JP2607395B2 - Acceleration sensor - Google Patents
Acceleration sensorInfo
- Publication number
- JP2607395B2 JP2607395B2 JP2405328A JP40532890A JP2607395B2 JP 2607395 B2 JP2607395 B2 JP 2607395B2 JP 2405328 A JP2405328 A JP 2405328A JP 40532890 A JP40532890 A JP 40532890A JP 2607395 B2 JP2607395 B2 JP 2607395B2
- Authority
- JP
- Japan
- Prior art keywords
- acceleration sensor
- output
- piezoelectric ceramic
- electrodes
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は自動車の衝突時の安全確
保のために用いられるエアバックや悪路における乗り心
地の改善などに用いられる加速度センサに関し,特に1
個のセンサで直交する2つの方向の加速度の検出が可能
な加速度センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air bag used for ensuring safety in the event of a collision of an automobile and an acceleration sensor used for improving the riding comfort on a rough road.
The present invention relates to an acceleration sensor capable of detecting accelerations in two directions orthogonal to each other with two sensors.
【0002】[0002]
【従来の技術】従来から加速度の検出には種々の方式の
ものが実用化されている。その中でも圧電セラミックス
を用いた加速度センサは構造が簡単で,高温での使用が
可能であることから,各種機械の振動検出及び自動車の
ノッキングセンサ検出などに広く使用されている。2. Description of the Related Art Conventionally, various types of acceleration detection have been put to practical use. Among them, an acceleration sensor using piezoelectric ceramics has a simple structure and can be used at a high temperature. Therefore, it is widely used for detecting vibration of various machines and detecting a knocking sensor of an automobile.
【0003】図5は従来の圧電方式の加速度センサの一
例を示す側面図である。図において,互いに対向する両
端面に電極が形成され,この端面を結ぶ厚さ方向に分極
された一対の圧電セラミックス円環51,51′を端子
板52を介して分極の向きが逆向きになるように重ね合
わせ,ケースを兼ねたベース54におもり53と共にボ
ルト55で締め付けた構造を有している。この構造の加
速度センサにおいて,ケースが圧電セラミックス円環5
1,51′の厚さ方向に振動すると,圧電セラミックス
円環51,51′にはおよそ(1)式で表される力Fが
作用し,圧電セラミックス円環の電極間には(2)式で
表される電圧が発生する。 F=M×α ……(1) V=K×F ……(2) ここで,M;おもりの質量,α;加速度,K;比例定数
である。上式(1)及び(2)からわかるように,圧電
セラミックス円環51,51′に発生する電圧Vは加速
度αに比例する。FIG. 5 is a side view showing an example of a conventional piezoelectric acceleration sensor. In the figure, electrodes are formed on both end surfaces facing each other, and a pair of piezoelectric ceramic rings 51, 51 'polarized in the thickness direction connecting these end surfaces are polarized in opposite directions via a terminal plate 52. In this way, the weights 53 and the bases 54 are also fastened together with the weights 53 by bolts 55 on a base 54 also serving as a case. In the acceleration sensor having this structure, the case is made of a piezoelectric ceramic ring 5.
When vibrating in the thickness direction of the piezoelectric ceramics 51, 51 ', a force F substantially expressed by the formula (1) acts on the piezoelectric ceramics rings 51, 51', and the formula (2) is applied between the electrodes of the piezoelectric ceramics rings. A voltage represented by F = M × α (1) V = K × F (2) where M: mass of weight, α: acceleration, K: proportional constant. As can be seen from the above equations (1) and (2), the voltage V generated in the piezoelectric ceramic rings 51, 51 'is proportional to the acceleration α.
【0004】[0004]
【発明が解決しようとする課題】図5に示した従来の加
速度センサは圧電セラミックス円環の厚さ方向の加速度
成分だけを検出するものであり,X,Yの2軸を同時に
検出するためには図5に示した加速度センサ2個を直角
に配置する必要があり,構造的に複雑で大きくなる上
に,セット時に2つの加速度センサの検出軸を互いに直
角に精度良く合わせることが難しいという欠点があっ
た。The conventional acceleration sensor shown in FIG. 5 detects only the acceleration component in the thickness direction of the piezoelectric ceramic ring. In order to simultaneously detect two axes of X and Y, the conventional acceleration sensor shown in FIG. Is disadvantageous in that it is necessary to arrange the two acceleration sensors shown in FIG. 5 at right angles, which is structurally complicated and large, and that it is difficult to precisely match the detection axes of the two acceleration sensors at right angles to each other during setting. was there.
【0005】そこで,本発明の技術的課題は以上に示し
た従来の2軸の加速度センサの欠点を除去し,簡単な構
造の1個のセンサで互いに直交するX軸,Y軸の2軸の
加速度を検出することが可能な加速度センサを提供する
ことにある。Accordingly, the technical problem of the present invention is to eliminate the above-mentioned disadvantages of the conventional two-axis acceleration sensor, and to provide two sensors of X-axis and Y-axis orthogonal to each other with a single sensor having a simple structure. An object of the present invention is to provide an acceleration sensor capable of detecting acceleration.
【0006】[0006]
【課題を解決するための手段】本発明によれば,円筒外
面を有し,一端が固定された圧電セラミックスを有する
加速度センサにおいて,前記圧電セラミックスは,前記
円筒外面の円周を4等分する位置に形成された該円周方
向に平行な指電極を有する交差指電極対を備え,前記交
差指電極対を用いて分極処理を施されており,前記交差
指電極対のうちの前記分極処理時における同極性電極同
士を接続してアース電極とするとともに,前記アース電
極に夫々交差する交差指電極を夫々出力電極とし,前記
圧電セラミックスの中心軸と直交する方向の振動を,前
記出力電極のうちで,前記中心軸を介して互いに対向す
る出力電極間に生ずる差動電圧に基づいて加速度を検出
することを特徴とする加速度センサが得られる。According to the present invention, in an acceleration sensor having a piezoelectric ceramic having a cylindrical outer surface and having one end fixed, the piezoelectric ceramic divides the circumference of the cylindrical outer surface into four equal parts. A pair of interdigital electrodes having finger electrodes parallel to the circumferential direction formed at positions, wherein a polarization process is performed using the interdigital electrode pairs, and the polarization process of the interdigital electrode pairs is performed. At the same time, the same polarity electrodes are connected to each other to form a ground electrode, and the interdigital electrodes intersecting with the ground electrode are each used as an output electrode, and the vibration in the direction perpendicular to the center axis of the piezoelectric ceramic is applied to the output electrode. In the acceleration sensor, an acceleration is detected based on a differential voltage generated between output electrodes facing each other via the central axis.
【0007】[0007]
【作用】本発明においては,互いに対向する交差指電極
対の一方をアース端として他方を出力電極としている。
圧電セラミックスの,この交差指電極対を含む直径方向
に振動が加えられたとき,出力電極の一方は伸び歪,他
方は縮み歪の大きさに相当する互いに逆極性の電圧を圧
電縦効果により出力する。これらの出力電圧の差動電圧
の大きさを測定することで,加速度の大きさを検出する
ことができる。このような交差指電極対4つを圧電セラ
ミックスの円周を4等分する位置に配置することによ
り,圧電セラミックスの中心軸に直交する方向に振動が
加えられたとき,前記直径方向と,これに直交する直径
方向との加速度の成分が夫々対向する交差指電極のうち
の出力電極対2組によって測定されるので,加速度の大
きさと方向とを求めることができる。In the present invention, one of the pair of interdigital electrodes facing each other is used as the ground terminal and the other is used as the output electrode.
When vibration is applied to the piezoelectric ceramic in the diameter direction including this interdigital electrode pair, one of the output electrodes outputs voltages of opposite polarities corresponding to the magnitude of the extension strain and the other of the contraction strain by the piezoelectric longitudinal effect. I do. By measuring the magnitude of the differential voltage of these output voltages, the magnitude of the acceleration can be detected. By arranging four such interdigital electrode pairs at positions that divide the circumference of the piezoelectric ceramic into four equal parts, when vibration is applied in a direction perpendicular to the central axis of the piezoelectric ceramic, the vibration is applied to the diametric direction and Since the components of the acceleration in the diametric direction perpendicular to are measured by two pairs of output electrode pairs among the interdigital electrodes facing each other, the magnitude and direction of the acceleration can be obtained.
【0008】[0008]
【実施例】以下本発明の2軸加速度センサについて図面
を用いて詳しく説明する。図1は本発明の2軸加速度セ
ンサの一例を示す斜視図である。この例において,圧電
セラミックス円環6の外周面の円周を4等分する位置に
円周方向と平行な指電極を有する交差指電極対11・1
1′,12・12′,13・13′,14・14′を形
成し,この交差指電極を用いて後述する分極処理を施し
た後,4組の交差指電極の分極時のアース側の電極1
1′,12′,13′,14′を接続して共通アース電
極とし,この共通アース電極に交差する各電極11,1
2,13,14をそれぞれ出力端子とする。この圧電セ
ラミックス円環6の一端をベース9に固定して加速度セ
ンサが形成される。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a two-axis acceleration sensor according to the present invention. FIG. 1 is a perspective view showing an example of the two-axis acceleration sensor of the present invention. In this example, a pair of interdigital electrodes 11. 1 having finger electrodes parallel to the circumferential direction at positions that divide the circumference of the outer peripheral surface of the piezoelectric ceramic ring 6 into four equal parts.
1 ′, 12 ・ 12 ′, 13 ・ 13 ′, and 14 ・ 14 ′ are formed, and a polarization process described later is performed using the interdigital electrodes. Electrode 1
1 ', 12', 13 ', and 14' are connected to form a common ground electrode, and each electrode 11, 1 which intersects this common ground electrode.
2, 13, and 14 are output terminals. An acceleration sensor is formed by fixing one end of the piezoelectric ceramic ring 6 to the base 9.
【0009】図2及び図3(a),(b),(c)は本
発明の2軸加速度センサの動作原理の説明図で,図2は
平面図,図3(a)は斜視図,図3(b)は図3(a)
の右側(b)の交差指電極部分,図3(c)は図3
(a)の左側(c)の交差指電極部分を夫々示してい
る。図2において,互いに中心軸を介して対向する出力
電極12と出力電極14の中心を結ぶ方向(直径方向)
に振動的な加速度が加わると,圧電セラミックス円環6
には出力電極12の部分と出力電極14の部分に圧縮力
と引張り力が交互作用する。FIGS. 2 and 3 (a), 3 (b) and 3 (c) are explanatory views of the operation principle of the two-axis acceleration sensor of the present invention. FIG. 2 is a plan view, FIG. 3 (a) is a perspective view, FIG. 3 (b) is the same as FIG.
FIG. 3 (c) is the right side of FIG.
The left side (c) of (a) and the cross finger electrode portion are shown. In FIG. 2, a direction (diameter direction) connecting the centers of the output electrode 12 and the output electrode 14 facing each other via the central axis.
When vibratory acceleration is applied to the piezoelectric ceramic ring 6
, A compressive force and a tensile force alternately act on the output electrode 12 and the output electrode 14.
【0010】例えば,出力電極12の部分に圧縮力が作
用し,出力電極14の部分に引張り力が作用している場
合,図3(a),(b),(c)に示すように,出力電
極12と14の共通アース電極に対する分極の向きが破
線の矢印17,18で示されるようにそれぞれ同じよう
に出力電極12,14からアース電極12′,14′に
向かう向きであり,出力電極12の部分と出力電極14
の部分に作用する力の向きが矢印15及び16で示され
るように逆向きであるため,出力電極12と出力電極1
4には実線の矢印19,20で示される逆極性の電圧が
圧電縦効果によって発生する。また,出力電極11と出
力電極13には,各々の電極部の中心軸が振動的な加速
度の方向と直交し,かつ,分極方向が前記電極部の中心
軸に対して対称となるため,出力電圧はキャンセルされ
る形となり発生しない。For example, when a compressive force acts on the output electrode 12 and a tensile force acts on the output electrode 14, as shown in FIGS. 3 (a), 3 (b) and 3 (c), The direction of polarization of the output electrodes 12 and 14 with respect to the common ground electrode is the same direction from the output electrodes 12 and 14 to the ground electrodes 12 'and 14', respectively, as indicated by broken arrows 17 and 18, respectively. 12 part and output electrode 14
Are opposite to each other as shown by arrows 15 and 16, the output electrode 12 and the output electrode 1
In FIG. 4, a voltage of the opposite polarity shown by solid arrows 19 and 20 is generated by the piezoelectric longitudinal effect. In addition, since the center axis of each electrode section is orthogonal to the direction of the oscillating acceleration and the polarization direction is symmetrical with respect to the center axis of the electrode section, the output electrodes 11 and 13 have the same output. The voltage is canceled and does not occur.
【0011】従って,出力電極12と出力電極14の2
つの出力電圧Vの差動出力は加えられた加速度αの大き
さにほぼ比例することになる。同様にして,出力電圧1
1と出力電圧13の中心を結ぶ方向に振動的な加速度が
加わると,出力電圧11と出力電圧13に逆極性の電圧
が圧電縦効果によって発生し,これら2つの出力電圧の
差動電圧は加えられた加速度の大きさにほぼ比例するこ
とになる。Therefore, two of the output electrodes 12 and 14
The differential output of the two output voltages V will be substantially proportional to the magnitude of the applied acceleration α. Similarly, output voltage 1
When an oscillating acceleration is applied in a direction connecting 1 to the center of the output voltage 13, a voltage of opposite polarity is generated in the output voltage 11 and the output voltage 13 by a piezoelectric longitudinal effect, and a differential voltage of these two output voltages is added. It is almost proportional to the magnitude of the applied acceleration.
【0012】図2において,加えられる加速度の方向が
出力電極の対向軸方向と異なる場合は,それぞれ直交す
る出力電極の対向軸方向の成分が検出される。つまり,
2つの検出信号を処理することにより,加えられた加速
度の方向及び大きさを求めることも出来る。In FIG. 2, when the direction of the applied acceleration is different from the direction of the opposing axis of the output electrode, components of the output electrode which are orthogonal to each other in the direction of the opposing axis are detected. That is,
By processing the two detection signals, the direction and magnitude of the applied acceleration can also be obtained.
【0013】また,本発明の実施例に係る2軸加速度セ
ンサにおいては,検出軸と直交する方向の振動,すなわ
ち図2における圧電セラミックス円環6の中心軸方向の
振動に対しては,各検出軸ともに,対向する出力電極に
発生する電圧の極性が同じとなるため,それらの差動出
力としてはほとんど出力されないことになる。Further, in the two-axis acceleration sensor according to the embodiment of the present invention, the vibration in the direction perpendicular to the detection axis, that is, the vibration in the center axis direction of the piezoelectric ceramic ring 6 in FIG. Since the polarities of the voltages generated at the output electrodes facing each other are the same for both axes, they are hardly output as their differential outputs.
【0014】以上の説明は圧電セラミックス円環単体で
振動系を構成した場合について行ったが,検出すべき加
速度の周波数が低く,出来るだけ出力電圧感度を大きく
したい場合には,図4に示すように圧電セラミックス円
環6の一方の端部に重り8を負荷し,他方の端部をベー
ス9に固定する構造としても良い。The above description has been made on the case where the vibration system is constituted by a single piezoelectric ceramic ring. However, when the frequency of the acceleration to be detected is low and the output voltage sensitivity is to be increased as much as possible, as shown in FIG. The weight 8 may be applied to one end of the piezoelectric ceramic ring 6 and the other end may be fixed to the base 9.
【0015】[0015]
【発明の効果】以上示したように,本発明によれば,単
体の圧電セラミックス円環を使用した簡単な構造で,セ
ット時の角度調整が不要な2軸加速度センサが得られ実
用的に非常に効果が大きい。As described above, according to the present invention, a two-axis acceleration sensor having a simple structure using a single piezoelectric ceramics ring and requiring no angle adjustment at the time of setting can be obtained. Great effect.
【図1】本発明の2軸加速度センサを示す斜視図であ
る。FIG. 1 is a perspective view showing a two-axis acceleration sensor of the present invention.
【図2】本発明の2軸加速度センサの動作原理の説明図
である。FIG. 2 is an explanatory diagram of the operation principle of the two-axis acceleration sensor of the present invention.
【図3】(a),(b),(c)は本発明の2軸加速度
センサの動作原理の説明図である。FIGS. 3 (a), (b) and (c) are explanatory diagrams of the operation principle of the two-axis acceleration sensor of the present invention.
【図4】本発明の2軸加速度センサの別の構造例を示す
斜視図である。FIG. 4 is a perspective view showing another example of the structure of the two-axis acceleration sensor of the present invention.
【図5】従来の圧電方式の加速度センサの一例を示す側
面図である。FIG. 5 is a side view showing an example of a conventional piezoelectric acceleration sensor.
6 圧電セラミックス円環 9 ベース 11・11′,12・12′,13・13′,14・1
4′ 交差指電極対 51・51′ 圧電セラミックスス円環 52 端子板 53 おもり 54 ベース 55 ボルト6 Piezoelectric ceramic ring 9 Base 11.11 ', 12.12', 13.13 ', 14.1
4 ′ interdigital electrode pair 51 · 51 ′ piezoelectric ceramics ring 52 terminal board 53 weight 54 base 55 volt
フロントページの続き (56)参考文献 特開 平3−273167(JP,A) 特開 平4−315999(JP,A) 特開 平4−213068(JP,A) 特公 昭52−8111(JP,B2) 特公 昭54−39146(JP,B2) 特公 昭54−43905(JP,B2) 特表 平4−506407(JP,A)Continuation of the front page (56) References JP-A-3-273167 (JP, A) JP-A-4-315999 (JP, A) JP-A-4-213068 (JP, A) JP-B-52-8111 (JP) , B2) JP-B-54-39146 (JP, B2) JP-B-54-43905 (JP, B2) JP-B-4-506407 (JP, A)
Claims (1)
セラミックスを有する加速度センサにおいて,前記圧電
セラミックスは,前記円筒外面の円周を4等分する位置
に形成された該円周方向に平行な指電極を有する交差指
電極対を備え,前記交差指電極対を用いて分極処理を施
されており,前記交差指電極対のうちの前記分極処理時
における同極性電極同士を接続してアース電極とすると
ともに,前記アース電極に夫々交差する交差指電極を夫
々出力電極とし,前記圧電セラミックスの中心軸と直交
する方向の振動を,前記出力電極のうちで前記中心軸を
介して互いに対向する出力電極間に生ずる差動電圧に基
づいて加速度を検出することを特徴とする加速度セン
サ。1. An acceleration sensor having a piezoelectric ceramic having a cylindrical outer surface and having one end fixed, wherein the piezoelectric ceramic is formed in a position in the circumferential direction formed at a position dividing the circumference of the cylindrical outer surface into four equal parts. An interdigital electrode pair having parallel finger electrodes is provided, and a polarization process is performed using the interdigital electrode pair. The same polarity electrodes of the interdigital electrode pair during the polarization process are connected to each other. An interdigital electrode intersecting with the earth electrode is used as an output electrode, and vibrations in a direction perpendicular to the center axis of the piezoelectric ceramic are opposed to each other via the center axis among the output electrodes. An acceleration sensor for detecting acceleration based on a differential voltage generated between output electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2405328A JP2607395B2 (en) | 1990-12-06 | 1990-12-06 | Acceleration sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2405328A JP2607395B2 (en) | 1990-12-06 | 1990-12-06 | Acceleration sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04213069A JPH04213069A (en) | 1992-08-04 |
JP2607395B2 true JP2607395B2 (en) | 1997-05-07 |
Family
ID=18514940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2405328A Expired - Fee Related JP2607395B2 (en) | 1990-12-06 | 1990-12-06 | Acceleration sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2607395B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5481184A (en) * | 1991-12-31 | 1996-01-02 | Sarcos Group | Movement actuator/sensor systems |
US7001369B2 (en) | 2003-03-27 | 2006-02-21 | Scimed Life Systems, Inc. | Medical device |
US9808595B2 (en) | 2007-08-07 | 2017-11-07 | Boston Scientific Scimed, Inc | Microfabricated catheter with improved bonding structure |
US9901706B2 (en) | 2014-04-11 | 2018-02-27 | Boston Scientific Scimed, Inc. | Catheters and catheter shafts |
US11351048B2 (en) | 2015-11-16 | 2022-06-07 | Boston Scientific Scimed, Inc. | Stent delivery systems with a reinforced deployment sheath |
-
1990
- 1990-12-06 JP JP2405328A patent/JP2607395B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04213069A (en) | 1992-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4075022B2 (en) | Angular velocity sensor | |
EP0565065B1 (en) | Acceleration sensor | |
US6397677B1 (en) | Piezoelectric rotational accelerometer | |
US5512794A (en) | Shear accelerometer | |
JP2607395B2 (en) | Acceleration sensor | |
JP2607396B2 (en) | Acceleration sensor | |
US4611490A (en) | Angular acceleration sensor | |
JP3307907B2 (en) | Micro gyroscope | |
JP3118660B2 (en) | 2-axis acceleration sensor | |
JPS6416911A (en) | Vibration gyro | |
JP4370432B2 (en) | Angular acceleration sensor | |
JP3092022B2 (en) | 2-axis acceleration sensor | |
JP2946352B2 (en) | Acceleration sensor | |
JP3002900B2 (en) | Acceleration sensor | |
JP2671064B2 (en) | 2-axis acceleration sensor | |
US20010004847A1 (en) | Angular velocity sensor | |
JP4552253B2 (en) | Angular velocity sensor | |
JP3136544B2 (en) | Gyro device | |
JP2607403B2 (en) | 2-axis acceleration sensor | |
JP2946362B2 (en) | 2-axis acceleration sensor | |
JP3148937B2 (en) | Accelerometer | |
JPH0425714A (en) | Biaxial vibration gyro | |
JP3136547B2 (en) | 2-axis acceleration sensor | |
JP2660940B2 (en) | Piezoelectric vibration gyro | |
Mizuno et al. | Silicon bulk micromachined accelerometer with simultaneous linear and angular sensitivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961112 |
|
LAPS | Cancellation because of no payment of annual fees |