[go: up one dir, main page]

JP2595798B2 - Intake control device for internal combustion engine - Google Patents

Intake control device for internal combustion engine

Info

Publication number
JP2595798B2
JP2595798B2 JP26507090A JP26507090A JP2595798B2 JP 2595798 B2 JP2595798 B2 JP 2595798B2 JP 26507090 A JP26507090 A JP 26507090A JP 26507090 A JP26507090 A JP 26507090A JP 2595798 B2 JP2595798 B2 JP 2595798B2
Authority
JP
Japan
Prior art keywords
valve
hole
intake
outer peripheral
rotary valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26507090A
Other languages
Japanese (ja)
Other versions
JPH04143418A (en
Inventor
▲真▼一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26507090A priority Critical patent/JP2595798B2/en
Publication of JPH04143418A publication Critical patent/JPH04143418A/en
Application granted granted Critical
Publication of JP2595798B2 publication Critical patent/JP2595798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Lift Valve (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の吸気制御装置に関する。The present invention relates to an intake control device for an internal combustion engine.

〔従来の技術〕[Conventional technology]

機関運転状態に応じて吸気通路内に配置されたスロッ
トル弁の開度を制御して吸入空気の絞り調整を行うこと
により機関吸入空気量を制御する内燃機関が広く用いら
れている。しかしながらこの場合、機関部分負荷運転時
にスロットル弁により吸入空気が絞られるために機関吸
気行程において機関燃焼室内が負圧になり、その結果ピ
ストンを下降させるのに力を要し、斯くしてポンピング
損失が発生するという問題がある。この問題を解決する
ために、上述のようにスロットル弁の開度を変化させる
ことにより吸入空気量を制御するのではなく、吸入空気
を絞らずに機関運転状態に応じて吸気下死点前に吸気通
路を閉塞することにより機関燃焼室内への吸入空気の流
入期間を変化させて吸入空気量を制御するミラーサイク
ル内燃機関が公知である(特開昭62-174531号公報参
照)。この特開昭62-174531号公報に開示されたミラー
サイクル内燃機関では、吸気通路軸線とほぼ直角をなし
て吸気通路を貫通する円筒状貫通孔を形成し、この貫通
孔内に吸気通路を連通可能な開口を有するスリーブを挿
入し、機関と同期して貫通孔軸線回りに回転する弁体を
スリーブ内に挿入してこの弁体によりスリーブの開口を
開閉制御するようにしている。ここでスリーブは機関運
転状態に応じて貫通孔軸線回りに回転変位せしめられ、
その結果弁体による吸気通路の開閉時期が吸気弁の開閉
弁時期に対して変化せしめられ、斯くして機関燃焼室内
への吸入空気の流入期間が変化せしめられて機関吸入空
気量が制御されるようになっている。
2. Description of the Related Art An internal combustion engine that controls the amount of engine intake air by controlling the opening of a throttle valve disposed in an intake passage in accordance with the engine operating state to adjust the throttle of intake air is widely used. However, in this case, since the intake air is throttled by the throttle valve during the engine partial load operation, the engine combustion chamber becomes negative pressure during the engine intake stroke, and as a result, a force is required to lower the piston, and thus the pumping loss is reduced. There is a problem that occurs. In order to solve this problem, instead of controlling the intake air amount by changing the opening of the throttle valve as described above, the intake air amount is controlled before the intake bottom dead center according to the engine operating state without reducing the intake air. 2. Description of the Related Art A Miller cycle internal combustion engine that controls the amount of intake air by closing an intake passage to change the period during which intake air flows into an engine combustion chamber (see Japanese Patent Application Laid-Open No. 62-174531). In the Miller cycle internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 62-174531, a cylindrical through-hole is formed substantially perpendicular to the axis of the intake passage and penetrates the intake passage, and the intake passage communicates with the through-hole. A sleeve having a possible opening is inserted, and a valve body that rotates around the axis of the through hole in synchronization with the engine is inserted into the sleeve, and the opening and closing of the sleeve is controlled by the valve body. Here, the sleeve is rotationally displaced around the axis of the through hole according to the engine operating state,
As a result, the opening / closing timing of the intake passage by the valve body is changed with respect to the opening / closing valve timing of the intake valve, and thus the period of inflow of intake air into the engine combustion chamber is changed, and the engine intake air amount is controlled. It has become.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところでこのようなミラーサイクル内燃機関において
機関運転状態に応じた所定の吸入空気量を精度良く得る
ためには、弁体が閉弁したときに吸気通路が良好に閉鎖
されることが必要である。そのためには弁体外周縁とス
リーブ内壁面間のクリアランスをできるだけ小さくする
ことが望ましい。しかしながら上述のミラーサイクル内
燃機関では、貫通孔軸線と弁体の回転軸線との間の加工
誤差によるずれ量に見合う分だけ弁体外周縁がスリーブ
の内径よりも小さな外径を有するように形成せざるをえ
ず、その結果弁体外周縁とスリーブ内壁面間のクリアラ
ンスが大きくなってしまうという問題がある。特に多気
筒内において、互いに並列配置された複数個の吸気通路
を具備し、これら吸気通路を横切って吸気通路とほぼ直
角方向に延びる円筒状貫通孔を形成し、各吸気通路内に
機関と同期して回転する弁体を配置した場合には、円筒
状貫通孔が長くなるのでこの貫通孔の良好な真直度や円
筒度を確保することが困難であり、その結果弁体外周縁
と貫通孔内壁面間のクリアランスを小さくすることが単
気筒内燃機関の場合に比べて更に困難であるという問題
がある。
Incidentally, in order to accurately obtain a predetermined intake air amount according to the engine operating state in such a Miller cycle internal combustion engine, it is necessary that the intake passage be properly closed when the valve element is closed. For this purpose, it is desirable to minimize the clearance between the outer peripheral edge of the valve body and the inner wall surface of the sleeve. However, in the above-described Miller cycle internal combustion engine, the outer peripheral edge of the valve body must be formed to have an outer diameter smaller than the inner diameter of the sleeve by an amount corresponding to the amount of deviation due to a processing error between the axis of the through hole and the rotation axis of the valve body. As a result, there is a problem that the clearance between the outer peripheral edge of the valve body and the inner wall surface of the sleeve becomes large. In particular, in a multi-cylinder, a plurality of intake passages arranged in parallel with each other are provided, and a cylindrical through-hole extending in a direction substantially perpendicular to the intake passages across the intake passages is formed. When the valve body is rotated in such a manner, the cylindrical through hole becomes long, so that it is difficult to secure good straightness and cylindricity of the through hole. There is a problem that it is more difficult to reduce the clearance between the wall surfaces than in the case of a single cylinder internal combustion engine.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題点を解決するために本発明によれば吸気通路
軸線とほぼ直角をなして吸気通路を貫通する円筒状貫通
孔を形成し、機関と同期して該貫通孔軸線回りに回転す
る弁体を貫通孔に挿入して弁体により吸気通路を開閉制
御するようにした吸気制御装置において、弁体の全外表
面を可削性樹脂によって覆うと共に、可削性樹脂により
覆われかつ貫通孔軸線から最も離れた弁体外周縁のほぼ
全体が弁体の組付け時であって吸気通路壁面と弁体の温
度がほぼ等しいときに貫通孔の内径よりも大きな外径を
有するように形成して弁体外周縁を覆う可削性樹脂のほ
ぼ全体が貫通孔内壁面と接触するようにしている。
In order to solve the above-mentioned problems, according to the present invention, a valve body is provided which forms a cylindrical through-hole passing through the intake passage at a substantially right angle with the intake passage axis, and rotates around the through-hole axis in synchronization with the engine. In the intake control device in which the valve is inserted into the through hole to control the opening and closing of the intake passage by the valve element, the entire outer surface of the valve element is covered with the machinable resin, Almost the entire outer peripheral edge of the valve body farthest from the valve body is formed at the time of assembling the valve body and has an outer diameter larger than the inner diameter of the through hole when the temperature of the intake passage wall surface and the temperature of the valve body are substantially equal. Almost the whole of the machinable resin covering the outer peripheral edge of the body contacts the inner wall surface of the through hole.

〔作用〕[Action]

弁体の組付け時には冷却等の方法により弁体を収縮せ
しめ、この収縮せしめられた弁体を貫通孔に挿入する。
次いで吸気通路壁面と弁体の温度がほぼ等しくなると、
弁体外周縁を覆う可削性樹脂のほぼ全体が貫通孔内壁面
と接触するようになる。その結果、弁体が貫通孔軸線回
りに回転するにつれて弁体外周縁を覆う可削性樹脂が貫
通孔内壁面により磨耗せしめられ、斯くして弁体外周縁
が貫通孔内壁面に対して擦り合わせせしめられる。
When assembling the valve element, the valve element is contracted by a method such as cooling, and the contracted valve element is inserted into the through hole.
Next, when the temperature of the intake passage wall surface and the temperature of the valve body become substantially equal,
Almost the entire machinable resin covering the outer peripheral edge of the valve body comes into contact with the inner wall surface of the through hole. As a result, as the valve element rotates about the axis of the through hole, the machinable resin covering the outer peripheral edge of the valve element is worn by the inner wall surface of the through hole. Can be

〔実施例〕〔Example〕

第1図および第2図に4気筒4サイクル内燃機関の全
体図を示す。第1図および第2図を参照すると、1はシ
リンダブロック、2はピストン、3はシリンダヘッド、
4は燃焼室、5は吸気弁、6は吸気ポート、7は排気
弁、8は排気ポート、9は燃料噴射弁、10は点火栓を夫
々示す。吸気弁5および排気弁7は夫々、吸気弁5およ
び排気弁7をそれらの閉弁方向に向けて付勢する圧縮ば
ね12および圧縮ばね13によってカム14およびカム15に押
圧されている。カム14およびカム15が回転するにつれて
吸気弁5および排気弁7が開閉せしめられる。
1 and 2 show an overall view of a four-cylinder four-cycle internal combustion engine. Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head,
Reference numeral 4 denotes a combustion chamber, 5 denotes an intake valve, 6 denotes an intake port, 7 denotes an exhaust valve, 8 denotes an exhaust port, 9 denotes a fuel injection valve, and 10 denotes a spark plug. The intake valve 5 and the exhaust valve 7 are pressed against the cam 14 and the cam 15 by a compression spring 12 and a compression spring 13 for urging the intake valve 5 and the exhaust valve 7 in the valve closing direction. As the cams 14 and 15 rotate, the intake valve 5 and the exhaust valve 7 are opened and closed.

シリンダヘッド3にはハウジング17が固定され、この
ハウジング17内に4本の吸気通路18が互いに並列配置さ
れ、各気筒の吸気ポート6が夫々対応する吸気通路18に
接続される。これらの4本の吸気通路18を横切って吸気
通路18とほぼ直角方向に延びる円筒状貫通孔20が形成さ
れ、機関と同期して貫通孔20の軸線回りに回転するロー
タリ弁22が貫通孔20内に挿入される。ロータリ弁22の両
端部はハウジング17内に取付けられた軸受25,26,27によ
り回転自在に支承されている。このロータリ弁22は各吸
気通路18を開閉接続する4個の弁体30を具備し、更に、
隣り合う弁体30の中間、および両端の弁体30の外方に夫
々シール部31を具備する。弁体30およびシール部31の詳
細な構造については後述する。
A housing 17 is fixed to the cylinder head 3, and four intake passages 18 are arranged in the housing 17 in parallel with each other, and the intake ports 6 of each cylinder are connected to the corresponding intake passages 18, respectively. A cylindrical through hole 20 extending in a direction substantially perpendicular to the intake passage 18 is formed across the four intake passages 18, and a rotary valve 22 that rotates around the axis of the through hole 20 in synchronization with the engine is provided with a through hole 20. Is inserted into. Both ends of the rotary valve 22 are rotatably supported by bearings 25, 26, 27 mounted in the housing 17. The rotary valve 22 includes four valve bodies 30 that open and close each intake passage 18.
Seal portions 31 are provided in the middle of the adjacent valve bodies 30 and outside the valve bodies 30 at both ends. The detailed structures of the valve body 30 and the seal portion 31 will be described later.

次に第1図から第3図を参照して本実施例におけるロ
ータリ弁22の駆動機構について説明する。ロータリ弁22
の端部が調整駒32を介して駆動プーリ33に固定される。
この駆動プーリ33はタイミングベルト34を介してカムシ
ャフトプーリ35に連結され、斯くしてロータリ弁22がカ
ムシャフトに同期して貫通孔20の軸線回りに回転するよ
うになっている。なおロータリ弁22はカムシャフトの回
転速度の1/2、すなわち4サイクル内燃機関の場合には
機関クランク軸の回転速度の1/4の回転速度で駆動され
るようになっている。すなわちロータリ弁22は機関の1
サイクル毎に180°だけ貫通孔20の軸線回りに回転せし
められる。
Next, the drive mechanism of the rotary valve 22 in the present embodiment will be described with reference to FIGS. Rotary valve 22
Is fixed to the drive pulley 33 via the adjustment piece 32.
The drive pulley 33 is connected to a camshaft pulley 35 via a timing belt 34, so that the rotary valve 22 rotates around the axis of the through hole 20 in synchronization with the camshaft. The rotary valve 22 is driven at half the rotational speed of the camshaft, that is, at one-fourth the rotational speed of the engine crankshaft in the case of a four-cycle internal combustion engine. That is, the rotary valve 22 is connected to the engine 1
Each cycle is rotated around the axis of the through hole 20 by 180 °.

第2図において各気筒は#1気筒、#3気筒、#4気
筒、#2気筒の順序でクランク角の位相が180°ずつ遅
れており、従って各気筒の吸気行程もこの順序で180°
ずつ位相が遅れている。従って各気筒の吸気通路18を開
閉制御する弁体30は上述の順序でロータリ弁22の回転角
度において45°ずつ位相をずらして夫々ロータリ弁22上
に配置され、即ち各弁体30はクランク角に換算すると18
0°ずつ位相をずらして配置されている。吸気弁5の開
弁期間は約200°から約240°のクランク角期間であり、
一方弁体30の開弁期間は吸気弁5の開弁期間よりも少し
長くなっている。従って弁体30が吸気弁5よりも先に開
弁しかつ後に閉弁する場合には、燃焼室4内への吸気時
期および吸気期間は弁体30による吸気通路18の開閉制御
の影響をうけずに吸気弁5の開閉弁時期によって制御さ
れる。
In FIG. 2, the phase of the crank angle of each cylinder is delayed by 180 ° in the order of # 1, # 3, # 4, and # 2 cylinders, so that the intake stroke of each cylinder is also 180 ° in this order.
The phase is lagging each time. Therefore, the valve bodies 30 for controlling the opening and closing of the intake passages 18 of the respective cylinders are arranged on the rotary valves 22 with the phase shifted by 45 ° in the rotation angle of the rotary valve 22 in the above-described order, that is, each valve body 30 has a crank angle. Converted to 18
They are arranged with a phase shift of 0 °. The opening period of the intake valve 5 is a crank angle period of about 200 ° to about 240 °,
On the other hand, the valve opening period of the valve body 30 is slightly longer than the valve opening period of the intake valve 5. Therefore, when the valve body 30 opens before the intake valve 5 and closes after that, the intake timing and the intake period into the combustion chamber 4 are affected by the opening / closing control of the intake passage 18 by the valve body 30. Instead, it is controlled by the opening / closing timing of the intake valve 5.

次に第2図および第3図を参照してロータリ弁22の開
閉弁時期調節手段の構成について説明する。ロータリ弁
22と駆動プーリ33の対向する各端部には夫々へリカルス
プライン22a,33aが相互に反対方向のねじれをもって形
成されている。これらのヘリカルスプライン22a,33aに
は夫々調整駒32の内周面に形成された突起32a,32bが噛
合し、第3図において調整駒32を左右方向に移動させる
ことにより、ロータリ弁22が駆動プーリ33に対して回転
変位し、斯くしてロータリ弁22の各弁体30による各吸気
通路18の開閉時期を全気筒について同じクランク角だけ
同時に変化させることができる。この調整駒32の軸方向
への移動は、調整駒32の外周面に形成された環状の係止
溝32cに一端を嵌合された調整レバー35の揺動によって
行われる。この調整レバー35はその中間部が軸36によっ
て揺動可能に構成されており、調整レバー35はアクチュ
エータ38によって作動せしめられる。アクチュエータ38
は電子制御ユニット40の出力信号に基づいて制御され
る。この電子制御ユニット40には機関吸入空気量Qを表
わす出力信号を発生するエアフローメータ41と、機関回
転数Nを表わす出力信号を発生する回転数センサ42とが
接続される。
Next, the configuration of the opening / closing valve timing adjusting means of the rotary valve 22 will be described with reference to FIGS. Rotary valve
Helical splines 22a and 33a are formed at opposite ends of the drive pulley 33 and the drive pulley 33, respectively, with twists in opposite directions. The helical splines 22a and 33a mesh with projections 32a and 32b formed on the inner peripheral surface of the adjustment piece 32, respectively, and by moving the adjustment piece 32 in the left and right direction in FIG. 3, the rotary valve 22 is driven. It is rotationally displaced with respect to the pulley 33, and thus the opening / closing timing of each intake passage 18 by each valve element 30 of the rotary valve 22 can be simultaneously changed for all cylinders by the same crank angle. The movement of the adjustment piece 32 in the axial direction is performed by swinging an adjustment lever 35 having one end fitted into an annular locking groove 32c formed on the outer peripheral surface of the adjustment piece 32. The adjusting lever 35 is configured such that an intermediate portion thereof can swing by a shaft 36, and the adjusting lever 35 is operated by an actuator 38. Actuator 38
Is controlled based on the output signal of the electronic control unit 40. The electronic control unit 40 is connected to an air flow meter 41 for generating an output signal indicating the engine intake air amount Q and a rotation speed sensor 42 for generating an output signal indicating the engine speed N.

電子制御ユニット40内ではエアフローメータ41および
回転数センサ42の出力信号に基づいて機関負荷Q/Nが算
出され、この機関負荷Q/Nおよび機関回転数Nに基づい
てアクチュエータ38が作動制御され、その結果ロータリ
弁22の各弁体30による各吸気通路18の開閉時期が制御さ
れる。アクチュエータ38の作動量は予め実験により機関
負荷Q/Nおよび機関回転数Nに対して夫々最適な値がマ
ップの形で求められている。弁体30の開弁期間を吸気弁
5の開弁期間に対して前にずらして、ロータリ弁22が吸
気弁5よりも先に開弁しかつ先に閉弁するようにする
と、機関吸気行程の途中で吸気通路18が弁体30によって
閉鎖される。その結果、その後の吸気行程において燃焼
室4内では吸気の断熱膨張が生じ、斯くしてミラーサク
イルが実現される。このように機関運転状態に応じてロ
ータリ弁22の弁体30の開閉弁時期を制御することによ
り、機関1サイクル中における燃焼室4内への吸入空気
の流入期間が制御され、斯くして機関運転状態に応じた
適切な吸入空気量を得ることができる。なおこの場合、
吸気を絞らないのでほぼ大気圧の空気をピストンの下降
により燃焼室4内に吸い込むこととなり、従ってポンピ
ング損失が少くて済む。
In the electronic control unit 40, the engine load Q / N is calculated based on the output signals of the air flow meter 41 and the speed sensor 42, and the operation of the actuator 38 is controlled based on the engine load Q / N and the engine speed N, As a result, the opening / closing timing of each intake passage 18 by each valve element 30 of the rotary valve 22 is controlled. The optimum values of the operation amount of the actuator 38 for the engine load Q / N and the engine speed N are obtained in advance by experiments in the form of a map. If the opening period of the valve element 30 is shifted before the opening period of the intake valve 5 so that the rotary valve 22 opens and closes earlier than the intake valve 5, the engine intake stroke The intake passage 18 is closed by the valve body 30 in the middle of the process. As a result, adiabatic expansion of the intake air occurs in the combustion chamber 4 in the subsequent intake stroke, thus realizing a mirror cycle. By controlling the opening / closing timing of the valve element 30 of the rotary valve 22 in accordance with the engine operating state, the period during which the intake air flows into the combustion chamber 4 during one cycle of the engine is controlled. An appropriate intake air amount according to the operating state can be obtained. In this case,
Since the intake air is not restricted, substantially atmospheric pressure air is sucked into the combustion chamber 4 by lowering the piston, so that pumping loss is reduced.

次に第4図および第5図を参照してロータリ弁22の弁
体30およびシール部31の構造について説明する。ロータ
リ弁22は金属製のロータリ弁基部45と、このロータリ弁
基部45のほぼ全外表面を覆う可削性樹脂層46とを具備す
る。なお本明細書では、「磨耗しやすい樹脂」のことを
「可削性樹脂」と称する。本実施例では可削性樹脂層46
は、ナイロンおよび珪酸マグネシウムからなる可削性樹
脂、または、イオンフッ化エチレンとエチレンとカーボ
ンファイバとからなる可削性樹脂(例えばアフロンCOP
(登録商標))等から形成される。このような可削性樹
脂により覆われかつ貫通孔20軸線から最も離れた弁体30
外周縁のほぼ全体が、ロータリ弁22の組付け時であって
吸気通路18壁面と弁体30の温度がほぼ等しいときに円筒
状貫通孔20の内径よりも大きな外径を有するように形成
される。また上述のようにロータリ弁22は、隣り合う弁
体30の中間、および両端の弁体30の外方に、夫々シール
部31を有する。このシール部31においてロータリ弁基部
45は円筒形状をなし、このロータリ弁基部45の外周面上
に環状をなすシール部材49が備えられる。このシール部
材49はニトリルゴム、フッ素ゴムまたはシリコンゴム等
からなる。シール部材49は可削性樹脂層46によってロー
タリ弁22の上述の所定の位置に固着せしめられ、このシ
ール部材49により隣り合う吸気通路18間の空気の漏洩、
或いは吸気通路18とハウジング17外部との間の空気の漏
洩が防止される。可削性樹脂層46により覆われたシール
部31外周面ほぼ全体がロータリ弁22の組付け時であって
吸気通路18壁面とロータリ弁22の温度がほぼ等しいとき
に円筒状貫通孔20の内径よりも大きな外径を有するよう
に形成される。なお、通常Oリング等のシール部材は軸
の外周面上または穴の内周面上に形成された溝内に装着
される。一方、本実施例ではロータリ弁基部45の外周面
上に溝を形成せずにシール部材49を可削性樹脂層46によ
りロータリ弁基部45の外周面上に固着せしめるという簡
便な構造により、空気の漏洩を確実に防止できるという
特徴を有する。
Next, the structures of the valve element 30 and the seal portion 31 of the rotary valve 22 will be described with reference to FIGS. The rotary valve 22 includes a metal rotary valve base 45 and a machinable resin layer 46 covering almost the entire outer surface of the rotary valve base 45. In the present specification, the “resin that is easily worn” is referred to as “cuttable resin”. In the present embodiment, the machinable resin layer 46
Is a machinable resin composed of nylon and magnesium silicate, or a machinable resin composed of ionized ethylene fluoride, ethylene and carbon fiber (for example, Aflon COP
(Registered trademark)). The valve element 30 covered with such a machinable resin and farthest from the axis of the through hole 20
Almost the entire outer peripheral edge is formed so as to have an outer diameter larger than the inner diameter of the cylindrical through hole 20 when the rotary valve 22 is assembled and the temperature of the wall of the intake passage 18 and the temperature of the valve body 30 are substantially equal. You. Further, as described above, the rotary valve 22 has the seal portions 31 in the middle of the adjacent valve bodies 30 and outside the valve bodies 30 at both ends. In this seal portion 31, the rotary valve base portion
45 has a cylindrical shape, and is provided with an annular seal member 49 on the outer peripheral surface of the rotary valve base 45. The sealing member 49 is made of nitrile rubber, fluorine rubber, silicon rubber or the like. The seal member 49 is fixed to the above-described predetermined position of the rotary valve 22 by the machinable resin layer 46, and the seal member 49 leaks air between the adjacent intake passages 18,
Alternatively, leakage of air between the intake passage 18 and the outside of the housing 17 is prevented. Almost the entire outer peripheral surface of the seal portion 31 covered by the machinable resin layer 46 is attached to the rotary valve 22 when the temperature of the wall of the intake passage 18 and the temperature of the rotary valve 22 are substantially equal. It is formed so as to have a larger outer diameter. Usually, a seal member such as an O-ring is mounted in a groove formed on the outer peripheral surface of the shaft or the inner peripheral surface of the hole. On the other hand, in the present embodiment, air is formed by a simple structure in which the seal member 49 is fixed on the outer peripheral surface of the rotary valve base 45 by the machinable resin layer 46 without forming a groove on the outer peripheral surface of the rotary valve base 45. The feature is that the leakage of can be surely prevented.

ロータリ弁22を貫通孔20内に組付ける際には、ロータ
リ弁22を冷却等の方法により収縮せしめ、次いでこの収
縮せしめられたロータリ弁22を貫通孔20内に挿入する。
次いで吸気通路18壁面とロータリ弁22の温度がほぼ等し
くなると、弁体30外表面を覆う可削性樹脂層46の外周縁
のほぼ全体、およびシール部31外表面を覆う可削性樹脂
層46の外周面のほぼ全体が貫通孔20内壁面と接触するよ
うになる。従ってロータリ弁22が貫通孔20軸線回りに回
転するにつれて、弁体30外周縁を覆う可削性樹脂層46、
およびシール部48外周面を覆う可削性樹脂46が貫通孔20
内壁面により磨耗せしめられる。斯くして弁体30外周縁
が貫通孔20内壁面に対して擦り合わせせしめられる。そ
の結果弁体30外周縁と貫通孔20内壁面との間のクリアラ
ンスを非常に小さくすることができ、従って弁体30の閉
弁時に吸気通路18を良好に閉鎖することができるので、
機関吸入空気量を精度良く制御することができる。また
同様にシール部31の可削性樹脂層46の外周面が貫通孔20
内壁面に対して擦り合わせせしめられる。その結果シー
ル部31の可削性樹脂層46の外周面と貫通孔20内壁面との
間のクリアランスを非常に小さくすることができ、これ
によりシール部材49によって確保される気密性をより確
実なものにすることができる。
When assembling the rotary valve 22 into the through-hole 20, the rotary valve 22 is contracted by a method such as cooling, and then the contracted rotary valve 22 is inserted into the through-hole 20.
Next, when the temperature of the wall surface of the intake passage 18 and the temperature of the rotary valve 22 become substantially equal, almost the entire outer peripheral edge of the machinable resin layer 46 covering the outer surface of the valve body 30 and the machinable resin layer 46 covering the outer surface of the seal portion 31 are formed. Almost the entire outer peripheral surface comes into contact with the inner wall surface of the through hole 20. Therefore, as the rotary valve 22 rotates around the axis of the through hole 20, the machinable resin layer 46 covering the outer peripheral edge of the valve body 30,
And the machinable resin 46 covering the outer peripheral surface of the seal portion 48
It is worn by the inner wall. Thus, the outer peripheral edge of the valve body 30 is rubbed against the inner wall surface of the through hole 20. As a result, the clearance between the outer peripheral edge of the valve body 30 and the inner wall surface of the through hole 20 can be made extremely small, and therefore, when the valve body 30 is closed, the intake passage 18 can be properly closed.
The engine intake air amount can be accurately controlled. Similarly, the outer peripheral surface of the machinable resin layer 46 of the seal portion 31 is
It is rubbed against the inner wall. As a result, the clearance between the outer peripheral surface of the machinable resin layer 46 of the seal portion 31 and the inner wall surface of the through-hole 20 can be made very small, whereby the airtightness secured by the seal member 49 can be more reliably ensured. Can be something.

機関長が長い多気筒内燃機関の場合には円筒状貫通孔
20を形成するのにハウジング17の両側面から貫通孔20を
加工することが必要になる。この場合、第6図(a)に
示すように貫通孔20の良好な円筒度を確保することは困
難であり、第6図(b)および(c)に示すように貫通
孔20に段差が形成されたり、貫通孔20の真直度が悪くな
ることが多い。しかしながら本実施例ではロータリ弁22
の弁体30外周面およびシール部31外周面が可削性樹脂層
46によって覆われているので、第6図(b),(c)に
示すように貫通孔20の円筒度が良好でない場合において
も、上述のように可削性樹脂層46が貫通孔20内壁面によ
り磨耗せしめられるのでロータリ弁22を組付けることが
できると共に、弁体30外周縁と貫通孔20間のクリアラン
ス、およびシール部31における可削性樹脂層46外周面と
貫通孔20間のクリアランスを極力小さくすることができ
る。
Cylindrical through holes for multi-cylinder internal combustion engines with long engine lengths
In order to form the through hole 20, it is necessary to form the through holes 20 from both sides of the housing 17. In this case, it is difficult to ensure good cylindricity of the through hole 20 as shown in FIG. 6A, and a step is formed in the through hole 20 as shown in FIGS. 6B and 6C. Often, the straightness of the through-hole 20 is deteriorated. However, in this embodiment, the rotary valve 22
The outer peripheral surface of the valve body 30 and the outer peripheral surface of the seal portion 31 are made of a machinable resin layer.
As shown in FIGS. 6 (b) and 6 (c), even when the cylindricity of the through hole 20 is not good, the machinable resin layer 46 is covered with the through hole 20 as described above. The rotary valve 22 can be assembled because it is worn by the wall surface, and the clearance between the outer peripheral edge of the valve body 30 and the through hole 20 and the clearance between the outer peripheral surface of the machinable resin layer 46 and the through hole 20 in the seal portion 31 are provided. Can be reduced as much as possible.

次に第7図を参照してロータリ弁22の製造方法につい
て説明する。まず初めに第7図(a)に示すように鋳造
または鍛造等によってロータリ弁基部45を形成する。次
いで第7図(b)に示すようにシール部材49をロータリ
弁基部45に装着する。次いで第7図(c)に示すよう
に、シール部材49が装着されたロータリ弁基部45を金型
内に設置して射出成形によりロータリ弁基部45の外表面
に可削性樹脂層46を被覆せしめる。これによりシール部
材49がロータリ弁基部45に固定される。次いで第7図
(d)に示すように、軸受25,26,27内に支持される軸
部、ヘリカルスプライン22a、可削性樹脂層46の外周縁
部の機械加工を行う。なお、可削性樹脂層46により覆わ
れかつロータリ弁22の回転軸線から最も離れた弁体30外
周縁のほぼ全体、およびシール部31の可削性樹脂層46外
周面のほぼ全体が、ロータリ弁22の組付け時であって吸
気通路18壁面とロータリ弁22の温度がほぼ等しいときに
貫通孔20の内径よりも大きな外径を有するように、可削
性樹脂層46の外周縁が機械加工される。
Next, a method of manufacturing the rotary valve 22 will be described with reference to FIG. First, as shown in FIG. 7A, the rotary valve base 45 is formed by casting or forging. Next, as shown in FIG. 7B, the seal member 49 is mounted on the rotary valve base 45. Next, as shown in FIG. 7 (c), the rotary valve base 45 on which the seal member 49 is mounted is placed in a mold, and the outer surface of the rotary valve base 45 is coated with a machinable resin layer 46 by injection molding. Let me know. As a result, the seal member 49 is fixed to the rotary valve base 45. Next, as shown in FIG. 7 (d), the shafts supported in the bearings 25, 26, 27, the helical splines 22a, and the outer peripheral edge of the machinable resin layer 46 are machined. It is to be noted that substantially the entire outer peripheral edge of the valve element 30 covered with the machinable resin layer 46 and farthest from the rotation axis of the rotary valve 22 and almost the entire outer peripheral surface of the machinable resin layer 46 of the seal portion 31 are rotary. At the time of assembling the valve 22, when the temperature of the wall of the intake passage 18 and the temperature of the rotary valve 22 are substantially equal, the outer peripheral edge of the machinable resin layer 46 is mechanically adjusted so that it has an outer diameter larger than the inner diameter of the through hole 20. Processed.

次に第8図に示す別の実施例について説明する。第8
図は6気筒4サイクル内燃機関において、ロータリ弁22
の中央部を軸受52により保持するようにした実施例を示
している。なお軸受52により保持されるロータリ弁22部
分は可削性樹脂により被覆されず、この部分はロータリ
弁基部45を機械加工することにより形成される。このよ
うに機関長が長い多気筒内燃機関の場合にロータリ弁22
の中央部を軸受52によって保持することにより、ロータ
リ弁22の撓みが低減せしめられるので、ロータリ弁22の
中間に継手を設けたりロータリ弁22を分割したりする必
要がなくなる。なお第8図に示す実施例ではロータリ弁
22の中央部に1箇所だけ軸受52を設けているが、任意の
隣り合う吸気通路18間において複数箇所に軸受52を設け
てもよい。また6気筒内燃機関に限らず4気筒内燃機関
等においてもロータリ弁22の中間部に軸受52を設けるこ
とができる。
Next, another embodiment shown in FIG. 8 will be described. 8th
The figure shows a rotary valve 22 in a six-cylinder four-cycle internal combustion engine.
In this embodiment, a central portion of the lens is held by a bearing 52. The portion of the rotary valve 22 held by the bearing 52 is not covered with the machinable resin, and this portion is formed by machining the rotary valve base 45. In the case of such a multi-cylinder internal combustion engine having a long engine length, the rotary valve 22
By holding the center of the rotary valve 22 with the bearing 52, the bending of the rotary valve 22 is reduced, so that it is not necessary to provide a joint in the middle of the rotary valve 22 or to divide the rotary valve 22. In the embodiment shown in FIG.
Although only one bearing 52 is provided at the center of the 22, the bearing 52 may be provided at a plurality of locations between any adjacent intake passages 18. The bearing 52 can be provided at an intermediate portion of the rotary valve 22 not only in the six-cylinder internal combustion engine but also in a four-cylinder internal combustion engine or the like.

〔発明の効果〕〔The invention's effect〕

弁体が貫通孔軸線回りに回転するにつれて、貫通孔軸
線から最も離れた弁体外周縁を覆う可削性樹脂層外表面
のほぼ全体が貫通孔内壁面により磨耗せしめられ、即ち
弁体外周縁が貫通孔内壁面に対して擦り合わせせしめら
れるので、弁体外周縁と貫通孔内壁面間のクリアランス
を非常に小さくすることができる。従って弁体の閉弁時
に吸気通路を良好に閉鎖することができ、斯くして機関
吸入空気量を精度良く制御することができる。
As the valve body rotates around the axis of the through hole, almost the entire outer surface of the machinable resin layer covering the outer peripheral edge of the valve body farthest from the axis of the through hole is worn by the inner wall surface of the through hole, that is, the outer peripheral edge of the valve body penetrates. Since it is rubbed against the inner wall surface of the hole, the clearance between the outer peripheral edge of the valve body and the inner wall surface of the through hole can be made very small. Therefore, the intake passage can be satisfactorily closed when the valve body is closed, so that the engine intake air amount can be accurately controlled.

【図面の簡単な説明】[Brief description of the drawings]

第1図は第2図のI−I線に沿ってみた断面図、第2図
は4気筒4サイクル内燃機関の全体図、第3図はロータ
リ弁の開閉弁時期調整手段の拡大断面図、第4図は第2
図のIV−IV線に沿ってみた拡大断面図、第5図は第4図
の矢印Vで示す部分の拡大断面図、第6図は貫通孔の加
工状態を説明する断面図、第7図はロータリ弁の製造工
程を説明する図、第8図は別の実施例を示す6気筒4サ
イクル内燃機関の全体図である。 18……吸気通路、20……貫通孔、30……弁体、46……可
削性樹脂層。
1 is a sectional view taken along line II of FIG. 2, FIG. 2 is an overall view of a four-cylinder four-cycle internal combustion engine, FIG. FIG. 4 shows the second
FIG. 5 is an enlarged cross-sectional view taken along the line IV-IV in FIG. 5, FIG. 5 is an enlarged cross-sectional view of a portion indicated by an arrow V in FIG. 4, FIG. FIG. 8 is a view for explaining a manufacturing process of a rotary valve, and FIG. 8 is an overall view of a six-cylinder four-cycle internal combustion engine showing another embodiment. 18 ... intake passage, 20 ... through hole, 30 ... valve body, 46 ... cutable resin layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸気通路軸線とほぼ直角をなして吸気通路
を貫通する円筒状貫通孔を形成し、機関と同期して該貫
通孔軸線回りに回転する弁体を該貫通孔に挿入して該弁
体により吸気通路を開閉制御するようにした吸気制御装
置において、弁体の全外表面を可削性樹脂によって覆う
と共に、該可削性樹脂により覆われかつ貫通孔軸線から
最も離れた弁体外周縁のほぼ全体が弁体の組付け時であ
って吸気通路壁面と弁体の温度がほぼ等しいときに該貫
通孔の内径よりも大きな外径を有するように形成して弁
体外周縁を覆う可削性樹脂のほぼ全体が貫通孔内壁面と
接触するようにした内燃機関の吸気制御装置。
A cylindrical through-hole is formed substantially perpendicularly to the axis of the intake passage and penetrates the intake passage, and a valve element which rotates around the axis of the through-hole in synchronization with the engine is inserted into the through-hole. In the intake control apparatus wherein the intake passage is controlled to be opened and closed by the valve body, the entire outer surface of the valve body is covered with the machinable resin, and the valve covered with the machinable resin and farthest from the through-hole axis. Almost the entire outer peripheral edge of the valve body is formed at the time of assembling the valve element and has an outer diameter larger than the inner diameter of the through hole when the temperature of the intake passage wall surface and the temperature of the valve element are substantially equal to cover the outer peripheral edge of the valve element. An intake control device for an internal combustion engine in which substantially the whole of the machinable resin contacts the inner wall surface of the through hole.
JP26507090A 1990-10-04 1990-10-04 Intake control device for internal combustion engine Expired - Lifetime JP2595798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26507090A JP2595798B2 (en) 1990-10-04 1990-10-04 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26507090A JP2595798B2 (en) 1990-10-04 1990-10-04 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH04143418A JPH04143418A (en) 1992-05-18
JP2595798B2 true JP2595798B2 (en) 1997-04-02

Family

ID=17412176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26507090A Expired - Lifetime JP2595798B2 (en) 1990-10-04 1990-10-04 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2595798B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011336A1 (en) * 1996-09-13 1998-03-19 Hitachi, Ltd. Suction structure for internal combustion engines

Also Published As

Publication number Publication date
JPH04143418A (en) 1992-05-18

Similar Documents

Publication Publication Date Title
US10309266B2 (en) Variable travel valve apparatus for an internal combustion engine
US20120145101A1 (en) Variable valve device for an internal combustion engine
JPH0941924A (en) Power transmission mechanism and variable valve mechanism with power transmission mechanism
JPH0275709A (en) Rotary inlet and exhaust valve for internal combustion engine
JPH0230911A (en) Rotary valve type internal combustion engine
US5168772A (en) Camshaft arrangement and method for producing it
JP2595798B2 (en) Intake control device for internal combustion engine
JP2008190365A (en) Uniflow 2-stroke internal combustion engine
JPS62261615A (en) Internal combustion engine
US6595177B1 (en) Rotary sleeve port for an internal combustion engine
JP3707236B2 (en) DOHC engine with variable valve timing system
JP4821754B2 (en) Intake control device for internal combustion engine
JPH09280014A (en) Valve system cam shaft structure
TWI825061B (en) A rotary valve internal combustion engine
EP1304449B1 (en) Internal combustion engine with rotary valves
JPH0714105U (en) Valve drive for internal combustion engine
JP4584786B2 (en) Valve opening / closing timing change unit for multi-cylinder engines and multi-cylinder engines
JPH0332729Y2 (en)
JPS63198709A (en) Intake and exhaust valve construction for internal combustion engine
JP5392496B2 (en) Variable valve operating device for internal combustion engine
JP2024170083A (en) Valve timing change device
EP1304448A1 (en) Internal combustion engine with rotary valves
JPH0953425A (en) Four-cycle engine
JP2001295617A (en) Variable valve timing device for dohc engine
JP2010116815A (en) Variable open valve characteristic type internal combustion engine