[go: up one dir, main page]

JP2614630B2 - Fluid dynamic pressure bearing - Google Patents

Fluid dynamic pressure bearing

Info

Publication number
JP2614630B2
JP2614630B2 JP3251488A JP3251488A JP2614630B2 JP 2614630 B2 JP2614630 B2 JP 2614630B2 JP 3251488 A JP3251488 A JP 3251488A JP 3251488 A JP3251488 A JP 3251488A JP 2614630 B2 JP2614630 B2 JP 2614630B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
shaft
fixed
permanent magnet
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3251488A
Other languages
Japanese (ja)
Other versions
JPH01210615A (en
Inventor
正二 江口
高橋  毅
良一 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP3251488A priority Critical patent/JP2614630B2/en
Publication of JPH01210615A publication Critical patent/JPH01210615A/en
Application granted granted Critical
Publication of JP2614630B2 publication Critical patent/JP2614630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、軸の回転に伴って動圧溝で動圧を発生さ
せ、ラジアル荷重を支える流体動圧軸受に関する。
Description: TECHNICAL FIELD The present invention relates to a fluid dynamic pressure bearing that generates a dynamic pressure in a dynamic pressure groove with rotation of a shaft and supports a radial load.

<従来の技術> 従来、この種の流体動圧軸受として、レーザビームプ
リンタのレーザ光を走査するモータスピンドルに用いら
れる第3図に示すようなものが知られている(特開昭62
−131736号公報)。このモータスピンドルは、外周にヘ
リングボーン状の動圧溝12を有する固定軸11を固定台13
の中央に突設し、この固定軸11に、外周上部に駆動用マ
グネット15と外周下部に多面鏡16を有するロータ14を回
転自在に外嵌する一方、ロータ14を覆うハウジング17の
内面に、上記駆動用マグネット15に対して軸方向上方に
Δhだけずらしてステータ18を固定してなる。そして、
ステータ18の作る回転磁界で駆動用マグネット15を上方
へ持ち上げつつ回転させ、回転するロータ14の多面鏡16
でハウジング17の開口窓17aから入射するレーザ光を反
射して走査するとともに、回転速度の増大に伴って上方
へ浮き上がろうとするロータ14を、このロータ14の上端
面に設けた永久磁石19と、これに対向して固定軸11上端
のつば部11aの下面に設けた同一極性の永久磁石20の反
撥力で下方へ付勢するようになっている。即ち、上記モ
ータスピンドルにおいて流体動圧軸受は、動圧溝12を有
する固定軸11とこれに外嵌するロータ14から構成され、
ロータ14に作用するラジアル荷重を上記動圧溝12に回転
によって発生する動圧で支える一方、スラスト荷重をス
テータ18と駆動用マグネット15の吸引力および永久磁石
19,20の反撥力で支えて、ロータ14の軸方向の剛性を増
大させ、安定的に回転させるものである。
<Prior Art> Conventionally, as this kind of fluid dynamic pressure bearing, there is known a fluid dynamic pressure bearing as shown in FIG.
-131736 publication). The motor spindle comprises a fixed shaft 11 having a herringbone-shaped dynamic pressure groove 12 on the outer periphery.
On the fixed shaft 11, a rotor 14 having a driving magnet 15 on the outer periphery and a polygon mirror 16 on the lower outer periphery is rotatably fitted on the fixed shaft 11, while an inner surface of a housing 17 covering the rotor 14 is The stator 18 is fixed to the driving magnet 15 by being shifted axially upward by Δh. And
The polygonal mirror 16 of the rotating rotor 14 is rotated while the driving magnet 15 is lifted upward by the rotating magnetic field generated by the stator 18.
The mirror 14 reflects the laser light incident from the opening window 17a of the housing 17 and scans the laser light, and the rotor 14 which tends to float upward with an increase in the rotation speed is provided with a permanent magnet 19 provided on the upper end surface of the rotor 14. In opposition to this, the permanent magnet 20 of the same polarity provided on the lower surface of the flange 11a at the upper end of the fixed shaft 11 is urged downward by the repulsive force. That is, in the above-mentioned motor spindle, the fluid dynamic pressure bearing is composed of a fixed shaft 11 having a dynamic pressure groove 12 and a rotor 14 externally fitted thereto.
The radial load acting on the rotor 14 is supported by the dynamic pressure generated by the rotation in the dynamic pressure groove 12, while the thrust load is attracted by the stator 18 and the magnet 15 for driving and the permanent magnet.
The rotor 14 is supported by the repulsion force of 19 and 20, thereby increasing the axial rigidity of the rotor 14 and rotating the rotor 14 stably.

<発明が解決しようとする課題> ところが、上記従来の流体動圧軸受は、回転速度の増
大に伴ってロータ14に上方へ作用するスラスト荷重を、
ロータの上端面と固定軸のつば部下面に夫々設けた永久
磁石19,20どうしの反撥力で受けるようにしているた
め、2つの磁石の同極性の端面を互いに近づけたときし
ばしば経験されるように、端面が互いに僅かでもずれる
と、磁場の相互作用で2つの磁石に横方向に大きな反撥
力が働く、即ち、固定軸11にすきまばめされたロータ14
の永久磁石19が固定軸側の永久磁石20に対して負荷変動
等の原因で径方向に僅かでもずれると、両磁石19,20間
に矢印A,A′で示すような大きな横方向力が加わり、回
転していたロータ14がラジアル方向に固定軸11に強く押
し付けられてしまい、動圧溝12による動圧が働かなくな
って流体動圧軸受の役目を果たさなくなり、性能が悪化
するうえ、大きな力によってロータ14や固定軸11が変
形,損傷し、軸受ひいてはモータスピンドルが故障する
という欠点がある。
<Problems to be Solved by the Invention> However, the above-mentioned conventional fluid dynamic bearings require a thrust load acting on the rotor 14 upward as the rotation speed increases.
Since the permanent magnets 19 and 20 provided on the upper end face of the rotor and the lower face of the fixed shaft flange are received by the repulsive force between the two magnets, it is often experienced when the end faces of the same polarity of the two magnets are brought close to each other. In addition, if the end faces are slightly displaced from each other, a large repulsive force acts on the two magnets in the transverse direction due to the interaction of the magnetic fields, that is, the rotor 14 which is loosely fitted on the fixed shaft 11.
If the permanent magnet 19 is slightly displaced in the radial direction due to a load variation or the like with respect to the permanent magnet 20 on the fixed shaft side, a large lateral force as indicated by arrows A and A ′ is applied between the two magnets 19 and 20. In addition, the rotating rotor 14 is strongly pressed against the fixed shaft 11 in the radial direction, and the dynamic pressure generated by the dynamic pressure groove 12 does not work, so that it does not serve as a fluid dynamic bearing. There is a disadvantage that the rotor 14 and the fixed shaft 11 are deformed and damaged by the force, and the bearings and, consequently, the motor spindle are broken.

そこで、本発明の目的は、2つの永久磁石の反撥力に
よらず新規な手段によって、軸とスリーブ間に大きなラ
ジアル方向力を生じさせることなくスラスト荷重さらに
これに加えてラジアル荷重を支えることができ、故障す
ることなく長期に亘って安定的に使用できる流体動圧軸
受を提供することである。
Accordingly, an object of the present invention is to support a thrust load and a radial load in addition to the thrust load without generating a large radial force between the shaft and the sleeve by a novel means regardless of the repulsive force of the two permanent magnets. An object of the present invention is to provide a fluid dynamic pressure bearing which can be used stably without failure for a long period of time.

<課題を解決するための手段> 上記目的を達成するため、本発明の流体動圧軸受は、
互いに嵌合する軸とスリーブの一方を固定し、他方を回
転させ、双方の嵌合面の少なくとも一側に設けた動圧溝
によって動圧を発生させて、ラジアル荷重を支えるもの
において、上記軸の端面に永久磁石または反磁性をもつ
超電導体のいずれか一方を固定するとともに、上記端面
に対向する部材の端面に上記永久磁石または超電導体の
いずれか他方を固定したことを特徴とする。
<Means for Solving the Problems> In order to achieve the above object, a fluid dynamic pressure bearing of the present invention comprises:
A shaft and a sleeve that are fitted to each other are fixed, the other is rotated, and a dynamic pressure is generated by a dynamic pressure groove provided on at least one side of both the fitting surfaces to support a radial load. , One of a permanent magnet and a superconductor having diamagnetism is fixed to the end face, and the other of the permanent magnet and the superconductor is fixed to an end face of a member facing the end face.

<作用> 流体動圧軸受は、第1図に例示するように、例えば、
外周に動圧溝2を有して回転する軸1の端面に永久磁石
3を固定し、この軸1に外嵌する固定側のスリーブ4の
上記端面に対向する端部に反磁性をもつ超電導体5を固
定してなる。スリーブ端の超電導体5は、所定の温度お
よび磁界で超電導状態となり、その表面に軸端の永久磁
石3による外部磁界を打ち消すような超電導電流,例え
ばマイスナー電流が流れ、内部の磁束密度が0となる完
全反磁性状態を呈するので、上記超電導電流による磁界
と永久磁石3の磁界が反撥し合い、この反撥力で軸1は
スリーブ4の超電導体5から離れる方向へ付勢され、こ
れによって軸1に作用するスラスト荷重が支えられる。
このとき、スリーブ4にすきまばめされている軸1が負
荷変動等でラジアル方向にどのようにずれても、スリー
ブ側の超電導体5にはその反磁性に基づき、ずれた永久
磁石3の磁界に対応してこれを打ち消す反対の磁界が生
じるので、従来の2つの永久磁石の反撥力による支承の
場合のように径方向に大きな反撥力が働かず、動圧溝2
による動圧が常時有効に働いて、軸1は前述の軸方向付
勢力を受けて、スラスト荷重を担いつつ円滑に回転す
る。また、永久磁石3の磁力が経時変化しても、同じ理
由から従来例のように軸方向付勢力が大きく変動せず、
軸回転が長期に亘って安定化する。
<Operation> The fluid dynamic bearing is, for example, as shown in FIG.
A permanent magnet 3 is fixed to an end surface of a rotating shaft 1 having a dynamic pressure groove 2 on its outer periphery, and a diamagnetic superconducting member is provided on an end of the fixed side sleeve 4 externally fitted to the shaft 1 opposite to the end surface. The body 5 is fixed. The superconductor 5 at the end of the sleeve enters a superconducting state at a predetermined temperature and magnetic field, and a superconducting current, such as a Meissner current, flows on its surface to cancel the external magnetic field generated by the permanent magnet 3 at the shaft end. Since the magnetic field due to the superconducting current and the magnetic field of the permanent magnet 3 repel each other, the shaft 1 is urged in a direction away from the superconductor 5 of the sleeve 4 by this repulsive force. The thrust load acting on the bearing is supported.
At this time, no matter how the shaft 1 loosely fitted in the sleeve 4 is displaced in the radial direction due to a load change or the like, the magnetic field of the displaced permanent magnet 3 is generated in the superconductor 5 on the sleeve side due to its diamagnetism. , A large repulsive force does not act in the radial direction as in the case of the conventional bearing by the repulsive force of the two permanent magnets.
The shaft 1 receives the above-mentioned axial biasing force, and smoothly rotates while carrying a thrust load. Further, even if the magnetic force of the permanent magnet 3 changes with time, the axial biasing force does not fluctuate greatly unlike the conventional example for the same reason,
The shaft rotation is stabilized for a long time.

<実施例> 以下、本発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be described in detail with reference to an illustrated example.

第1図は本発明の流体動圧軸受の第1実施例を示す軸
方向断面図であり、1は外周にヘリングボーン状の動圧
溝2を有して回転する軸、3はこの軸1の端面に固定し
た永久磁石、4は上記軸1にすきまばめで外嵌した固定
側のスリーブ、5はこのスリーブ4の端部に上記永久磁
石3に間隙をあけて対向するように固定した反磁性をも
つ超電導材料であり、軸1とスリーブ4のすきまには潤
滑油を満たしている。
FIG. 1 is an axial sectional view showing a first embodiment of a fluid dynamic pressure bearing according to the present invention, wherein 1 is a shaft which rotates with a herringbone-shaped dynamic pressure groove 2 on its outer periphery, and 3 is this shaft 1. The permanent magnet 4 fixed to the end surface of the fixed magnet 4 is a fixed sleeve which is fitted around the shaft 1 by loose fit. The permanent magnet 5 is fixed to the end of the sleeve 4 so as to face the permanent magnet 3 with a gap. It is a superconducting material having magnetism, and the clearance between the shaft 1 and the sleeve 4 is filled with lubricating oil.

上記構成の流体動圧軸受の動作は、次のとおりであ
る。
The operation of the fluid dynamic bearing having the above configuration is as follows.

スリーブ4の端部に固定した超電導材料5は、所定の
温度および磁界で超電導状態となり、その表面5aに軸1
の端面に固定した永久磁石3による外部磁界を打ち消す
ような超電導電流,例えばマイスナー電流が流れ、内部
5bの磁束密度が0となる完全反磁性状態を呈する。その
ため、上記超電導電流による磁界と永久磁石3の磁界が
反撥し合い、この反撥力で軸1はスリーブ4の超電導材
料5から離れる方向即ち軸方向下方へ付勢され、これに
よって軸1に作用するスラスト荷重が支えられる。この
とき、スリーブ4にすきまばめされている軸1が負荷変
動等でラジアル方向にどのようにずれても、スリーブ4
側の超電導材料5にはその完全反磁性に基づき、ずれた
永久磁石3の磁界に対応してこれを打ち消す反対の磁界
が生じるので、従来の2つの永久磁石の反撥力によるス
ラスト荷重の支承の場合(第3図19,20参照)のように
径方向に大きな反撥力が働かず、従って回転する動圧溝
2による潤滑油の動圧が常時有効に働いて、軸1は前述
の軸方向付勢力を受けてスラスト荷重を担いつつ円滑に
回転する。換言すれば、大きな径方向力で軸1やスリー
ブ4が変形,損傷することがないから、故障せず長期に
亘って安定的に使用することができる。また、永久磁石
5の磁力が経時変化しても、同じ理由から上記従来例の
ように軸方向付勢力が大きく変動せず、軸1の回転が長
期に亘って安定化する。
The superconducting material 5 fixed to the end of the sleeve 4 enters a superconducting state at a predetermined temperature and magnetic field, and the shaft 5
A superconducting current such as a Meissner current flows to cancel the external magnetic field by the permanent magnet 3 fixed to the end face of the
5b shows a completely diamagnetic state in which the magnetic flux density becomes zero. Therefore, the magnetic field of the superconducting current and the magnetic field of the permanent magnet 3 repel each other, and the repulsive force urges the shaft 1 in a direction away from the superconducting material 5 of the sleeve 4, that is, in an axially downward direction, thereby acting on the shaft 1. Thrust load is supported. At this time, no matter how the shaft 1 loosely fitted in the sleeve 4 is shifted in the radial direction due to a load change or the like, the sleeve 4
On the other hand, the superconducting material 5 on the side has an opposite magnetic field which counteracts the magnetic field of the displaced permanent magnet 3 based on its complete diamagnetism, so that the conventional superconducting material 5 supports the thrust load due to the repulsive force of the two conventional permanent magnets. As in the case (see FIGS. 19 and 20), a large repulsive force does not act in the radial direction, and therefore the dynamic pressure of the lubricating oil by the rotating dynamic pressure groove 2 always works effectively. It rotates smoothly while carrying the thrust load under the urging force. In other words, since the shaft 1 and the sleeve 4 are not deformed or damaged by a large radial force, they can be stably used for a long period without failure. Further, even if the magnetic force of the permanent magnet 5 changes over time, the axial biasing force does not fluctuate greatly as in the above-described conventional example for the same reason, and the rotation of the shaft 1 is stabilized for a long period of time.

第2図は、本発明の第2実施例を示す軸方向断面図で
ある。この第2実施例は、軸1の上端に高さの高い永久
磁石8を固定し、この永久磁石8の上部のみならず側部
をも覆う筒状の超電導材料9を、その嵌合突部9cを嵌合
溝4aに嵌め込んでスリーブ4の上端に固定した点を除い
て、第1図で述べた第1実施例と同じである。従って、
この第2実施例は、前述の第1実施例と同様に動作し、
同じ効果を奏するうえ、永久磁石8の外周と超電導材料
9の内周の間でも径方向に反撥力が働き、軸1が外周か
ら均一な力でいわば静水圧的に中心に向かって押圧され
るので、それだけ大きなラジアル荷重を支えることがで
き、ラジアル負荷容量が増大するという利点がある。
FIG. 2 is an axial sectional view showing a second embodiment of the present invention. In the second embodiment, a high-height permanent magnet 8 is fixed to the upper end of a shaft 1, and a cylindrical superconducting material 9 that covers not only the upper part but also the side part of the permanent magnet 8 is fitted with its fitting projection. This is the same as the first embodiment described with reference to FIG. 1 except that 9c is fitted into the fitting groove 4a and fixed to the upper end of the sleeve 4. Therefore,
The second embodiment operates in the same manner as the first embodiment, and
In addition to the same effect, a repulsive force acts in the radial direction even between the outer periphery of the permanent magnet 8 and the inner periphery of the superconducting material 9, and the shaft 1 is pressed from the outer periphery toward the center by a uniform force, ie, hydrostatic pressure. Therefore, there is an advantage that the radial load can be supported so much and the radial load capacity increases.

上記実施例では、軸1を回転側,スリーブ4を固定側
とし、軸1の端面に永久磁石3を,スリーブ4の端面に
超電導材料5を夫々固定したが、回転側と固定側を逆
に、また永久磁石と超電導材料を逆に固定してもよい。
超電導材5の周囲には適宜冷却装置を備えてもよい。ま
た、動圧溝は、実施例の軸1側でなくスリーブの内周面
に設けてもよく、潤滑油でなく空気で動圧を発生させて
もよい。なお、本発明が上記実施例に限られないのはい
うまでもない。
In the above embodiment, the shaft 1 is on the rotating side and the sleeve 4 is on the fixed side, and the permanent magnet 3 is fixed on the end face of the shaft 1 and the superconducting material 5 is fixed on the end face of the sleeve 4, respectively. Alternatively, the permanent magnet and the superconducting material may be fixed in reverse.
A cooling device may be appropriately provided around the superconducting material 5. Further, the dynamic pressure groove may be provided not on the shaft 1 side of the embodiment but on the inner peripheral surface of the sleeve, and the dynamic pressure may be generated not by lubricating oil but by air. It goes without saying that the present invention is not limited to the above embodiment.

<発明の効果> 以上の説明で明らかなように、本発明の流体動圧軸受
は、互いに嵌合する軸とスリーブの一方を固定、他方を
回転させ、嵌合面に設けた動圧溝で動圧を発生させてラ
ジアル荷重を支えるものにおいて、上記軸の端面および
この端面に対向する部分の端面に、永久磁石または超電
導体のいずれか一方および他方を夫々固定しているの
で、超電導体の完全反磁性によって軸とスリーブが径方
向に互いにずれても、従来2つの永久磁石による場合と
異なり、径方向に大きな反撥力を生じることなく軸方向
のみにスラスト荷重を支える反撥力を作用させることが
でき、動圧溝による動圧を常に有効に働かせて円滑かつ
安定した回転をなさしめ、軸やスリーブの変形,損傷な
どの虞れなく、経時変化を殆ど伴わずに長期に亘って使
用できる。
<Effects of the Invention> As is clear from the above description, the fluid dynamic bearing of the present invention is configured such that one of the shaft and the sleeve that are fitted to each other is fixed, the other is rotated, and the dynamic pressure groove provided on the fitting surface is used. In a device that generates a dynamic pressure to support a radial load, one or the other of a permanent magnet and a superconductor is fixed to the end surface of the shaft and the end surface of a portion facing the end surface, respectively. Even if the shaft and sleeve are displaced from each other in the radial direction due to complete diamagnetism, unlike the conventional two permanent magnets, a repulsive force that supports the thrust load only in the axial direction without exerting a large repulsive force in the radial direction is applied. Can be used for a long period of time with little change over time, with the dynamic pressure generated by the dynamic pressure groove always acting effectively to achieve smooth and stable rotation, without the risk of shaft or sleeve deformation or damage. You.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図は本発明の流体動圧軸受の夫々第1,第2
実施例を示す軸方向断面図、第3図は従来の流体動圧軸
受をもつモータスピンドルの断面図である。 1……軸、2……動圧溝、3,8……永久磁石、4……ス
リーブ、5,9……超電導材料。
1 and 2 show the first and second fluid dynamic pressure bearings of the present invention, respectively.
FIG. 3 is an axial sectional view showing an embodiment, and FIG. 3 is a sectional view of a motor spindle having a conventional fluid dynamic bearing. 1 ... Shaft, 2 ... Dynamic pressure groove, 3,8 ... Permanent magnet, 4 ... Sleeve, 5,9 ... Superconducting material.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに嵌合する軸とスリーブの一方を固定
し、他方を回転させ、双方の嵌合面の少なくとも一側に
設けた動圧溝によって動圧を発生させて、ラジアル荷重
を支える流体動圧軸受において、 上記軸の端面に永久磁石または反磁性をもつ超電導体の
いずれか一方を固定するとともに、上記端面に対向する
部材の端面に上記永久磁石または超電導体のいずれか他
方を固定したことを特徴とする流体動圧軸受。
An axial shaft and a sleeve which are fitted to each other are fixed, and the other is rotated, and a dynamic pressure is generated by a dynamic pressure groove provided on at least one side of both fitting surfaces to support a radial load. In the fluid dynamic pressure bearing, either one of a permanent magnet or a superconductor having diamagnetism is fixed to an end face of the shaft, and either the permanent magnet or the superconductor is fixed to an end face of a member facing the end face. A fluid dynamic pressure bearing characterized in that:
JP3251488A 1988-02-15 1988-02-15 Fluid dynamic pressure bearing Expired - Lifetime JP2614630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3251488A JP2614630B2 (en) 1988-02-15 1988-02-15 Fluid dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3251488A JP2614630B2 (en) 1988-02-15 1988-02-15 Fluid dynamic pressure bearing

Publications (2)

Publication Number Publication Date
JPH01210615A JPH01210615A (en) 1989-08-24
JP2614630B2 true JP2614630B2 (en) 1997-05-28

Family

ID=12361084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3251488A Expired - Lifetime JP2614630B2 (en) 1988-02-15 1988-02-15 Fluid dynamic pressure bearing

Country Status (1)

Country Link
JP (1) JP2614630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342959B2 (en) 2009-08-07 2013-11-13 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Disk drive
CN114607638A (en) * 2022-03-25 2022-06-10 西安热工研究院有限公司 Mechanical sealing device containing superconducting magnetic force

Also Published As

Publication number Publication date
JPH01210615A (en) 1989-08-24

Similar Documents

Publication Publication Date Title
US5223758A (en) Spindle motor
US6498411B2 (en) Bearing apparatus
US6674201B2 (en) Spindle motor with an aerodynamic and hydrodynamic bearing assembly
JPH0686503A (en) Motor, polygon mirror motor, disk drive motor
JP2614630B2 (en) Fluid dynamic pressure bearing
JPH09322473A (en) Spindle motor of which rotary shaft having magnetic bearings rotates
JPS61294218A (en) Fluid bearing device
JPH02157716A (en) Rotating polygon mirror device
JPH07310746A (en) Dynamic bearing device
JPH04307108A (en) Hydrodynamic bearing unit
JPS63195414A (en) Repulsion type thrust magnetic bearing
JPH034022A (en) Dynamic pressure bearing structure for motor
JPH03213715A (en) Thrust bearing
JPS6223354A (en) Flattened motor
JPS63145816A (en) Dynamic pressure type fluid bearing device
JPS6165905A (en) Dynamic pressure bearing system
JPH0771448A (en) Bearing device
JPS63121462A (en) Brushless motor
JPS62228710A (en) Bearing device
JPH05336694A (en) Rotary bearing device of motor
JPH0757079B2 (en) Spindle motor
JPH10331849A (en) Bearing device
KR20020045670A (en) Spindle motor
JPS63121010A (en) Rotary driving device
JPH05172140A (en) Bearing device