JP2614282B2 - Contact charging device - Google Patents
Contact charging deviceInfo
- Publication number
- JP2614282B2 JP2614282B2 JP63219966A JP21996688A JP2614282B2 JP 2614282 B2 JP2614282 B2 JP 2614282B2 JP 63219966 A JP63219966 A JP 63219966A JP 21996688 A JP21996688 A JP 21996688A JP 2614282 B2 JP2614282 B2 JP 2614282B2
- Authority
- JP
- Japan
- Prior art keywords
- charging
- layer
- photoreceptor
- resin
- photoconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真感光体と帯電用導電部材を備えた
接触帯電装置に関する。Description: TECHNICAL FIELD The present invention relates to a contact charging device provided with an electrophotographic photosensitive member and a charging conductive member.
従来、電子写真感光体で用いる光導電材料として、セ
レン,硫化カドミウム,酸化亜鉛などの無機光導電性材
料が知られている。これらの光導電性材料は、数多くの
利点、例えば暗所で適当な電位に帯電できること、暗所
で電荷の逸散できるなどの利点をもっている反面、各種
の欠点を有している。例えば、セレン系感光体では、温
度,湿度,ごみ,圧力などの要因で容易に結晶化が進
み、特に雰囲気温度が40℃を超えると結晶化が著しくな
り、帯電性の低下や画像に白い斑点が発生するといった
欠点がある。硫化カドミウン系感光体は、多湿の環境下
で安定した感度が得られない点や酸化亜鉛系感光体では
ローズベンガルに代表される増感色素による増感効果を
必要としているが、この様な増感色素がコロナ帯電によ
る帯電劣化や露光光による光退色を生じるため長期に亘
って安定した画像を与えることができない欠点を有して
いる。Conventionally, inorganic photoconductive materials such as selenium, cadmium sulfide, and zinc oxide have been known as photoconductive materials used in electrophotographic photoreceptors. While these photoconductive materials have many advantages, such as being able to be charged to an appropriate potential in a dark place and dissipating the charge in a dark place, they have various drawbacks. For example, selenium-based photoconductors easily crystallize due to factors such as temperature, humidity, dust, and pressure. Particularly when the ambient temperature exceeds 40 ° C., crystallization becomes remarkable, causing a decrease in chargeability and white spots on images. There is a drawback that occurs. Cadmium sulfide photoreceptors do not provide stable sensitivity in a humid environment, and zinc oxide photoreceptors require a sensitizing effect of a sensitizing dye represented by rose bengal. The photosensitive dye has a disadvantage that a stable image cannot be provided for a long period of time because charge deterioration due to corona charging and light fading due to exposure light occur.
一方、ポリビニルカルバゾールをはじめとする各種の
有機光導電性ポリマーが提案されて来たが、これらのポ
リマーは、前述の無機系光導電材料に較べ成膜性、軽量
性などの点で優れているにもかかわらず今日までその実
用化が困難であったのは、未だ十分な成膜性が得られて
おらず、また感度,耐久性および環境変化による安定性
の点で無機系光導電材料に較べ劣っているためであっ
た。また、低分子の有機光導電体も提案されている。こ
の様な低分子の有機光導電体は、使用するバインダーを
適当に選択する事によって、有機光導電性ポリマーの分
野で問題となっていた成膜性の欠点を解消できる様にな
ったが、感度の点で十分なものとは言えない。On the other hand, various organic photoconductive polymers such as polyvinyl carbazole have been proposed, but these polymers are superior to the above-mentioned inorganic photoconductive materials in terms of film formability, lightness, and the like. Nevertheless, it has been difficult to put it to practical use until now because inorganic photoconductive materials have not yet been obtained with sufficient film-forming properties and are sensitive, durable, and stable due to environmental changes. It was because it was inferior. In addition, low molecular organic photoconductors have also been proposed. Such a low-molecular organic photoconductor can solve the problem of the film forming property which has been a problem in the field of the organic photoconductive polymer by appropriately selecting a binder to be used. It is not enough in terms of sensitivity.
このようなことから、近年感光層を電荷発生層と電荷
輸送層に機能分離させた積層構造体が知られている。こ
の積層構造を感光層とした電子写真感光体は、可視光に
対する感度,電荷保持力,表面強度などの点で改善でき
る様になった。この様な電子写真感光体は、例えば米国
特許第3,837,851号、同第3,871,882号公報などに開示さ
れている。For these reasons, a laminated structure in which a photosensitive layer is separated into a charge generation layer and a charge transport layer in function has recently been known. The electrophotographic photoreceptor having this laminated structure as a photosensitive layer can be improved in sensitivity to visible light, charge retention, surface strength, and the like. Such an electrophotographic photosensitive member is disclosed in, for example, U.S. Pat. Nos. 3,837,851 and 3,871,882.
このような有機光導電体を含有する感光層を導電性支
持体上に設けた電子写真感光体を用いた電子写真プロセ
スにおける帯電プロセスは、従来よりほとんど金属ワイ
ヤーに高電圧(DC5〜8KV程度)を印加し、発生するコロ
ナにより帯電を行っている。しかしながら、この方式で
はコロナ発生時にオゾンやNOx等のコロナ生成物を多量
に発生し、このコロナ生成物により感光体表面を変質さ
せ画像ボケが劣化を進行させたり、ワイヤーの汚れがす
ぐに画像品質に影響し、画像白抜けや、黒スジを生じる
等の問題があった。有機光導電体を含有する感光体はコ
ロナ生成物による変質,劣化が他の感光体に比較して起
り易いという欠点を有している。すなわち、有機感光体
は他の無機系感光体、たとえばアモルフアスシリコンや
Se感光体に比べ化学的安定性が低く、コロナ生成物にさ
らされると化学反応(主に酸化反応)を起こし劣化しや
すい。これにより画像ボケ,画像流れ,感度の低下の原
因となっている。The charging process in an electrophotographic process using an electrophotographic photosensitive member in which a photosensitive layer containing such an organic photoconductor is provided on a conductive support is higher than a conventional method in that a high voltage (about 5 to 8 KV DC) is applied to a metal wire. Is applied, and charging is performed by the generated corona. However, in this method, a large amount of corona products such as ozone and NOx are generated when corona is generated, and this corona product alters the surface of the photoreceptor and causes image blurring to progress. And there are problems such as white spots on the image and black stripes. A photoreceptor containing an organic photoconductor has a disadvantage that deterioration and deterioration due to corona products are more likely to occur than other photoreceptors. That is, the organic photoreceptor is another inorganic photoreceptor, such as amorphous silicon or
The chemical stability is lower than that of Se photoreceptors, and when exposed to corona products, they tend to undergo a chemical reaction (mainly an oxidation reaction) and deteriorate easily. This causes image blur, image deletion, and a decrease in sensitivity.
また、オゾン及びNOx等コロナ生成物は感光体のみな
らず帯電器シールド板に付着し、コピー動作中のみなら
ず夜間等休止中にこの付着物が揮発遊離し、感光体に付
着するため、休止後のコピーにおいて休止中の帯電器に
相対する部分に画像ボケを生ずることが知られている。In addition, the corona products such as ozone and NOx adhere not only to the photoreceptor but also to the shield plate of the charger.These deposits are volatilized and released not only during the copying operation but also during a pause such as at night, and adhere to the photoreceptor. It is known that in a later copy, the image is blurred in the portion opposite to the charger at rest.
一方、コロナ放電を利用しない帯電法として、特開昭
56−104351号公報、特開昭57−178267号公報、特開昭58
−40566号公報、特開昭58−139156号公報、特開昭58−1
50975号公報などに提案されているように直接帯電させ
る方法が研究されている。On the other hand, as a charging method that does not use corona discharge,
JP-A-56-104351, JP-A-57-178267, JP-A-58-178267
-40566, JP-A-58-139156, JP-A-58-1
A direct charging method as proposed in Japanese Patent Publication No. 50975 has been studied.
具体的には感光体表面に1〜2KV程度の直流電圧を外
部より印加しうる導電性弾性ローラ等の帯電部材を接触
させることにより感光体表面に電荷を直接注入して感光
体表面を所定の電位に帯電させるものである。Specifically, a charge is directly injected into the surface of the photoreceptor by bringing a charging member such as a conductive elastic roller capable of externally applying a DC voltage of about 1 to 2 KV to the surface of the photoreceptor so that the surface of the photoreceptor has a predetermined shape. It is charged to a potential.
有機光導電体を含有する感光層を有する感光体を使用
する場合、帯電効率が高く、コロナ生成物の発生量が極
めて少ない直接帯電を行うことは、画像ボケ等の画像欠
陥の発生を抑え、また感光体の耐刷寿命を延ばすという
点から非常に有効である。When using a photoreceptor having a photosensitive layer containing an organic photoconductor, direct charging with high charging efficiency and extremely low generation of corona products suppresses the occurrence of image defects such as image blur, It is also very effective in extending the printing life of the photoreceptor.
しかしながら、このような直接帯電方法は、多数の提
案があるにもかかわらず市場実績は全くない。これは帯
電の不均一性、直接電圧を印加することによる感光体の
放電絶縁破壊による白ポチなどの画像欠陥が発生しやし
ことが原因である。However, such a direct charging method has no market record despite many proposals. This is due to the non-uniformity of charging and the possibility of image defects such as white spots due to discharge breakdown of the photoconductor due to direct application of voltage.
すなわち、本発明の目的は接触帯電による感光体の放
電絶縁破壊のない接触帯電装置を提供することにある。That is, an object of the present invention is to provide a contact charging device which does not cause discharge breakdown of a photosensitive member due to contact charging.
また、本発明の目的は、画像欠陥のない優れた画像を
得ることのできる接触帯電装置を提供することにある。Another object of the present invention is to provide a contact charging device capable of obtaining an excellent image without image defects.
本発明者は、これらの点に関し検討を行った結果、帯
電用導電部材に接触配置される電子写真感光体の感光体
中に含有される粒子の最大粒径を一定値以下に制御する
ことにより、前述の問題点を解決できることを見い出
し、本発明に致った。The present inventor has conducted studies on these points, and as a result, by controlling the maximum particle diameter of the particles contained in the photosensitive member of the electrophotographic photosensitive member arranged in contact with the charging conductive member to a certain value or less. The present inventors have found that the above-mentioned problems can be solved, and have achieved the present invention.
すなわち、本発明は導電性支持体上に有機光導電体を
含有する感光層を有する電子写真感光体であって、該感
光体中に含有される粒子の最大粒径が1μm以下である
電子写真感光体と、該電子写真感光体に接触配置された
帯電用導電部材とを有することを特徴とする接触帯電装
置である。That is, the present invention relates to an electrophotographic photosensitive member having a photosensitive layer containing an organic photoconductor on a conductive support, wherein the maximum particle diameter of the particles contained in the photosensitive member is 1 μm or less. A contact charging device comprising: a photosensitive member; and a charging conductive member disposed in contact with the electrophotographic photosensitive member.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明者らの知見によれば、接触帯電による感光体の
放電絶縁破壊は感光体中に含有されている最大粒径が1
μmを超える粒子、即ち、感光層に分散されているアゾ
顔料やフタロシアニン顔料などの電荷発生材料の凝集
物、或は四フツ化エチレン樹脂粉体やフツ化ビニリデン
樹脂粉体などの固体潤滑剤の凝集物、或は固形不純物さ
らには下引層などの中間層中にある支持体切削による切
り粉などの固形不純物などが核となって起こっている。According to the knowledge of the present inventors, the discharge breakdown of the photoreceptor due to contact charging is caused when the maximum particle size contained in the photoreceptor is 1%.
μm particles, that is, aggregates of charge generation materials such as azo pigments and phthalocyanine pigments dispersed in the photosensitive layer, or solid lubricants such as ethylene tetrafluoride resin powder and vinylidene fluoride resin powder. Aggregates, solid impurities, and solid impurities such as cuttings from the cutting of the support in the intermediate layer such as the undercoat layer are formed as nuclei.
本発明では、直接帯電における放電絶縁破壊の原因と
なっている1μmを超えた粒子を感光体中に含有させ
ず、各層を構成している膜中に含有されている粒子径を
最大1μmに抑えることにより、直接帯電で問題であっ
た絶縁破壊を防ぐことができる。このように粒子径を制
御する方法としては、感光層などの層形成用塗工液を濾
過、遠心分離などの手段を用いて凝集物や不純物を取り
除いたり、塗工液の有機溶剤を適宜選択し、乾燥過程で
の凝集を防止したりすることが挙げられる。In the present invention, particles exceeding 1 μm that cause discharge breakdown in direct charging are not contained in the photoreceptor, and the particle diameter contained in the film constituting each layer is suppressed to a maximum of 1 μm. This can prevent dielectric breakdown, which has been a problem with direct charging. As a method of controlling the particle size in this way, the coating liquid for forming a layer such as a photosensitive layer is filtered, centrifugation or the like is used to remove aggregates and impurities, or an organic solvent of the coating liquid is appropriately selected. And preventing agglomeration in the drying process.
本発明における最大粒径はその粒子の長軸方向の長さ
であり、顕微鏡により観察することができる。The maximum particle size in the present invention is the length of the particle in the major axis direction, and can be observed with a microscope.
第1図は、本発明の接触帯電装置の断面模式図を示
し、帯電用導電部材1が感光体2に接触配置しており、
電源3からの電圧は帯電用導電部材1に印加され、帯電
用導電部材1から感光体2上に直接帯電されるものであ
る。FIG. 1 is a schematic sectional view of a contact charging device of the present invention, in which a charging conductive member 1 is arranged in contact with a photoreceptor 2,
The voltage from the power source 3 is applied to the charging conductive member 1, and is charged directly on the photoconductor 2 from the charging conductive member 1.
本発明において有機光導電体を含有する電子写真感光
体は以下のように構成される。In the present invention, the electrophotographic photosensitive member containing the organic photoconductor is configured as follows.
感光層は導電性支持体の上に設けられる。導電性支持
体としては、基体自体が導電性をもつもの、例えばアル
ミニウム、アルミニウム合金、ステンレスなどを用いる
ことができ、その他にアルミニウム、アルミニウム合
金、酸化インジウム、酸化錫などを真空蒸着法によって
被膜形成された層を有するプラスチツク、導電性粒子を
適当なバインダーとともに前記支持体プラスチツクの上
に被覆した支持体、導電性粒子をプラスチツクや紙に含
浸した支持体や導電性ポリマーを有するプラスチツクな
どを用いることができる。The photosensitive layer is provided on a conductive support. As the conductive support, a substrate having conductivity itself, for example, aluminum, an aluminum alloy, stainless steel, or the like can be used. In addition, aluminum, an aluminum alloy, indium oxide, tin oxide, or the like is formed into a film by a vacuum evaporation method. Using a plastic having a coated layer, a support in which conductive particles are coated on the support plastic together with a suitable binder, a support in which conductive particles are impregnated in a plastic or paper, or a plastic having a conductive polymer. Can be.
導電性支持体と感光層の中間に、バリヤー機能と接着
機能をもつ下引層を設けることもできる。下引層はカゼ
イン,ポリビニルアルコール,ニトロセルロース,ポリ
アミド,ポリウレタン,ゼラチン,酸化アルミニウムな
どによって形成できる。下引層の膜厚は5μm以下、好
ましくは0.5〜3μmが適当である。バリヤー層はその
機能を発揮するためには、107Ωcm以上であることが望
ましい。An undercoat layer having a barrier function and an adhesive function may be provided between the conductive support and the photosensitive layer. The undercoat layer can be formed of casein, polyvinyl alcohol, nitrocellulose, polyamide, polyurethane, gelatin, aluminum oxide, or the like. The thickness of the undercoat layer is 5 μm or less, preferably 0.5 to 3 μm. The barrier layer preferably has a resistivity of 10 7 Ωcm or more in order to exhibit its function.
本発明における有機導電体を含有する感光層は、機能
分離された電荷発生材料と電荷輸送材料とが混合された
単層型感光体、あるいは電荷発生材料を含む電荷発生層
と電荷輸送材料を含む電荷輸送層を積層した積層型感光
体などの形態をとる。The photosensitive layer containing an organic conductor according to the present invention includes a single-layer type photosensitive body in which a charge generation material and a charge transport material whose functions are separated are mixed, or a charge generation layer containing a charge generation material and a charge transport material. It takes the form of a laminated photoreceptor having a charge transport layer laminated thereon.
電荷発生材料としては、アゾ顔料,フタロシアニン顔
料,キノン顔料,キノシアニン顔料,ペリレン顔料,イ
ンジゴ顔料,ビスベンゾイミダゾール顔料,キナクリド
ン顔料などの有機光導電体が用いられる。Organic photoconductors such as azo pigments, phthalocyanine pigments, quinone pigments, quinocyanine pigments, perylene pigments, indigo pigments, bisbenzimidazole pigments, and quinacridone pigments are used as the charge generation material.
電荷輸送材料としては、ピラゾリン系,ヒドラゾン
系,スチルベン系,トリフエニルアミン系,ベンジジン
系,オキサゾール系,インドール系,カルバゾール系化
合物などの有機光導電体が用いられる。Organic photoconductors such as pyrazoline-based, hydrazone-based, stilbene-based, triphenylamine-based, benzidine-based, oxazole-based, indole-based, and carbazole-based compounds are used as the charge transport material.
単層型感光体の場合は上記の電荷発生材料と電荷輸送
材料を適当な結着樹脂に溶解または分散し、塗布により
導電性支持体上に層を形成する。In the case of a single-layer type photoreceptor, the above-described charge generation material and charge transport material are dissolved or dispersed in an appropriate binder resin, and a layer is formed on a conductive support by coating.
一方、積層型としては、導電性支持体上に1)電荷発
生層、電荷輸送層の順に積層するもの、或は2)電荷輸
送層、電荷発生層の順に積層するものがある。1)の場
合には電荷発生層の形成法として、結着樹脂と溶剤中に
電荷発生材料を分散して塗布する方法や蒸着、スパツタ
リング等の方法がある。膜厚は5μm以下、特には0.01
〜3μmが好ましい。On the other hand, as the lamination type, there is a type in which 1) a charge generation layer and a charge transport layer are laminated in this order on a conductive support, or 2) a type in which a charge transport layer and a charge generation layer are laminated in this order. In the case of 1), as a method for forming the charge generation layer, there are a method of dispersing and applying a charge generation material in a binder resin and a solvent, and a method such as vapor deposition and sputtering. The film thickness is 5 μm or less, especially 0.01
33 μm is preferred.
電荷輸送層は上述の電荷輸送材料を成膜性のある結着
樹脂中に溶解して電荷発生層上に積層する。膜厚は5〜
40μm、特には8〜35μmが好ましい。The charge transport layer is formed by dissolving the above-described charge transport material in a binder resin having a film forming property and laminating it on the charge generation layer. The film thickness is 5
40 μm, particularly preferably 8-35 μm.
一方、電荷輸送層上に電荷発生層を積層する2)の場
合は、どちらの層も上述の有機光導電体を結着樹脂と共
に塗布することにより層を形成することができる。この
時、電荷発生層中にも電荷輸送材料を含有させることが
好ましい。On the other hand, in the case of 2) in which the charge generation layer is laminated on the charge transport layer, both layers can be formed by applying the above-mentioned organic photoconductor together with a binder resin. At this time, it is preferable to include a charge transport material also in the charge generation layer.
前述の結着樹脂の例としては、フエノキシ樹脂,ポリ
アクリルアミド,ポリビニルブチラール,ポリアリレー
ト,ポリスルホン,ポリアミド,アクリル樹脂,アクリ
ロニトリル樹脂,メタクリル樹脂,塩化ビニル樹脂,酢
酸ビニル樹脂,フエノール樹脂,エポキシ樹脂,ポリエ
ステル,アルキド樹脂,ポリカーボネート,ポリウレタ
ンあるいはこれらの樹脂の繰返し単位のうち2つ以上を
含む共重合体などを挙げることができる。Examples of the above-mentioned binder resin include phenoxy resin, polyacrylamide, polyvinyl butyral, polyarylate, polysulfone, polyamide, acrylic resin, acrylonitrile resin, methacryl resin, vinyl chloride resin, vinyl acetate resin, phenol resin, epoxy resin, polyester Alkyd resins, polycarbonates, polyurethanes, and copolymers containing two or more of the repeating units of these resins.
また、感光層中には四フツ化エチレン樹脂粉体,フツ
化ビニリデン樹脂粉体,フツ化カーボン粉体などの固体
潤滑剤、酸化防止剤,紫外線吸収剤などの添加剤を含有
することができる。The photosensitive layer may contain additives such as solid lubricants such as ethylene tetrafluoride resin powder, vinylidene fluoride resin powder, and carbon fluoride powder, and antioxidants and ultraviolet absorbers. .
また、感光層の上に必要に応じて膜厚0.05〜20μmの
保護層を設けてもよい。この保護層中には前述のような
添加剤を含有させてもよい。Further, a protective layer having a thickness of 0.05 to 20 μm may be provided on the photosensitive layer as needed. The above-mentioned additives may be contained in this protective layer.
本発明の帯電用導電部材は、感光体表面に接触配置さ
れ、外部からの電圧を感光体に直接,均一に印加し、感
光体表面を所定の電位に帯電させるものである。このよ
うな帯電用導電部材としては、アルミニウム,鉄,銅な
どの金属、ポリアセチレン,ポリピロール,ポリチオフ
エンなどの導電性高分子材料、カーボンブラツク,金属
などの導電性粒子をポリカーボネート,ポリビニル,ポ
リエチレンなどの絶縁樹脂に分散して導電処理したゴム
や人口繊維、または絶縁樹脂の表面を導電性物質によっ
てコートしたもの、などを用いることができる。また、
これらの形状としてはローラー,ブラシ(磁気ブラシも
含む),ブレード,ベルトなどいずれの形状をとっても
良い。The charging conductive member of the present invention is disposed in contact with the surface of the photoreceptor, applies an external voltage directly and uniformly to the photoreceptor, and charges the surface of the photoreceptor to a predetermined potential. As such a charging conductive member, conductive particles such as metals such as aluminum, iron and copper, conductive polymer materials such as polyacetylene, polypyrrole and polythiophene, carbon black and metal are used for insulating such as polycarbonate, polyvinyl and polyethylene. Rubber or artificial fiber dispersed in a resin and subjected to a conductive treatment, or an insulating resin whose surface is coated with a conductive substance can be used. Also,
These shapes may be any shape such as a roller, a brush (including a magnetic brush), a blade, and a belt.
帯電用導電部材の抵抗は良好で均一な帯電と絶縁破壊
防止の点から、好ましくは100〜1012Ωcm、特には102〜
1010Ωcmの範囲が良い。Resistance of the charging conductive member in terms of preventing good and uniform charging and breakdown, preferably 10 0 to 10 12 [Omega] cm, in particular 10 2 -
A range of 10 10 Ωcm is good.
帯電用導電部材の設置に関しては、特定の方法に限定
されるものでなく、固定式または感光体と同方向あるい
は逆方向で回転する、などの移動式を用いることができ
る。さらに、帯電用導電部材は感光体上のトナークリー
ニング機能をもたせることも可能である。The method of installing the charging conductive member is not limited to a specific method, and a fixed type or a movable type such as rotating in the same direction as the photoconductor or in the opposite direction can be used. Further, the charging conductive member can also have a toner cleaning function on the photoconductor.
帯電用導電部材への印加電圧は、直流・交流いずれを
用いることができ、また直流+交流の形で印加すること
もできる。その印加方法に関しては、各々の電子写真装
置の使用にもよるが、瞬時に電圧を印加する方式、感光
体の保護などの目的では段階的に印加電圧を上げていく
方式、直流→交流または交流→直流の順序で電圧を印加
する方式などを用いることができる。As the voltage applied to the charging conductive member, either DC or AC can be used, and DC + AC can also be applied. The method of applying the voltage depends on the use of each electrophotographic apparatus.However, a method of instantaneously applying a voltage, a method of gradually increasing the applied voltage for the purpose of protecting a photoreceptor, etc., DC → AC or AC → A method of applying a voltage in the order of DC can be used.
このような帯電用導電部材を感光体上に接触配置する
ための一具体例を第2図に示す。FIG. 2 shows a specific example for arranging such a charging conductive member in contact with a photoreceptor.
第2図は帯電用導電部材ユニツトの一具体例を示す模
式図であり、支持体4上には帯電用導電部材1を両側か
ら支持するための支持部材5が設けられており、帯電用
導電部材1は支点6を介して加圧スプリング7によって
感光体に圧接できるようになっている。また、帯電用導
電部材1は給電ブラシ8によって芯金9を介して電圧供
給される。FIG. 2 is a schematic view showing a specific example of a charging conductive member unit. A supporting member 5 for supporting the charging conductive member 1 from both sides is provided on a support 4. The member 1 can be pressed against the photoconductor by a pressure spring 7 via a fulcrum 6. The charging conductive member 1 is supplied with a voltage via a metal core 9 by a power supply brush 8.
このよなユニツトを用いることにより、感光体に対す
る圧接力を適宜調整することができる。By using such a unit, the pressing force against the photoconductor can be appropriately adjusted.
以下、実施例により本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.
実施例1,2および比較例1〜3 感光体No.1の作成 キヤノン製複写機NP−3525用アルミニウムシリンダー
上にポリアミド(アルコキシメチル化ナイロン)のメタ
ノール溶液(4重量%)をメンブランフイルターで濾過
した後浸漬塗工し、乾燥して塗工量1.0g/m2の下引層と
した。Examples 1 and 2 and Comparative Examples 1 to 3 Preparation of Photoreceptor No. 1 A methanol solution (4% by weight) of polyamide (alkoxymethylated nylon) was filtered on an aluminum cylinder for a copying machine NP-3525 made by Canon through a membrane filter. After that, dip coating was performed, followed by drying to form an undercoat layer having a coating amount of 1.0 g / m 2 .
次に下記構造式 のビスアゾ顔料を10部(重量部、以下同様)、ポリビニ
ルブチラール樹脂(商品名:エスレツクBXL,積水化学
(株)製)8部およびシクロヘキサノン60部を1φガラ
スビーズを用いたサンドミル装置で20時間分散した。こ
の分散液にメチルエチルケトン70〜120(適宜)部を加
えて、10,000RPMで30分間遠心分離して凝集物を除去
し、下引き層上に塗布した。膜厚は0.12μmであった。Next, the following structural formula Of bisazo pigment (parts by weight, hereinafter the same), 8 parts of polyvinyl butyral resin (trade name: Esrec BXL, manufactured by Sekisui Chemical Co., Ltd.) and 60 parts of cyclohexanone are dispersed in a sand mill using 1φ glass beads for 20 hours. did. To this dispersion, 70 to 120 parts (as appropriate) of methyl ethyl ketone was added, and the mixture was centrifuged at 10,000 RPM for 30 minutes to remove aggregates and applied to the undercoat layer. The thickness was 0.12 μm.
次に下記構造式 のヒドラゾン化合物7部、ポリスチレン樹脂(商品名:
ダイヤレツクHF−55,三菱モンサント化成製)10部をモ
ノクロルベンゼン50部に溶解した。この液をメンブラン
フイルターで濾過した後、上記電荷発生層上に塗布し
た。乾燥後の膜厚は17μmであった。Next, the following structural formula 7 parts of hydrazone compound, polystyrene resin (trade name:
10 parts of Dialect HF-55, manufactured by Mitsubishi Monsanto Kasei) were dissolved in 50 parts of monochlorobenzene. This solution was filtered through a membrane filter and then applied on the charge generation layer. The film thickness after drying was 17 μm.
なお、この感光体作成工程において、各層形成後それ
ぞれ顕微鏡で10視野観察を行った。その結果、いずれの
層中においても1μmを超えた粒子径の凝集物や固体不
純物は存在せず、粒子の最大粒径は電荷発生層における
電荷発生材料の凝集物0.8μmであった。In addition, in this photoreceptor forming step, after visualization of each layer, 10 visual fields were observed with a microscope. As a result, no aggregates or solid impurities having a particle diameter exceeding 1 μm were present in any of the layers, and the maximum particle diameter of the particles was 0.8 μm of the aggregate of the charge generation material in the charge generation layer.
感光体No.2の作成 感光体No.1のビスアゾ顔料の代わりに下記構造式 のビスアゾ顔料を用い、ポリビニルブチラール樹脂の代
わりにポリカーボネート樹脂(重量平均分子量5,000)
を用いることを除いては感光体No.1と同様にして感光体
を作成した。Preparation of photoconductor No.2 Instead of bisazo pigment of photoconductor No.1, the following structural formula Polycarbonate resin (weight average molecular weight 5,000) instead of polyvinyl butyral resin
A photoconductor was prepared in the same manner as photoconductor No. 1 except that No. was used.
なお、この感光体作成工程において、各層形成後それ
ぞれ顕微鏡で10視野観察を行ったところ、粒子の最大粒
径は電荷発生層における電荷発生材料の凝集物0.9μm
であった。In this photoreceptor forming step, when 10 fields of view were observed with a microscope after each layer was formed, the maximum particle size of the particles was 0.9 μm of the aggregate of the charge generation material in the charge generation layer.
Met.
感光体No.3の作成 感光体No.1と同様の材料を用いてメンブランフイルタ
ーによる濾過及び遠心分離の工程を除いた他は同様の方
法で感光体No.3を作成した。Preparation of Photoreceptor No. 3 Photoreceptor No. 3 was prepared using the same material as photoreceptor No. 1, except that the steps of filtration and centrifugation by a membrane filter were omitted.
各層形成後それぞれ顕微鏡観察したところ電荷発生層
において最大粒径1.1μmの固体不純物が認められた。After microscopic observation after formation of each layer, solid impurities having a maximum particle size of 1.1 μm were observed in the charge generation layer.
感光体No.4の作成 感光体No.2と同様の材料を用いて比較例1と同様の方
法で感光体No.4を作成した。各層形成後それぞれ顕微鏡
観察したところ電荷発生層において最大粒径1.3μmの
電荷発生材料の凝集物が認められた。Preparation of Photoconductor No. 4 Photoconductor No. 4 was prepared in the same manner as in Comparative Example 1 using the same material as photoconductor No. 2. After microscopic observation after forming each layer, aggregates of the charge generating material having a maximum particle size of 1.3 μm were observed in the charge generating layer.
以上の感光体を第3図に示す構成の複写機(改造NP−
3525:キヤノン製)に備え付けた。この構成では、感光
体2の回りには、帯電用導電部材1,画像露光10,現像器1
1,転写紙の給紙ローラーと給紙ガイド12,転写帯電器B,
分離帯電器14,定着器(不図示)に転写紙を送る搬送部1
5,クリーナー16,前露光光源17が配置されている。特
に、クリーナー16はシリコンゴム製ブレードによるブレ
ードクリーニングであり、ブレード圧20g/cm、当接角25
゜、ブレード侵入量1.0mmである。The above photoreceptor is used in a copier (modified NP-
3525: Canon). In this configuration, a charging conductive member 1, an image exposure 10, a developing device 1
1, transfer paper feed roller and paper feed guide 12, transfer charger B,
Conveyor unit 1 that sends transfer paper to separation charger 14, fixing unit (not shown)
5, a cleaner 16 and a pre-exposure light source 17 are arranged. In particular, the cleaner 16 is a blade cleaning using a silicon rubber blade, the blade pressure is 20 g / cm, and the contact angle is 25.
゜, blade penetration amount is 1.0mm.
また、帯電用導電部材に印加する電圧はDC−700V+AC
ピーク差1,500V(1,000Hz)であり、その帯電用導電部
材は、中心鉄芯径5mmの回りにカーボン分散のウレタン
ゴム(抵抗値106Ω・cm)を被覆して外径30mmのローラ
ー形状となっている。The voltage applied to the charging conductive member is DC-700V + AC
With a peak difference of 1,500 V (1,000 Hz), the conductive member for charging is a roller with a diameter of 30 mm, coated with urethane rubber (resistance value 10 6 Ω · cm) of carbon dispersion around the center iron core diameter of 5 mm. It has become.
以上の複写機を用いて、35℃,湿度90%の環境下で印
字耐久を行い、画像ボケ・流れ,感度低下,絶縁破壊数
を評価した。結果を第1表に示す。また、比較例3とし
て感光体No.1を用い帯電用導電部材による直接帯電の代
わりに、コロナ帯電器によるコロナ帯電を用いた場合の
評価結果も同時に示す。Using the above copier, printing durability was performed in an environment of 35 ° C. and 90% humidity, and image blur / flow, sensitivity reduction, and dielectric breakdown were evaluated. The results are shown in Table 1. Further, as Comparative Example 3, the evaluation result when the photoconductor No. 1 is used and corona charging by a corona charger is used instead of direct charging by the charging conductive member is also shown.
以上の結果から、最大粒子径が1μmを超えた粒子を
含むものは直接帯電によって絶縁破壊を起こしている。
これに対して、最大粒子径が1μm以下のものは1ケ所
も絶縁破壊を起こしていない。又、コロナ帯電に比べて
直接帯電はオゾン濃度が減少し、画像ボケ・流れ、およ
び感度の低下が防止されている。 From the above results, those containing particles having a maximum particle diameter of more than 1 μm have caused dielectric breakdown by direct charging.
On the other hand, those having a maximum particle diameter of 1 μm or less have no dielectric breakdown at any one place. In addition, direct charging reduces the ozone concentration as compared with corona charging, and prevents image blur / flow and reduction in sensitivity.
実施例3,4および比較例4,5 前述のローラー形状帯電用導電性をウレタンゴム中に
カーボンを分散し抵抗を108Ω・cmとした板状のブレー
ドに代え、これを感光体の回転に対して順方向に接する
ように前述の複写機に設定して実施例1と同様に印字耐
久を行った。その結果を第2表に示す。Examples 3 and 4 and Comparative Examples 4 and 5 The above-described roller-shaped charging conductivity was changed to a plate-like blade having a resistance of 10 8 Ωcm by dispersing carbon in urethane rubber, and rotating the photosensitive member. Was set in the above-described copying machine so as to contact the printer in the forward direction, and printing durability was performed in the same manner as in Example 1. Table 2 shows the results.
第2表から明らかなように、最大粒子径が1μmを超
える粒子を含むものはいずれも絶縁破壊を起こしている
が、1μm以下のものは1ケ所も絶縁破壊を起こさず、
1万枚のコピーによっても良好な画像を得られた。 As is evident from Table 2, any one containing particles having a maximum particle diameter of more than 1 μm has caused dielectric breakdown, but one having a maximum particle diameter of 1 μm or less does not cause any dielectric breakdown,
Good images were obtained even with 10,000 copies.
実施例5 帯電用導電部材として第4図に示すようなブラシ鉄芯
18の回りにカーボンを分散したポリエステルをコーテイ
ングしてあるブラシ(抵抗106Ω・cm)にかえた。Example 5 A brush iron core as shown in FIG. 4 as a charging conductive member
Around 18 was changed to a brush (resistance: 10 6 Ω · cm) coated with polyester dispersed with carbon.
また、感光体を以下の方法により作成し、実施例1と
同様に評価した。NP3525用アルミシリンダー上にカゼイ
ンのアンモニア水溶液(カゼイン11.2%、アンモニア水
1g、水222ml)をメンブランフイルターで濾過した後浸
漬塗工で乾燥後の膜厚が1.0μmとなる様に塗布し乾燥
した。Further, a photoreceptor was prepared by the following method and evaluated in the same manner as in Example 1. Aqueous ammonia solution of casein (casein 11.2%, ammonia water) on aluminum cylinder for NP3525
(1 g, 222 ml of water) was filtered through a membrane filter, applied by dip coating so that the film thickness after drying was 1.0 μm, and dried.
次いで下記構造式 のスチルベン型化合物5gとポリメチルメタクリレート樹
脂(数平均分子量100,000)5gをベンゼン70mlに溶解し
これをメンブランフイルターで濾過した後下引層の上に
乾燥後の膜厚が20μmとなる様に浸漬塗工で塗布し、乾
燥して電荷輸送層を形成した。Then the following structural formula 5 g of stilbene type compound and 5 g of polymethyl methacrylate resin (number average molecular weight 100,000) are dissolved in 70 ml of benzene, filtered through a membrane filter, and then dip-coated on the undercoat layer so that the film thickness after drying is 20 μm. It was applied by a process and dried to form a charge transport layer.
次に、下記構造式 のアゾ顔料5gをエタノール95mlにポリメチルメタクリレ
ート樹脂2gを溶かした液に加え、サンドミルで2時間分
散した。この分散液500rpmで遠心分離し先に形成した電
荷輸送層の上に乾燥後の膜厚が5μmとなるように浸漬
塗工で塗布し、乾燥して電荷発生層を形成し、感光体N
o.5とした。Next, the following structural formula Was added to a solution prepared by dissolving 2 g of polymethyl methacrylate resin in 95 ml of ethanol, and dispersed by a sand mill for 2 hours. This dispersion liquid was centrifuged at 500 rpm, applied on the previously formed charge transport layer by dip coating so that the film thickness after drying was 5 μm, and dried to form a charge generation layer.
o.5.
なお、各層形成後それぞれ顕微鏡で観察を行ったとこ
ろ、感光体中に含まれる粒子の最大粒径は電荷発生層に
おける電荷発生材料の凝集物0.6μmであった。印字耐
久を行ったところ、1万枚の連続コピーによって画像ボ
ケ・流れは認められず、また感度の低下によって画像濃
度がうすくなる等の問題はなく良好な画像が得られた。
また絶縁破壊は認められなかった。Observation with a microscope after formation of each layer revealed that the maximum particle size of the particles contained in the photoreceptor was 0.6 μm of the aggregate of the charge generation material in the charge generation layer. As a result of printing durability, no blurring or running of the image was observed after continuous copying of 10,000 sheets, and a satisfactory image was obtained without problems such as a decrease in image density due to a decrease in sensitivity.
No dielectric breakdown was observed.
以上説明したように帯電によるオゾンやNOxおよびイ
オン生成物等の影響を受けやすい有機光導電体を含有す
る感光層は直接帯電を行うことにより、画像ボケ・流れ
及び感度低下を防ぐことができる。また、電子写真感光
体中の粒子の最大粒径が1μm以下にすることによっ
て、これまで直接帯電で問題であった絶縁破壊を防ぐこ
とができる。As described above, the photosensitive layer containing the organic photoconductor that is easily affected by ozone, NOx, ion products, and the like due to charging can be prevented from being blurred or blurred, and from having a reduced sensitivity by being directly charged. By setting the maximum particle size of the particles in the electrophotographic photoreceptor to 1 μm or less, dielectric breakdown, which has been a problem in direct charging, can be prevented.
第1図は接触帯電装置の断面模式図、第2図は帯電用導
電部材ユニツトの模式図、第3図は実施例で用いた複写
機の断面図、第4図はブラシ形状帯電用導電部材の断面
模式図を示す。FIG. 1 is a schematic cross-sectional view of a contact charging device, FIG. 2 is a schematic diagram of a conductive member unit for charging, FIG. 3 is a cross-sectional view of a copying machine used in the embodiment, and FIG. FIG.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 弘之 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 橋本 雄一 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭63−208877(JP,A) 特開 昭61−179464(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Omori 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Yuichi Hashimoto 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (56) References JP-A-63-208877 (JP, A) JP-A-61-179464 (JP, A)
Claims (1)
感光層を有する電子写真感光体であって、該感光体中に
含有される粒子の最大粒径が1μm以下である電子写真
感光体と、 該電子写真感光体に接触配置された帯電用導電部材とを
有することを特徴とする接触帯電装置。1. An electrophotographic photosensitive member having a photosensitive layer containing an organic photoconductor on a conductive support, wherein the maximum particle diameter of particles contained in the photosensitive member is 1 μm or less. A contact charging device comprising: a photosensitive member; and a charging conductive member disposed in contact with the electrophotographic photosensitive member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63219966A JP2614282B2 (en) | 1988-09-02 | 1988-09-02 | Contact charging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63219966A JP2614282B2 (en) | 1988-09-02 | 1988-09-02 | Contact charging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0267575A JPH0267575A (en) | 1990-03-07 |
JP2614282B2 true JP2614282B2 (en) | 1997-05-28 |
Family
ID=16743823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63219966A Expired - Lifetime JP2614282B2 (en) | 1988-09-02 | 1988-09-02 | Contact charging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2614282B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3049866B2 (en) * | 1991-09-25 | 2000-06-05 | ミノルタ株式会社 | Photoconductor for contact charging and image forming apparatus |
JPH06194854A (en) * | 1992-12-25 | 1994-07-15 | Konica Corp | Image forming method |
JP3444995B2 (en) * | 1994-12-07 | 2003-09-08 | キヤノン株式会社 | Electrophotographic photoreceptor and electrophotographic apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57122444A (en) * | 1981-01-23 | 1982-07-30 | Canon Inc | Electrophotographic receptor |
JPS60186847A (en) * | 1984-03-06 | 1985-09-24 | Fuji Photo Film Co Ltd | Electrophotographic sensitive body |
JPS60189754A (en) * | 1984-03-10 | 1985-09-27 | Canon Inc | Production of electrophotographic sensitive body |
JPS61117558A (en) * | 1984-11-14 | 1986-06-04 | Canon Inc | Electrophotographic sensitive body |
JPS61251860A (en) * | 1985-04-30 | 1986-11-08 | Mita Ind Co Ltd | Organic electrophotographic sensitive body and its manufacture |
-
1988
- 1988-09-02 JP JP63219966A patent/JP2614282B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0267575A (en) | 1990-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0158921B1 (en) | Electrophotographic sensitive body, electrophotographic device with the same and device unit | |
JP2584873B2 (en) | Electrophotographic equipment | |
EP0643339A1 (en) | Electrophotographic image forming method, apparatus and device unit | |
JP2614282B2 (en) | Contact charging device | |
JP2894508B2 (en) | Charging member | |
JP2765661B2 (en) | Charging member | |
JP3860731B2 (en) | Photoconductor and image forming apparatus | |
JP3636552B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2765660B2 (en) | Charging member | |
JP2866447B2 (en) | Charging member | |
JP3432093B2 (en) | Image forming device | |
JP2866446B2 (en) | Charging member | |
JP2946114B2 (en) | Charging member | |
JP2694745B2 (en) | Electrophotographic equipment | |
JP3031967B2 (en) | Charging member | |
JPH08184974A (en) | Electrophotographic photoreceptor | |
JPH06313972A (en) | Electrophotographic sensitive body and electrophotographic device | |
JP2765663B2 (en) | Charging member | |
JP2002023395A (en) | Electrophotographic photoreceptor | |
JPH10115945A (en) | Electrophotographic photoreceptor and electrophotographic device | |
JP2003255579A (en) | Electrophotographic photoreceptor and image forming method | |
JP2859708B2 (en) | Charging member | |
JPH0636113B2 (en) | Electrophotographic device | |
JP2946116B2 (en) | Charging member | |
JP2894509B2 (en) | Charging member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 12 |