the excitation coil 3 along the outer peripheral surface. The magnetic pole dimension l 2 is set to l 2 = about 0.8D so as to obtain a magnetic flux distribution that reduces an error due to fluid drift. The exciting coil 3 is wound along the outer peripheral surface of the measuring tube 1 to the vicinity of the electrode 2 attached to the measuring tube 1. Although not shown, the outer diameter of the case 5 is determined by a flange standard so as not to hit the bolt case 5 of the piping flange. Thus the cross-sectional area of the excitation coil 3 is the inner diameter of the case 5, the outer diameter of the measuring tube 1, thus determined by the magnetic pole dimension l 2. The magnetic flux density generated by the magnetic field generating portion of the exciting coil 3 and the core 4 has a small number of turns in the limited cross-sectional area of the exciting coil 3, and the wire diameter of the exciting coil 3 is reduced to reduce the number of turns of the exciting coil 3. It is necessary to obtain a necessary value by either increasing the value or increasing the exciting current flowing through the exciting coil 3.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来励磁コイ
ル3の線径を細くすることは生産性や励磁コイル3の抵
抗が大となり必要な励磁電流を得るのに高電圧を要する
ため、或る程度の線径とし励磁電流を大きくして、磁束
密度を得る方法がとられていた。しかしながら励磁電流
を大きくすることは、消費電力が電流の二乗に比例する
ため、消費電力が大きく、ひいては励磁電流を供給する
変換器の消費電力をも大きくする欠点があった。However, in the prior art, when the diameter of the exciting coil 3 is reduced, the productivity and the resistance of the exciting coil 3 increase, and a high voltage is required to obtain a necessary exciting current. A method of obtaining a magnetic flux density by increasing the exciting current to a wire diameter of about the same size has been adopted. However, increasing the exciting current has a drawback that the power consumption is large because the power consumption is proportional to the square of the current, and that the power consumption of the converter that supplies the exciting current is also large.
【0004】本発明の目的は、検出器の発生起電力を低
下させずに低消費電力化を図れ、更に流体の偏流による
誤差の生じにくい電磁流量計検出器を提供するにある。An object of the present invention is to provide an electromagnetic flowmeter detector which can reduce power consumption without lowering the electromotive force generated by the detector and hardly cause an error due to drift of fluid.
【0005】[0005]
【課題を解決するための手段】本発明は、ケース、この
ケース内に収納され測定流体を流す円筒形状の測定管、
この測定管に設けられた一対の電極、前記測定管の外周
に設けられた一対の磁極板、前記ケースの内周に設けら
れたコア、前記一対の磁極板と前記コアとを接続する磁
極、前記一対の磁極板と前記コアとの間に介在する如く
設けられた励磁コイルとを備えた電磁流量計検出器であ
って、前記磁極板は、前記円筒形状の測定管に対応した
湾曲板形状であると共に、前記一対の磁極を通る軸をY
軸とした時、このY軸と直交するX軸及びZ軸の両方向
の長さがいずれも前記励磁コイルよりも小さく形成さ
れ、前記励磁コイルも前記円筒形状の測定管に沿って円
弧形状に巻かれたことを特徴とするものである。前記電
磁流量計検出器において、励磁コイルの外径は測定管内
径より大きく形成されたものがよい。更に、磁極板のY
軸と直交するX軸及びZ軸の両方向の長さがいずれも該
磁極よりも大きく形成されたものがよい。SUMMARY OF THE INVENTION The present invention provides a case, a cylindrical measuring tube housed in the case, and through which a measuring fluid flows.
A pair of electrodes provided on the measurement tube, a pair of magnetic pole plates provided on an outer periphery of the measurement tube, a core provided on an inner circumference of the case, a magnetic pole connecting the pair of magnetic pole plates and the core, An electromagnetic flowmeter detector including an excitation coil provided so as to be interposed between the pair of magnetic pole plates and the core, wherein the magnetic pole plate has a curved plate shape corresponding to the cylindrical measurement tube. And the axis passing through the pair of magnetic poles is Y
When the axial length of both the X-axis and Z-axis orthogonal to the Y-axis is smaller than any previous SL excitation coil, an arc shape said excitation coil also along the measuring tube of the cylindrical It is characterized by being wound. The electric
In the magnetic flowmeter detector, the outer diameter of the excitation coil is
Those formed larger than the diameter are preferred. Furthermore, the Y of the pole plate
Both the X-axis and Z-axis lengths perpendicular to the axis
Those formed larger than the magnetic pole are preferred .
【0006】[0006]
【作用】次に作用を説明する。前記磁極板は、前記Y軸
(第1図のY−Y′線)と直交するX軸(第1図のl2
の方向)及びZ軸(第2図の測定管の軸方向)の両方向
の長さがいずれも該磁極よりも大きく形成されたことに
より、磁極部分を小さく形成してその分だけ励磁コイル
を大きく形成することが可能になると共に、磁極部分を
小さく形成すると流体の偏流による誤差の発生と言う欠
点があるが、この点は前記の如く磁極板を大きく形成し
て該磁極板を実質的磁極とすることにより補填できる。
また、前記磁極板は、前記Y軸と直交するX軸及びZ軸
の両方向の長さがいずれも前記励磁コイルよりも小さく
形成されたことにより、すなわち、前記の如く磁極を小
さく形成することと相俟って励磁コイルの大きさを充分
に大きく形成することを可能とする構造としたことによ
り、検出器の発生起電力を低下させずに、低消費電力化
を図れる。Next, the operation will be described. The pole plate has an X axis (l 2 in FIG. 1) orthogonal to the Y axis (YY ′ line in FIG. 1).
Direction) and the Z-axis (the axial direction of the measuring tube in FIG. 2) are both formed larger than the magnetic pole, so that the magnetic pole portion is formed small and the exciting coil is increased accordingly. While it is possible to form the magnetic pole portion, if the magnetic pole portion is formed small, there is a drawback that an error occurs due to the drift of the fluid. However, this point is that the magnetic pole plate is formed large as described above and the magnetic pole plate is substantially Can be compensated.
Further, the magnetic pole plate is formed such that the lengths in both directions of the X axis and the Z axis orthogonal to the Y axis are smaller than the exciting coil, that is, the magnetic pole plate is formed smaller as described above. With the structure that enables the size of the exciting coil to be formed sufficiently large, power consumption can be reduced without reducing the electromotive force generated by the detector.
【0007】特に本発明によれば、磁極板の形状を湾曲
板形状とし、その寸法をX軸及びZ軸方向について前記
の如く規定し、更に励磁コイルを円弧形状としたことに
より、磁極板の端部からコアへの磁束の漏洩をほとんど
無くすことができ、もって検出器の発生起電力を低下さ
せずに、低消費電力化を図れる。更に、励磁コイルの外
径を測定管内径より大きく形成したので、磁束磁極板の
端部からコアへの磁束の漏洩を一層無くすことができ、
励磁コイルの励磁効率を一層高めることができる。In particular, according to the present invention, the shape of the pole plate is defined as a curved plate shape, its dimensions are defined as described above in the X-axis and Z-axis directions, and the exciting coil is formed in an arc shape. Leakage of magnetic flux from the end to the core can be almost eliminated, thereby reducing power consumption without lowering the electromotive force generated by the detector. In addition, outside the excitation coil
The diameter of the magnetic pole plate is larger than the inner diameter of the measuring tube.
Leakage of magnetic flux from the end to the core can be further eliminated,
The excitation efficiency of the excitation coil can be further increased .
【0008】本発明の実施例を図1及び図2により説明
する。先ず本発明の構成を概説すると、ケース5と、こ
のケース5内に収納され測定流体を流す円筒形状の測定
管1と、この測定管1に設けられた一対の電極2,2
と、前記測定管1の外周に設けられた一対の磁極板6,
6と、前記ケース5の内周に設けられたコア4と、前記
一対の磁極板6,6と前記コア4とを接続する磁極a,
aと、前記一対の磁極板6,6と前記コア4との間に介
在する如く設けられた励磁コイル3とを備えた電磁流量
計検出器であって、前記磁極板6,6は、前記円筒形状
の測定管1に対応した湾曲板形状であると共に、前記一
対の磁極a,aを通る軸をY軸とした時、このY軸と直
交するX軸及びZ軸の両方向の長さがいずれも前記励磁
コイル3よりも小さく形成され、前記励磁コイル3も前
記円筒形状の測定管1に沿って円弧形状に巻かれたこと
を特徴とするものである。更に前記電磁流量計検出器に
おいて、励磁コイル3の外径は測定管1の内径より大き
く形成されたものがよい。また更に、磁極板6,6のY
軸と直交するX軸及びZ軸の両方向の長さがいずれも該
磁極a,aよりも大きく形成されたものがよい。An embodiment of the present invention will be described with reference to FIGS. First, the configuration of the present invention will be briefly described. A case 5, a cylindrical measurement tube 1 accommodated in the case 5 and through which a measurement fluid flows, and a pair of electrodes 2 and 2 provided in the measurement tube 1 are described.
And a pair of magnetic pole plates 6 provided on the outer circumference of the measuring tube 1.
6, a core 4 provided on the inner periphery of the case 5, and magnetic poles a connecting the pair of magnetic pole plates 6, 6 to the core 4.
and a, an electromagnetic flowmeter detector with an excitation coil 3 provided as interposed between the core 4 and the pair of pole plates 6,6, the pole plate 6,6, said Cylindrical shape
As well as a curved plate shape corresponding to the measurement tube 1, the pair of magnetic poles a, when the axis passing through the a and the Y-axis, the length of both the X-axis and Z-axis orthogonal to the Y-axis is either It is smaller than the previous SL exciting coil 3, the exciting coil 3 both before
It is characterized by being wound in an arc shape along the cylindrical measuring tube 1 . Further to the electromagnetic flow meter detector
In this case, the outer diameter of the exciting coil 3 is larger than the inner diameter of the measuring tube 1.
A well-formed one is preferred. Furthermore, the Y of the pole plates 6 and 6
Both the X-axis and Z-axis lengths perpendicular to the axis
It is preferable that the magnetic poles are formed larger than the magnetic poles a .
【0009】測定管1の内面の直径軸線上に一対の電極
2を取付け、一対の電極2を結ぶ線上と直交する上、下
測定管1の外周面に励磁コイル3が測定管1の外周面に
沿って取付けられる。励磁コイル3の外側には全周にわ
たってコア4が励磁コイル3を覆い、励磁コイル3の軸
にはコア4の磁極aが励磁コイル3の内側までのびてい
る。磁極aの端面には磁極板6が測定管1の外周面に沿
って取付けられる。図示寸法l2は磁極aの寸法l1より
大きく、従来構造図5の磁極寸法l2と同一になってい
る。すなわち、磁極板6の断面積の方が磁極aの断面積
よりはるかに大きくなるように構成されている。A pair of electrodes 2 are mounted on the diameter axis of the inner surface of the measuring tube 1. Mounted along. A core 4 covers the excitation coil 3 over the entire circumference outside the excitation coil 3, and a magnetic pole a of the core 4 extends to the inside of the excitation coil 3 on the axis of the excitation coil 3. A magnetic pole plate 6 is attached to the end face of the magnetic pole a along the outer peripheral surface of the measuring tube 1. Illustrated dimensions l 2 is greater than the dimension l 1 of the pole a, which is the same as the magnetic pole dimension l 2 of the conventional structure diagram 5. That is, the cross-sectional area of the magnetic pole plate 6 is configured to be much larger than the cross-sectional area of the magnetic pole a.
【0010】コア4の外周には従来構造と同様に外径寸
法が制限されたケース5が測定管1の両側フランジC外
周面に全周溶接により固定されることにより検出器は構
成されている。A detector is constructed by fixing a case 5 having a restricted outer diameter to the outer peripheral surface of both side flanges C of the measuring tube 1 on the outer periphery of the core 4 by a full-circumferential welding similarly to the conventional structure. .
【0011】測定管1は、測定する流体を流し電極2は
流体に誘起された起電力を検出する。励磁コイル3、コ
ア4、磁極板6は、流体に磁界をあたえる磁界発生部で
あり、ケース5はこれら全体を防水シールするものであ
る。A measuring tube 1 flows a fluid to be measured, and an electrode 2 detects an electromotive force induced in the fluid. The excitation coil 3, the core 4, and the magnetic pole plate 6 are a magnetic field generating unit that applies a magnetic field to the fluid, and the case 5 seals the entire body with a waterproof seal.
【0012】磁界発生部の1つである励磁コイル3は、
上記したようにケース5の内径、測定管1の外径、磁極
寸法でかぎられた断面積となるが、磁極aの寸法l1を
小さくすることにより励磁コイル3の断面積は広くな
る。ここで、単に磁極aの寸法l1を小さくすること
は、流体の偏流による誤差が大きくなる。しかし、磁極
aの寸法l1より大きい寸法l2の磁極板6を磁極aへ取
付けることによって、磁極aはコア4と同様磁界の通路
となる機能を持ち磁極板6が実質的磁極となるため、流
体の偏流による誤差はなくなる。The excitation coil 3, which is one of the magnetic field generation units,
As described above, the sectional area is limited by the inner diameter of the case 5, the outer diameter of the measuring tube 1, and the magnetic pole size, but the cross sectional area of the exciting coil 3 is increased by reducing the dimension l 1 of the magnetic pole a. Here, simply reducing the dimension l 1 of the magnetic pole a increases the error due to the drift of the fluid. However, by attaching the magnetic pole plate 6 having the dimension l 2 larger than the dimension l 1 of the magnetic pole a to the magnetic pole a, the magnetic pole a has a function of providing a magnetic field path similarly to the core 4 and the magnetic pole plate 6 becomes a substantial magnetic pole. In addition, errors due to fluid drift are eliminated.
【0013】コア4の機能と同一になった磁極aの寸法
l1は、コア4の磁束の流れより2倍あれば良いが磁極
板6を取付ける機機的寸法及び励磁コイル3の生産性を
考慮し、約0.39D(D=測定管内径寸法)とした。The dimension l 1 of the magnetic pole a having the same function as that of the core 4 may be twice as large as the flow of the magnetic flux of the core 4, but the mechanical dimensions for mounting the magnetic pole plate 6 and the productivity of the exciting coil 3 are reduced. Considering this, it was set to about 0.39D (D = measurement tube inner diameter).
【0014】次に図3より広くなった励磁コイル3の断
面積の増加比率を求める。図3は図1の励磁コイル3を
鞍形に成形する以前の励磁コイル3の断面図であり、寸
法は図示の如くなる。外径寸法1.3Dは図1、図5の
同一外径寸法、0.9Dはl2寸法(0.8D)の弧の長
さ、0.4Dはl1寸法(0.39D)の弧の長さで励磁
コイル3の断面積の増加比率はW2/W1となる。Next, an increase ratio of the sectional area of the exciting coil 3 which is wider than that of FIG. 3 is obtained. FIG. 3 is a cross-sectional view of the exciting coil 3 before the exciting coil 3 of FIG. 1 is formed into a saddle shape, and its dimensions are as illustrated. Outer diameter 1.3D FIG. 1, the same outer diameter in Fig. 5, 0.9D is l 2 dimensions (0.8D) of the length of the arc, the arc of 0.4D is l 1 dimension (0.39D) , The increase ratio of the cross-sectional area of the exciting coil 3 becomes W 2 / W 1 .
【0015】[0015]
【数1】 (Equation 1)
【0016】2.25倍励磁コイル3の断面積が増加す
ると、コイル巻数はコイル線径を一定とすると、励磁コ
イル3の断面積の増加比率と同一に2.25倍多くな
る。When the cross-sectional area of the exciting coil 3 increases by 2.25 times, the number of turns of the coil increases 2.25 times as much as the increase rate of the cross-sectional area of the exciting coil 3 when the coil wire diameter is fixed.
【0017】次に、磁束密度を一定にたもち、消費電力
の比率を求める。その磁束密度は次の式(数2)で決ま
る。ここで、B=磁束密度、N=コイル巻数、I=励磁
電流、μg=空気の誘磁率、lg=磁極間距離である。Next, while keeping the magnetic flux density constant, the ratio of power consumption is determined. The magnetic flux density is determined by the following equation (Equation 2). Here, B = magnetic flux density, N = coil winding number, I = excitation current, μg = attraction ratio of air, and lg = distance between magnetic poles.
【0018】[0018]
【数2】 (Equation 2)
【0019】コイル巻数を増やさない従来形の磁束密度
をB0とすると、次の式(数3)で表せる。ここで、N0
=従来形のコイル巻数、I0=従来形の励磁電流であ
る。[0019] The magnetic flux density of the conventional type which does not increase the number of coil turns and B 0, can be expressed by the following equation (3). Where N 0
= Conventional coil winding number, I 0 = conventional exciting current.
【0020】[0020]
【数3】 (Equation 3)
【0021】次にB0一定とし、コイル巻数2.25倍
(2.25N0)、そのときの励磁電流をI1とすると次
の式(数4)のようになる。Next, assuming that B 0 is constant, the number of coil turns is 2.25 times (2.25 N 0 ), and the exciting current at that time is I 1 , the following equation (Equation 4) is obtained.
【0022】[0022]
【数4】 (Equation 4)
【0023】従来形の消費電力P0は P0=I0 2R0 ……(8) ここで、R0=従来形のコイル抵抗であり、本構造の消
費電力P0′は P0=I1 2R1 ……(9) ここで、R1=本発明構造のコイル抵抗である。The conventional power consumption P 0 is P 0 = I 0 2 R 0 (8) where R 0 = conventional coil resistance, and the power consumption P 0 ′ of this structure is P 0 = I 1 2 R 1 ...... (9 ) where a coil resistance R 1 = present invention structure.
【0024】R1はR0よりコイル巻数を2.25倍増や
しているがコイル内側のみ増やしているため1巻数の抵
抗値は小さくR0の約1.8倍となる。ゆえにR1=1.8
R0,I1=(l/1.8)I0であるから(9)式は次の
式(数5)のようになる。Although the number of turns of R 1 is 2.25 times greater than that of R 0 , the resistance value of one turn is small and about 1.8 times that of R 0 because only the inside of the coil is increased. Therefore R 1 = 1.8
Since R 0 , I 1 = (1 / 1.8) I 0 , the equation (9) is as shown in the following equation (5).
【0025】[0025]
【数5】 (Equation 5)
【0026】(8)式及び(10)式より消費電力は以
下のようになる。すなわち消費電力は45%低下する。From the equations (8) and (10), the power consumption is as follows. That is, the power consumption is reduced by 45%.
【0027】[0027]
【数6】 (Equation 6)
【0028】また、図2の測定管軸方向についても励磁
コイル3の断面積はケース5内の制限されたスペースと
なるが、磁極板6を取付けることによって図1と同様に
コイル巻数を増やすことができる。 図1に示した磁極
板6は磁極aへ取付けているが、第4図のように磁極a
と一体としてコア4へ取付けても、また磁極板6、磁極
a、コア4を別々に構成しても同様の効果が得られる。The cross-sectional area of the exciting coil 3 in the axial direction of the measuring tube in FIG. 2 also becomes a limited space in the case 5, but the number of coil turns can be increased by attaching the magnetic pole plate 6 as in FIG. Can be. The pole plate 6 shown in FIG. 1 is attached to the pole a, but as shown in FIG.
The same effect can be obtained by attaching the magnetic pole plate 6, the magnetic pole a and the core 4 separately to the core 4 integrally with the core 4.
【0029】[0029]
【発明の効果】本発明によれば、磁極板の形状を湾曲板
形状とし、その寸法をX軸及びZ軸方向について前記の
如く規定し、更に励磁コイルを円弧形状としたことによ
り、磁極板の端部からコアへの磁束の漏洩をほとんど無
くすことができ、もって検出器の発生起電力を低下させ
ずに、低消費電力化を図れる。更に、励磁コイルの外径
を測定管内径より大きく形成したので、磁束磁極板の端
部からコアへの磁束の漏洩を一層無くすことができ、励
磁コイルの励磁効率を一層高めることができる。According to the present invention, the shape of the pole plate is changed to a curved plate.
Shape and the dimensions are as described above for the X-axis and Z-axis directions.
And the excitation coil has an arc shape.
Magnetic flux from the end of the pole plate to the core
And reduce the electromotive force generated by the detector.
Power consumption can be reduced . Furthermore, the outer diameter of the exciting coil
Is larger than the inner diameter of the measuring tube,
The leakage of magnetic flux from the section to the core can be further eliminated,
The excitation efficiency of the magnetic coil can be further increased .
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の一実施例を説明する検出器の測定管軸
と直角な方向の断面図である。FIG. 1 is a cross-sectional view in a direction perpendicular to a measurement tube axis of a detector for explaining an embodiment of the present invention.
【図2】図1のY−Y′断面図である。FIG. 2 is a sectional view taken along line YY 'of FIG.
【図3】図1の励磁コイル3を鞍形に成形する前の説明
図である。FIG. 3 is an explanatory view before the exciting coil 3 of FIG. 1 is formed into a saddle shape.
【図4】本発明の一実施例の変形例を説明する断面図で
ある。FIG. 4 is a cross-sectional view illustrating a modification of the embodiment of the present invention.
【図5】従来形の図1に相当する断面図である。FIG. 5 is a cross-sectional view corresponding to FIG. 1 of a conventional type.
【図6】図5のY−Y′断面図である。FIG. 6 is a sectional view taken along line YY ′ of FIG. 5;
1 測定管 2 電極 3 励磁 4 コア 5 ケース 6 磁極板 a 磁極 c 測定管フランジ 1 Measuring tube 2 Electrode 3 Excitation 4 Core 5 Case 6 Magnetic pole plate a Magnetic pole c Measuring tube flange
Claims (3)
体を流す円筒形状の測定管、この測定管に設けられた一
対の電極、前記測定管の外周に設けられた一対の磁極
板、前記ケースの内周に設けられたコア、前記一対の磁
極板と前記コアとを接続する磁極、前記一対の磁極板と
前記コアとの間に介在する如く設けられた励磁コイルと
を備えた電磁流量計検出器であって、前記磁極板は、前
記円筒形状の測定管に対応した湾曲板形状であると共
に、前記一対の磁極を通る軸をY軸とした時、このY軸
と直交するX軸及びZ軸の両方向の長さがいずれも前記
励磁コイルよりも小さく形成され、前記励磁コイルも前
記円筒形状の測定管に沿って円弧形状に巻かれたことを
特徴とする電磁流量計検出器。1. A case, a cylindrical measurement tube housed in the case, through which a measurement fluid flows, a pair of electrodes provided on the measurement tube, a pair of magnetic pole plates provided on an outer periphery of the measurement tube, and the case. An electromagnetic flowmeter comprising: a core provided on the inner periphery of a magnetic pole, a magnetic pole connecting the pair of magnetic pole plates and the core, and an excitation coil provided so as to be interposed between the pair of magnetic pole plates and the core. In the detector, the magnetic pole plate has a curved plate shape corresponding to the cylindrical measurement tube, and when an axis passing through the pair of magnetic poles is a Y axis, an X axis orthogonal to the Y axis and the length of both the Z-axis is smaller than the previous SL excitation coil either, electromagnetic flowmeter detector, characterized in that also the exciting coil is wound in a circular arc shape along the measuring tube of the cylindrical shape.
測定管内径より大きく形成されたことを特徴とする電磁Electromagnetic characterized by being formed larger than the inner diameter of the measuring tube
流量計検出器。Flow meter detector.
するX軸及びZ軸の両方向の長さがいずれも該磁極より
も大きく形成されたことを特徴とする電磁流量計検出
器 。 3. The magnetic recording medium according to claim 2, wherein the magnetic pole plate is perpendicular to the Y axis.
Both the X-axis and Z-axis directions are longer than the magnetic pole.
Flowmeter detection characterized by a large size
Bowl .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15852294A JP2620202B2 (en) | 1994-07-11 | 1994-07-11 | Electromagnetic flow meter detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15852294A JP2620202B2 (en) | 1994-07-11 | 1994-07-11 | Electromagnetic flow meter detector |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6901085A Division JPS61228311A (en) | 1985-04-03 | 1985-04-03 | Detector of electromagnetic flowmeter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07139981A JPH07139981A (en) | 1995-06-02 |
JP2620202B2 true JP2620202B2 (en) | 1997-06-11 |
Family
ID=15673583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15852294A Expired - Lifetime JP2620202B2 (en) | 1994-07-11 | 1994-07-11 | Electromagnetic flow meter detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2620202B2 (en) |
-
1994
- 1994-07-11 JP JP15852294A patent/JP2620202B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07139981A (en) | 1995-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09126845A (en) | Electromagnetic flow meter | |
US6453756B2 (en) | Magneto-inductive flowmeter | |
RU2411454C2 (en) | Magnetic-inductive transducer | |
US7267012B2 (en) | Electromagnetic flowmeter including electrodes and magnetic pole placed in proximity on one side of the outer wall | |
EP0069456B1 (en) | Measuring device of electromagnetic flowmeter | |
JP2620202B2 (en) | Electromagnetic flow meter detector | |
JP2620202C (en) | ||
JPH0541928B2 (en) | ||
JPS5866017A (en) | Electromagnetic flowmeter | |
JPS6258452B2 (en) | ||
JP3914113B2 (en) | Electromagnetic flow meter | |
JPH05256674A (en) | Electromagnetic flowmeter detector | |
JP4671260B2 (en) | Electromagnetic flow meter | |
JP2005061847A (en) | Electromagnetic flow meter | |
JPH038984Y2 (en) | ||
JPH0355063Y2 (en) | ||
JPH0226025Y2 (en) | ||
JPH0339243B2 (en) | ||
KR830000412Y1 (en) | Electronic flow meter | |
JP3163610B2 (en) | Electromagnetic flow meter | |
JPS6344738Y2 (en) | ||
JPH076490Y2 (en) | Electromagnetic flow meter | |
JPH0599717A (en) | Electromagnetic flow meter | |
JP2554075B2 (en) | Electromagnetic flow meter | |
JPH03205513A (en) | Detector of electromagnetic flow meter |