JP2611352B2 - Chromatic dispersion compensation method for optical transmission line - Google Patents
Chromatic dispersion compensation method for optical transmission lineInfo
- Publication number
- JP2611352B2 JP2611352B2 JP63180974A JP18097488A JP2611352B2 JP 2611352 B2 JP2611352 B2 JP 2611352B2 JP 63180974 A JP63180974 A JP 63180974A JP 18097488 A JP18097488 A JP 18097488A JP 2611352 B2 JP2611352 B2 JP 2611352B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- optical
- transmission line
- chromatic dispersion
- side end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Communication System (AREA)
Description
【発明の詳細な説明】 〔概要〕 光伝送路の波長分散特性の補償方法を関し、 波長及び光伝送路の制約のない光伝送路の波長分散補
償方法を提供することを目的とし、 光パルス信号の短波長側端波長λSと長波長側端波長
λLの双方の偏波面を、直交するように旋光させる旋光
子と、入射端と出射端間に、該長波長側端波長λLの光
路と該短波長側端波長λSの光路の2光路を有し、それ
ぞれの光路を通過する時間差を所望に設定した光路系ア
センブリとより構成された波長分散補償装置、或いは上
記旋光子と、長波長側端波長λLの偏波面が、光の進路
と光学軸とを含む平面に一致する如くに配設され、それ
ぞれの波長の光の透過所要時間が、所望に設定された複
屈折性結晶体と、より構成された波長分散補償装置の何
れか一方を、光送信器と光受信器とを接続する光伝送路
の何れか一方の端部に挿入して、該長波長側端波長λL
と該短波長側端波長λSの光伝送路の伝搬所要時間差
を、該波長分散補償装置で、相殺する構成とする。DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for compensating chromatic dispersion characteristics of an optical transmission line. both polarization of the short wavelength side edge wavelength lambda S and the long wavelength side edge wavelength lambda L signal, and a rotator for optical rotation so as to be perpendicular, between exit end and the incident end, the long-wavelength side edge wavelength lambda L has two optical paths of the optical path and the short-wavelength side edge wavelength lambda S, each of the wavelength dispersion compensation device that is more configuration as the optical path system assembly where the time difference to pass through the optical path is set to a desired, or the above rotator Is disposed such that the plane of polarization of the long wavelength side end wavelength λ L coincides with a plane including the optical path and the optical axis, and the required transmission time of light of each wavelength is set to a desired birefringence. One of the crystalline crystal and the chromatic dispersion compensator composed of The longer wavelength side end wavelength λ L
And said short propagation time required difference of the light transmission path of the wavelength-side edge wavelength lambda S, in the wavelength dispersion compensator, a structure to cancel.
本発明は、光伝送路の波長分散特性の補償方法に関す
る。The present invention relates to a method for compensating for chromatic dispersion characteristics of an optical transmission line.
光通信システムに使用する半導体レーザ光源には、発
光スペクトル幅がある。A semiconductor laser light source used in an optical communication system has an emission spectrum width.
したがって、長波長側端波長λL,短波長側端波長λS
の発光スペクトル幅をもつ半導体レーザを光源とする、
光パルス信号は、単一波長から構成されず、長波長側端
波長λL〜短波長側端波長λSの波長帯から構成されて
いる。Therefore, the longer wavelength end wavelength λ L and the shorter wavelength end wavelength λ S
A semiconductor laser having an emission spectrum width of
The optical pulse signal is not composed of a single wavelength, but is composed of a wavelength band from the long wavelength side end wavelength λ L to the short wavelength side end wavelength λ S.
よって、矩形光パルス信号を光伝送路に伝搬すると、
分散特性により例えば波長の長い(λL)成分が速く進
み、波長の短い(λS)成分が遅れる。このために光伝
送路を伝搬後の出射端では、矩形光パルス波形が崩れ
る。Therefore, when a rectangular optical pulse signal is propagated through an optical transmission line,
Due to the dispersion characteristics, for example, a long wavelength (λ L ) component advances quickly, and a short wavelength (λ S ) component delays. Therefore, the rectangular optical pulse waveform is broken at the emission end after propagating through the optical transmission line.
上述のように長い光伝送路には、波長分散特性がある
ので、時間的に近接した2つのパルス信号を長距離伝送
すると、光受信器側でパルス信号の裾が重なり、符号間
干渉等が生じて伝搬特性が劣化する。Since a long optical transmission line has chromatic dispersion characteristics as described above, when two pulse signals that are close in time are transmitted over a long distance, the tails of the pulse signals overlap on the optical receiver side, and intersymbol interference and the like occur. As a result, the propagation characteristics deteriorate.
なお、シングルモード光ファイバにおいては、例えば
1.27μm以上の波長になると、材料分散が負特性(波長
の短い成分が速く進む)に変わることが知られている。In a single mode optical fiber, for example,
It is known that when the wavelength becomes 1.27 μm or more, the material dispersion changes to a negative characteristic (a component having a short wavelength advances quickly).
したがって、従来は、光伝送路の波長分散を補償する
手段として、コア径,屈折率を選択した特性のシングル
モード光ファイバを、波長1.27μm付近で使用して、材
料分散を負特性にして、正特性の構造分散を相殺すると
いう、特定の波長での光伝送路の波長分散補償方法が試
みられていた。Therefore, conventionally, as a means for compensating for the chromatic dispersion of an optical transmission line, a single mode optical fiber having a characteristic in which a core diameter and a refractive index are selected is used near a wavelength of 1.27 μm to make material dispersion a negative characteristic. A method of compensating for the chromatic dispersion of an optical transmission line at a specific wavelength, which cancels the structural dispersion of the positive characteristic, has been attempted.
しかしながら上記従来の試みは、波長と光伝送路が制
限され、実用的でないという問題点があった。However, the above-mentioned conventional approach has a problem that the wavelength and the optical transmission line are limited and are not practical.
本発明のこのような点に鑑みて創作されたもので、波
長及び光伝送路に制約がない、光伝送路の波長分散補償
方法を提供することを目的としている。It is an object of the present invention to provide a method for compensating for chromatic dispersion of an optical transmission line, which is created in view of such points of the present invention and has no restrictions on wavelengths and optical transmission lines.
上記の目的を達成するために本発明は、第1図に示し
たように、光パルス信号の短波長側端波長λSと長波長
側端波長λLの双方の偏波面を、直交するように旋光さ
せる旋光子11と、入射端と出射端間に、長波長側端波長
λLの光路と短波長側端波長λSの光路の2光路を有
し、それぞれの光路を通過する時間差を所望に設定した
光路系アセンブリ20と、より構成された波長分散補償装
置10を設ける。In order to achieve the above object, as shown in FIG. 1, according to the present invention, the polarization planes of both the short wavelength end wavelength λ S and the long wavelength end wavelength λ L of the optical pulse signal are set to be orthogonal. The optical rotator 11 has two optical paths, an optical path having a long wavelength side end wavelength λ L and an optical path having a short wavelength side end wavelength λ S , between the input end and the output end. An optical path system assembly 20 set as desired and a chromatic dispersion compensator 10 composed of the optical path assembly 20 are provided.
或いは、第2図に示したように、光パルス信号の短波
長側端波長λSと長波長側端波長λLの双方の偏波面
を、直交するように旋光させる旋光子11と、長波長側端
波長λLの偏波面が、光の進路と光学軸Cとを含む平面
に一致する如くに配設され、それぞれの波長の光の透過
所要時間を所望に設定した複屈折性結晶体30と、より構
成した波長分散補償装置10を設ける。Alternatively, as shown in FIG. 2, an optical rotator 11 for optically rotating the polarization planes of both the short wavelength side end wavelength λ S and the long wavelength side end wavelength λ L of the optical pulse signal so as to be orthogonal to each other, The birefringent crystal 30 is disposed so that the polarization plane of the side end wavelength λ L coincides with a plane including the optical path and the optical axis C, and the required transmission time of light of each wavelength is set as desired. , A chromatic dispersion compensating device 10 is provided.
このような波長分散補償装置10を、光送信器1と光受
信器2とを接続する光伝送路3の一方の端部に挿入す
る。Such a chromatic dispersion compensator 10 is inserted into one end of the optical transmission line 3 connecting the optical transmitter 1 and the optical receiver 2.
そして、長波長側端波長λLと短波長側端波長λSの
光伝送路3の伝搬所要時間差を、波長分散補償装置10
で、補償する構成とする。The difference between the required propagation time of the long wavelength side end wavelength λ L and the short wavelength side end wavelength λ S through the optical transmission line 3 is calculated by the chromatic dispersion compensator 10.
Thus, a configuration for compensating is provided.
上記のように、波長分散補償装置10内に旋光子11を配
列して、光送信器の発信した光パルス信号の短波長側端
波長λSと長波長側端波長λLの双方の偏波面を、直交
するように旋光させている。As described above, the optical rotators 11 are arranged in the chromatic dispersion compensator 10, and the polarization planes of both the short wavelength side end wavelength λ S and the long wavelength side end wavelength λ L of the optical pulse signal transmitted from the optical transmitter are set. Are rotated so as to be orthogonal.
したがって、光パルス信号の波長帯内の他の波長の偏
波面は、この直交する2つの偏波面の間で、波長の長さ
の順に傾斜配列している。Therefore, the polarization planes of the other wavelengths in the wavelength band of the optical pulse signal are inclinedly arranged in the order of the wavelength length between the two orthogonal polarization planes.
偏波面をこのように波長順に配列した光パルス信号
を、第1の発明においては、光路系アセンブリ20を用い
て、短波長側端波長λS近傍の光は短い光路を通過し、
長波長側端波長λL近傍の光は、長い光路を通過させて
いる。The optical pulse signal sequences thus the wavelength order of polarization, in the first invention, by using the optical path system assembly 20, the light in the vicinity of the short-wavelength side edge wavelength lambda S is passed through a short optical path,
Light near the long wavelength side end wavelength λ L is transmitted through a long optical path.
そして、短波長側端波長λSが短光路を通過する時間
と、長波長側端波長λLが長光路を通過する時間の時間
差を、長波長側端波長λLと短波長側端波長λSの光伝
送路3の伝搬所要時間差に等しく設定してある。The time difference between the time when the short wavelength side end wavelength λ S passes through the short optical path and the time when the long wavelength side end wavelength λ L passes through the long optical path is defined as the long wavelength side end wavelength λ L and the short wavelength side end wavelength λ. S is set to be equal to the difference in required propagation time of the optical transmission line 3.
即ち、長波長側端波長λLが光伝送路3を速く進む時
間だけ、波長分散補償装置10で遅らせて相殺している。
よって、波長分散による光パルス信号の広がりが抑制さ
れる。In other words, the chromatic dispersion compensator 10 delays and cancels the time that the long wavelength side end wavelength λ L travels through the optical transmission line 3 quickly.
Therefore, the spread of the optical pulse signal due to chromatic dispersion is suppressed.
一方、偏波面を前述のように波長順に配列した光パル
ス信号を、第2の発明においては、複屈折性結晶体30
を、長波長側端波長λLの偏波面が、光の進路と光学軸
Cとを含む平面に一致するように配設してある。On the other hand, in the second invention, a birefringent crystal 30
Are disposed such that the plane of polarization of the long wavelength side end wavelength λ L coincides with a plane including the optical path C and the optical path C.
即ち、長波長側端波長λLは異常光として複屈折性結
晶体30に入射し、異常光屈折率で屈折する。よって常光
として入射する短波長側端波長λSよりも、長波長側端
波長λLが複屈折性結晶体30を透過する時間を大きくす
ることができる。That is, the longer wavelength end wavelength λ L is incident on the birefringent crystal 30 as extraordinary light, and is refracted at the extraordinary light refractive index. Therefore, it is possible to make the time required for the long wavelength side end wavelength λ L to pass through the birefringent crystal 30 longer than the short wavelength side end wavelength λ S incident as ordinary light.
複屈折性結晶体30の屈折率及び厚さを選択して、短波
長側端波長λSと長波長側端波長λLが複屈折性結晶体
30を透過する所要時間差を、長波長側端波長λLと短波
長側端波長λSの光伝送路3の伝搬所要時間差に等しく
設定してある。By selecting the refractive index and thickness of the birefringent crystal 30, the short-wavelength end wavelength λ S and the long-wavelength end wavelength λ L are converted to the birefringent crystal.
The difference in required time for transmission through 30 is set to be equal to the difference in required time for propagation in the optical transmission line 3 between the long wavelength end wavelength λ L and the short wavelength end wavelength λ S.
即ち、長波長側端波長λLが光伝送路3で速く進む時
間だけ、波長分散補償装置10で遅らせて相殺している。
よって、波長分散による光パルス信号の広がりが抑制さ
れる。That is, the chromatic dispersion compensator 10 delays and cancels out the time that the longer wavelength end wavelength λ L advances faster in the optical transmission line 3.
Therefore, the spread of the optical pulse signal due to chromatic dispersion is suppressed.
以下図を参照しながら、本発明を具体的に説明する。
なお、全図を通じて同一符号を同一対象物を示す。Hereinafter, the present invention will be specifically described with reference to the drawings.
The same reference numerals denote the same objects throughout the drawings.
第1図は第1の発明の実施例の構成図、第2図は第2
の発明の実施例の構成図、第3図は第1の発明の実施例
の光路図、第4図は第2の発明の実施例の光路図であ
る。FIG. 1 is a block diagram of an embodiment of the first invention, and FIG.
FIG. 3 is an optical path diagram of an embodiment of the first invention, and FIG. 4 is an optical path diagram of an embodiment of the second invention.
第1図,第2図において、半導体レーザを光源とする
光送信器1は、長い光ファイバよりなる光伝送路3を介
して、光パルス信号を光受信器2に送信している。1 and 2, an optical transmitter 1 using a semiconductor laser as a light source transmits an optical pulse signal to an optical receiver 2 via an optical transmission line 3 composed of a long optical fiber.
そして、光送信器1と光伝送路3の間に波長分散補償
装置10を挿入してある。A chromatic dispersion compensator 10 is inserted between the optical transmitter 1 and the optical transmission line 3.
この波長分散補償装置10は、第1の発明においては、
第1図,第3図に示すように、旋光子11と光路系アセン
ブリ20とで構成してある。This chromatic dispersion compensator 10 is, in the first invention,
As shown in FIG. 1 and FIG. 3, it comprises a rotator 11 and an optical path system assembly 20.
旋光子11は、コレステリック液晶よりなる旋光子であ
って、旋光角を大きくなる選択反射の生じる波長を、所
要の波長に設定している。The optical rotator 11 is an optical rotator made of cholesteric liquid crystal, and sets a wavelength at which selective reflection that increases the optical rotation angle occurs to a required wavelength.
この旋光子11の旋光角は、 波長λSは‥‥(2m+1)×(π/2) 波長λLは‥‥(2m)×(π/2) に設定してある。The optical rotation angle of the optical rotator 11 is set such that the wavelength λ S is ‥‥ (2m + 1) × (π / 2) and the wavelength λ L is ‥‥ (2m) × (π / 2).
即ち、光パルス信号の短波長側端波長λSと長波長側
端波長λLの双方の偏波面を、直交するように旋光させ
る。例えば、短波長側端波長λSの偏波面が紙面に直交
し、長波長側端波長λLの偏波面が紙面に平行するよう
に旋光させる機能を備えている。That is, the polarization planes of both the short wavelength end wavelength λ S and the long wavelength end wavelength λ L of the optical pulse signal are rotated so as to be orthogonal to each other. For example, it has a function of optical rotation such that the polarization plane of the short wavelength side end wavelength λ S is orthogonal to the paper surface and the polarization plane of the long wavelength side end wavelength λ L is parallel to the paper surface.
光路系アセンブリ20は、詳細を第3図に示すように、
旋光子11の出射光に45度傾斜して対向して偏光分離スプ
リッタ21を配列し、偏光分離スプリッタ21の透過光の光
軸上で、且つ光伝送路3の入射面に45度傾斜して対向し
た偏光分離スプリッタ22を配列してある。The optical path system assembly 20 has details as shown in FIG.
A polarization splitter 21 is arranged to face the output light of the optical rotator 11 at an angle of 45 degrees and is arranged on the optical axis of the transmitted light of the polarization splitter 21 and at an angle of 45 degrees to the incident surface of the optical transmission path 3. The polarization splitters 22 facing each other are arranged.
この偏光分離スプリッタ21,22は、紙面に直交する偏
波面の光,即ち端波長側端波長λS近傍の光は透過し、
紙面に平行する偏波面の光,即ち長波長側端波長λL近
傍の光は、反射させる偏光分離膜を備えた偏光分離スプ
リッタである。The polarization splitters 21 and 22 transmit light on the polarization plane orthogonal to the paper surface, that is, light near the end wavelength λ S on the end wavelength side,
Light on the plane of polarization parallel to the paper surface, that is, light near the long wavelength side end wavelength λ L , is a polarization separation splitter provided with a polarization separation film that reflects the light.
偏光分離スプリッタ21の反射光が入射するように、ミ
ラー23を偏光分離スプリッタ21の反射光に対して45度傾
斜して配列し、さらにミラー23の反射光が入射するよう
に、ミラー24をミラー23反射光に対して45度傾斜させ、
且つ偏光分離スプリッタ22に対向するように配設してあ
る。The mirror 23 is arranged at an angle of 45 degrees with respect to the reflected light of the polarization splitter 21 so that the reflected light of the polarization splitter 21 is incident, and the mirror 24 is mirrored so that the reflected light of the mirror 23 is incident. 23 tilt 45 degrees to the reflected light,
Further, it is disposed so as to face the polarization splitter 22.
したがって、偏光分離スプリッタ21で反射した長波長
側端波長λL近傍の光は、偏光分離スプリッタ21−ミラ
ー23−ミラー24−偏光分離スプリッタ22−光伝送路3の
長い光路を通って、光伝送路3に入射する。Therefore, the light near the long wavelength side end wavelength λ L reflected by the polarization separation splitter 21 passes through the long optical path of the polarization separation splitter 21-mirror 23-mirror 24-polarization separation splitter 22-optical transmission path 3 to transmit light. Light enters the road 3.
上記の長い光路の光路長を所望に設定して、光路系ア
センブリ20を通過する光パルス信号の短波長側端波長λ
S近傍の光の通過する時間と、長波長側端波長λL近傍
の光の通過する時間との時間差、即ち長波長側端波長λ
Lの遅れ時間を、光伝送路3の伝搬所要時間差に等しく
してある。The optical path length of the long optical path is set as desired, and the short-wavelength end wavelength λ of the optical pulse signal passing through the optical path assembly 20 is set.
The time difference between the passing time of the light near S and the passing time of the light near the long wavelength end wavelength λ L , that is, the long wavelength end wavelength λ
The delay time of L is made equal to the difference in the required propagation time of the optical transmission line 3.
即ち、長波長側端波長λLが光伝送路3で速く進む時
間だけ、波長分散補償装置10で遅らせて相殺しているの
で、光伝送路3を光パルス信号が伝搬することにより発
生する、光パルス信号の波長分散を、波長分散補償装置
10で補償することができる。That is, since the longer wavelength side end wavelength λ L is delayed by the chromatic dispersion compensator 10 and canceled out by the time during which the longer wavelength λ L advances faster in the optical transmission line 3, it is generated by the propagation of the optical pulse signal through the optical transmission line 3. Chromatic dispersion compensator
10 can compensate.
第2の発明においては、第2図,第4図に示すよう
に、波長分散補償装置10は、旋光子11と複屈折性結晶体
30とで構成してある。In the second invention, as shown in FIGS. 2 and 4, the chromatic dispersion compensator 10 comprises an optical rotator 11 and a birefringent crystal.
It consists of 30.
旋光子11は、短波長側端波長λSの偏波面が紙面に直
交し、長波長側端波長λLの偏波面が紙面に平行するよ
うに旋光させる機能を備えている。The optical rotator 11 has a function to rotate the light so that the polarization plane of the short wavelength side end wavelength λ S is orthogonal to the paper surface and the polarization plane of the long wavelength side end wavelength λ L is parallel to the paper surface.
30は、例えば酸化チタンよりなる複屈折性結晶体であ
って、旋光子11の出射光が入射し、その出射光が光伝送
路3に入射するような位置に配設してある。Numeral 30 denotes a birefringent crystal made of, for example, titanium oxide, which is arranged at a position where the light emitted from the optical rotator 11 enters and the emitted light enters the optical transmission path 3.
また複屈折性結晶体30は、長波長側端波長λLの偏波
面が、光の進路と光学軸Cとを含む平面に一致するよう
な姿勢で配設してある。Further, the birefringent crystal body 30 is arranged in such a posture that the plane of polarization of the long wavelength side end wavelength λ L coincides with a plane including the optical path and the optical axis C.
即ち、旋光子11の出射光のうち、長波長側端波長λL
は異常光として複屈折性結晶体30に入射し、異常光屈折
率で屈折する。一方、短波長側端波長λSは常光として
複屈折性結晶体30に入射し、常光屈折率で屈折する。That is, of the light emitted from the optical rotator 11, the longer wavelength side end wavelength λ L
Is incident on the birefringent crystal 30 as extraordinary light, and is refracted at an extraordinary light refractive index. On the other hand, the short wavelength side end wavelength λ S enters the birefringent crystal 30 as ordinary light, and is refracted at the ordinary light refractive index.
よって常光として入射した短波長側端波長λSより
も、長波長側端波長λLが複屈折性結晶体30を透過する
時間が大きくなる。Accordingly, the time required for the long wavelength side end wavelength λ L to pass through the birefringent crystal 30 is longer than the short wavelength side end wavelength λ S incident as ordinary light.
短波長側端波長λSと長波長側端波長λLが複屈折性
結晶体30を透過する所要時間差Δtは、 Δt=(ne−no)×d÷c ne‥‥異常光屈折率 no‥‥常光屈折率 d‥‥複屈折性結晶体の厚さ c‥‥光速 である。Required travel time difference Delta] t to the short wavelength side edge wavelength lambda S and the long wavelength side edge wavelength lambda L is transmitted through the birefringent crystal 30, Δt = (n e -n o ) × d ÷ c n e ‥‥ the extraordinary refractive The index n o ‥‥ the ordinary light refractive index d ‥‥ the thickness of the birefringent crystal c ‥‥ the speed of light.
よって、複屈折性結晶体30の屈折率及び厚さを適宜に
選択して、この所要時間差Δtを、長波長側端波長λL
と短波長側端波長λSの光伝送路3の伝搬所要時間差に
等しけ設定してある。Therefore, by appropriately selecting the refractive index and the thickness of the birefringent crystal 30, the required time difference Δt is set to the long wavelength side end wavelength λ L
Is set to be equal to the difference between the required propagation time of the optical transmission line 3 and the short wavelength side end wavelength λ S.
即ち、長波長側端波長λLが光伝送路3で速く進む時
間だけ、波長分散補償装置10で遅らせて相殺しているの
で、光伝送路3を光パルス信号が伝搬することにより発
生する、光パルス信号の波長分散を、波長分散補償装置
10で補償することができる。That is, since the longer wavelength side end wavelength λ L is delayed by the chromatic dispersion compensator 10 and canceled out by the time during which the longer wavelength λ L advances faster in the optical transmission line 3, it is generated by the propagation of the optical pulse signal through the optical transmission line 3. Chromatic dispersion compensator
10 can compensate.
以上説明したように本発明は、光送信器と光受信器と
を接続する光伝送路の端部に波長分散補償装置を挿入す
るという光伝送路の波長分散補償方法であって、シング
ルモード光ファイバ,マルチモード光ファイバのいずれ
の光伝送路に適用することができ、且つまた使用する光
パルス信号の波長が限定されることなく、光パルス信号
の波長分散を抑制することができるという、実用上で優
れた効果がある。As described above, the present invention relates to a chromatic dispersion compensation method for an optical transmission line, in which a chromatic dispersion compensator is inserted at an end of an optical transmission line that connects an optical transmitter and an optical receiver. It can be applied to any optical transmission line of a fiber or a multi-mode optical fiber, and can suppress the wavelength dispersion of an optical pulse signal without limiting the wavelength of an optical pulse signal to be used. There is an excellent effect on the above.
第1図は第1の発明の実施例の構成図、 第2図は第2の発明の実施例の構成図、 第3図は第1の発明の実施例の光路図、 第4図は第2の発明の実施例の光路図である。 図において、 1は光送信器、2は光受信器、 3は光伝送路、10は波長分散補償装置、 11は旋光子、20は光路系アセンブリ、 21,22は偏光分離スプリッタ、 23,24はミラー、 30は複屈折性結晶体、 Cは光学軸をそれぞれ示す。 FIG. 1 is a block diagram of an embodiment of the first invention, FIG. 2 is a block diagram of an embodiment of the second invention, FIG. 3 is an optical path diagram of the embodiment of the first invention, and FIG. FIG. 4 is an optical path diagram of an embodiment of the second invention. In the figure, 1 is an optical transmitter, 2 is an optical receiver, 3 is an optical transmission line, 10 is a chromatic dispersion compensator, 11 is an optical rotator, 20 is an optical path system assembly, 21, 22 is a polarization splitter, 23, 24 Denotes a mirror, 30 denotes a birefringent crystal, and C denotes an optical axis.
Claims (2)
長側端波長λLの双方の偏波面を、直交するように旋光
させる旋光子(11)と、 入射端と出射端間に、該長波長側端波長λLの光路と該
短波長側端波長λSの光路の2光路を有し、それぞれの
光路を通過する時間差を所望に設定した光路系アセンブ
リ(20)と、より構成された波長分散補償装置(10)
を、 光送信器(1)と光受信器(2)とを接続する光伝送路
(3)の何れか一方の端部に挿入して、該長波長側端波
長λLと該短波長側端波長λSの光伝送路(3)の伝搬
所要時間差を、該波長分散補償装置(10)で、相殺する
ことを特徴とする光伝送路の波長分散補償方法。1. An optical rotator (11) for rotating both polarization planes of a short wavelength side end wavelength λ S and a long wavelength side end wavelength λ L of an optical pulse signal so as to be orthogonal to each other, and between an input end and an output end. An optical path assembly (20) having two optical paths, an optical path having the long wavelength side end wavelength λ L and an optical path having the short wavelength side end wavelength λ S , and having a desired time difference for passing through each optical path; Chromatic dispersion compensator (10)
Is inserted into one end of an optical transmission line (3) connecting the optical transmitter (1) and the optical receiver (2), and the longer wavelength side end wavelength λ L and the shorter wavelength side A chromatic dispersion compensating method for an optical transmission line, characterized in that a difference in required propagation time of an optical transmission line (3) having an end wavelength λ S is canceled out by the chromatic dispersion compensator (10).
長側端波長λLの双方の偏波面を、直交するように旋光
させる旋光子(11)と、 該長波長側端波長λLの偏波面が、光の進路と光学軸と
を含む平面に一致する如くに配設され、それぞれの波長
の光の透過所要時間が、所望に設定された複屈折性結晶
体(30)と、より構成された波長分散補償装置(10)
を、 光送信器(1)と光受信器(2)とを接続する光伝送路
(3)の何れか一方の端部に挿入して、該長波長側端波
長λLと該短波長側端波長λSの光伝送路(3)の伝搬
所要時間差を、該波長分散補償装置(10)で、相殺する
ことを特徴とする光伝送路の波長分散補償方法。2. An optical rotator (11) for rotating both polarization planes of the short wavelength end wavelength λ S and the long wavelength end wavelength λ L of an optical pulse signal so as to be orthogonal to each other; The birefringent crystal (30) in which the polarization plane of λ L is disposed so as to coincide with a plane including the optical path and the optical axis, and the required transmission time of light of each wavelength is set as desired. And chromatic dispersion compensator (10)
Is inserted into one end of an optical transmission line (3) connecting the optical transmitter (1) and the optical receiver (2), and the longer wavelength side end wavelength λ L and the shorter wavelength side A chromatic dispersion compensating method for an optical transmission line, characterized in that a difference in required propagation time of an optical transmission line (3) having an end wavelength λ S is canceled out by the chromatic dispersion compensator (10).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63180974A JP2611352B2 (en) | 1988-07-20 | 1988-07-20 | Chromatic dispersion compensation method for optical transmission line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63180974A JP2611352B2 (en) | 1988-07-20 | 1988-07-20 | Chromatic dispersion compensation method for optical transmission line |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0230233A JPH0230233A (en) | 1990-01-31 |
JP2611352B2 true JP2611352B2 (en) | 1997-05-21 |
Family
ID=16092535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63180974A Expired - Fee Related JP2611352B2 (en) | 1988-07-20 | 1988-07-20 | Chromatic dispersion compensation method for optical transmission line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2611352B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5491576A (en) * | 1993-12-23 | 1996-02-13 | At&T Corp. | Dual-wavelength data transmitter for reducing fading in an optical transmission system |
EP0684709B1 (en) * | 1994-05-25 | 2002-10-02 | AT&T Corp. | Optical communications system with adjustable dispersion compensation |
JPH11275031A (en) | 1998-03-20 | 1999-10-08 | Fujitsu Ltd | Optical transmission equipment |
CN107923472B (en) * | 2015-10-27 | 2019-08-02 | 日立汽车系统株式会社 | Damping force adjustable shock |
-
1988
- 1988-07-20 JP JP63180974A patent/JP2611352B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0230233A (en) | 1990-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6128133A (en) | Optical beamsplitter | |
US6055104A (en) | Optical attenuator | |
JP2002507778A (en) | Transverse spatial mode converter for optical communication | |
CA2265236A1 (en) | Polarizing beam splitter/combiner | |
JPH10190116A (en) | Acoustooptic tunable laser | |
US20120250136A1 (en) | Optical modulator | |
US8358466B2 (en) | Optical delay line interferometers with silicon dual mirror for DPSK | |
CA2344021A1 (en) | Polarization beam splitter or combiner | |
JP2611352B2 (en) | Chromatic dispersion compensation method for optical transmission line | |
CN108957773B (en) | Polarization light splitting device | |
KR20120071120A (en) | Reflection type optical delay interferometer apparatus based on planar waveguide | |
US6246518B1 (en) | Reflection type optical isolator | |
EP1239319A1 (en) | Variable optical filter unit and variable gain equalizing system | |
US4867517A (en) | Fail-safe acousto-optic T-couplers for optical communication networks | |
CN100401120C (en) | light switch | |
US7274510B2 (en) | Circulator and polarization beam combiner | |
US20110076023A1 (en) | Multichannel tunable optical dispersion compensator | |
JP2005266362A (en) | Polarization independent optical device | |
JP3317999B2 (en) | Optical isolator | |
JP2003270591A (en) | Polarization-independent optical equipment | |
JPH0854525A (en) | Fiber type dispersion compensating device | |
JP2761141B2 (en) | Polarization rotating mirror | |
JPH0339712A (en) | Light beam coupler | |
JP2931210B2 (en) | Dispersion compensation apparatus and dispersion compensation method | |
JP3492736B2 (en) | Optical isolator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |