JP2593887Y2 - Cantilever for atomic force microscope - Google Patents
Cantilever for atomic force microscopeInfo
- Publication number
- JP2593887Y2 JP2593887Y2 JP1991104954U JP10495491U JP2593887Y2 JP 2593887 Y2 JP2593887 Y2 JP 2593887Y2 JP 1991104954 U JP1991104954 U JP 1991104954U JP 10495491 U JP10495491 U JP 10495491U JP 2593887 Y2 JP2593887 Y2 JP 2593887Y2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- cantilever
- atomic force
- force microscope
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000523 sample Substances 0.000 claims description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- 238000010894 electron beam technology Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】この考案は原子間力顕微鏡及びそ
の原理を利用した装置の試料面探査に用いられるカンチ
レバーに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic force microscope and a cantilever used for searching a sample surface of an apparatus utilizing the principle.
【0002】[0002]
【従来の技術】原子間力顕微鏡は、カンチレバーの遊端
に取付けたプローブと試料との原子間力によりカンチレ
バーがたわみ、このたわみをレーザ光を用いて検出し、
カンチレバーが一定の状態になるように制御しながら試
料面を走査し、その制御信号から試料面の凹凸測定など
に用いられている。2. Description of the Related Art In an atomic force microscope, a cantilever bends due to an atomic force between a probe attached to a free end of a cantilever and a sample, and this bend is detected using a laser beam.
A sample surface is scanned while controlling the cantilever to be in a constant state, and the control signal is used for measurement of unevenness of the sample surface.
【0003】図3Aに従来のこの種のカンチレバーを示
す。板状レバー本体11の一端部の一面に角錐状プロー
ブ12が形成されている。このカンチレバーはSi
O2 ,Si3 N4 ,Siなどの絶縁物で構成されてい
る。例えば単結晶シリコンに対し、その異方性エッチン
グを利用してプローブ12の型を作り、これに対し、S
iO2 やSi3 N4 を充填して、高い寸法精度のプロー
ブ12を作っていた。カンチレバーは作り易さや、原子
間力の大きさを検知できる程度の小さいばね定数をも
ち、また高速走査が可能なように固有共振周波数を高く
する点からSi3 N4 で構成される場合が多い。FIG. 3A shows a conventional cantilever of this type. A pyramidal probe 12 is formed on one surface of one end of the plate-like lever body 11. This cantilever is Si
It is composed of an insulator such as O 2 , Si 3 N 4 , and Si. For example, for a single crystal silicon, a mold of the probe 12 is formed by using the anisotropic etching, and
The probe 12 with high dimensional accuracy has been made by filling with iO 2 or Si 3 N 4 . The cantilever is often made of Si 3 N 4 because it has a small spring constant enough to make it easy to detect the magnitude of the atomic force and raises the natural resonance frequency to enable high-speed scanning. .
【0004】[0004]
【考案が解決しようとする課題】従来のカンチレバーに
おいてはプローブ12の頂角θ(図3B)が狭くても2
5°程度あり、IC素子のチップのパターンなど微細な
パターンを正確に測定することができず、特に図3Bに
示すように試料のパターンに微細で深い溝13がある場
合に、その溝底面にプローブ12が届かず、溝13の内
面形状にプローブを沿わして移動させることができず、
その形状を測定することができない。In the conventional cantilever, even if the apex angle θ of the probe 12 (FIG.
It is about 5 °, and it is not possible to accurately measure a fine pattern such as a chip pattern of an IC element. In particular, as shown in FIG. The probe 12 does not reach, and the probe cannot be moved along the inner surface shape of the groove 13,
Its shape cannot be measured.
【0005】[0005]
【課題を解決するための手段】この考案による原子間力
顕微鏡用カンチレバーは、レバー本体の端部に、カーボ
ンの堆積導電物よりなる線状のプローブが取付けられ、
プローブは線径が300Å以下、長さが300Å以上、
曲率半径が300Å以下とされる。 According to the present invention, a cantilever for an atomic force microscope is provided with a carburetor at an end of a lever body.
A linear probe made of deposited conductive material is attached,
The probe has a wire diameter of 300 mm or less, a length of 300 mm or more,
The radius of curvature is 300 ° or less.
【0006】[0006]
【実施例】図1Aにこの考案の実施例を示す。例えば板
状レバー本体21の一端部にレバー本体21の板面とほ
ぼ直角に堆積導電物からなるプローブ22が取付けられ
る。この例はレバー本体21として、従来のカンチレバ
ーを用いた場合で、その遊端に形成された角錐状部23
(従来のプローブ)の先端にこの軸心を延長するように
プローブ22が取付けられる。プローブ22は例えば線
径が300Å以下で長さが300Å以上、好ましくは1
μ程度とされ、かつ先端の曲率半径が300Å以下とさ
れる。FIG. 1A shows an embodiment of the present invention. For example, a probe 22 made of a deposited conductive material is attached to one end of the plate-shaped lever main body 21 at a substantially right angle to the plate surface of the lever main body 21. In this example, a conventional cantilever is used as the lever body 21, and a pyramid-shaped portion 23 formed at its free end is used.
A probe 22 is attached to the tip of a (conventional probe) so as to extend this axis. The probe 22 has, for example, a wire diameter of 300 mm or less and a length of 300 mm or more, preferably 1 mm or more.
μ, and the radius of curvature of the tip is 300 ° or less.
【0007】レバー本体21は原子間力(10 -12 〜1
0 -7 ニュートン程度)に応答する必要からばね定数が
0.5ニュートン/m程度とされ、絶縁材でも金属材で
もよい。レバー本体21の長さは例えば数1000Å〜
200μm程度、幅は200Å〜20μm程度、厚さは
1μm程度である。図1Aの例では従来のカンチレバー
にプローブ22が形成された場合であり、従ってレバー
本体21及び角錐状部23はSi3 N4 のような絶縁材
で構成されている。このように絶縁材のレバー本体21
に堆積導電物のプローブ22を堆積形成するため、少く
とも角錐状部23の外周面及びレバー本体21の角錐状
部23側の面に導電層24が形成されている。導電層2
4としては例えばAuのスパッタリングやコーティング
などで50〜1000Åの程度の厚さに形成し、あるい
はレバー本体21がSiの場合は不純物のイオン打込み
や拡散により導電層24を形成してもよい。The lever body 21 has an atomic force ( 10 -12 to 1).
( Approximately 0-7 Newtons), the spring constant is set to approximately 0.5 Newtons / m, and either an insulating material or a metal material may be used. The length of the lever body 21 is, for example, several thousand Å .
About 200μm , width about 200mm ~ 20μm , thickness about
It is about 1 μm . In the example of FIG. 1A, the probe 22 is formed on a conventional cantilever. Therefore, the lever main body 21 and the pyramid-shaped portion 23 are made of an insulating material such as Si 3 N 4 . Thus, the insulating lever body 21
A conductive layer 24 is formed on at least the outer peripheral surface of the pyramid-shaped portion 23 and the surface of the lever body 21 on the side of the pyramid-shaped portion 23 in order to deposit and form the deposited conductive probe 22. Conductive layer 2
For example, the conductive layer 24 may be formed by sputtering or coating Au to a thickness of about 50 to 1000 °, or when the lever body 21 is Si, by ion implantation or diffusion of impurities.
【0008】 プローブ22は例えばカーボンを角錐状
部23の先端に堆積して形成する。すなわちレバー本体
21を真空容器(例えば真空度10-7torr程度)内
に配し、直径が10〜30Å程度の電子ビームを、加速
電圧10〜30kV、10 -9 〜10 -10 Aオーダー程度
の照射電流で角錐状部23の先端に横又は正面から照射
する。これにより真空容器中に残存する炭化水素などの
ガスやロータリポンプのオイルが電子ビームにより分解
し、カーボンになって角錐状部23に堆積し、電子ビー
ムの照射位置を徐々に作りたいプローブ22の形状を画
くように移動させるとその描画した形状にカーボンの堆
積が成長してプローブ22が得られる。同一位置での照
射時間を長くすると、カーボンの堆積が太く成長する。
加速電圧やエミッション電流を変化させてもプローブ2
2の太さを制御できる。例えば1秒で長さが500Å程
度、太さが200Å程度の堆積を行うことができる。The probe 22 is formed by depositing, for example, carbon on the tip of the pyramidal portion 23. That is, the lever body 21 is disposed in a vacuum container (for example, a degree of vacuum of about 10 −7 torr), and an electron beam having a diameter of about 10 to 30 ° is accelerated at an acceleration voltage of 10 to 30 kV and about 10 −9 to 10 −10 A.
The tip of the pyramidal portion 23 is irradiated from the side or front with the irradiation current of. As a result, the gas such as hydrocarbons remaining in the vacuum vessel and the oil of the rotary pump are decomposed by the electron beam, become carbon, and are deposited on the pyramid-shaped portion 23. When the probe is moved so as to draw a shape, carbon deposition grows on the drawn shape, and the probe 22 is obtained. If the irradiation time at the same position is increased, the carbon deposition grows thicker.
Probe 2 even when accelerating voltage and emission current are changed
2 thickness can be controlled. For example, deposition with a length of about 500 ° and a thickness of about 200 ° can be performed in one second.
【0009】ここで導電層24がないと、電子ビームの
照射によりその照射点付近に負電荷が蓄積して、電子ビ
ームの照射が効率的に行われないばかりか、電子ビーム
に曲がりが生じたりして目的とする形状のプローブ22
を作ることが困難となる。よって導電層24を形成し、
その導電層24を例えば接地して負電荷の蓄積が生じな
いようにされる。このようにプローブ22を堆積形成す
る際にレバー本体21が導電性である必要があるが、プ
ローブ22の堆積後はレバー本体21は導電性がなくて
もよく、従って必要に応じて導電層24を除去してもよ
い。If the conductive layer 24 is not provided, the electron beam irradiation causes negative charges to accumulate in the vicinity of the irradiation point, so that the electron beam irradiation is not efficiently performed and the electron beam is bent. Probe 22 of desired shape
Is difficult to make. Therefore, the conductive layer 24 is formed,
The conductive layer 24 is grounded, for example, to prevent accumulation of negative charges. When the probe 22 is deposited and formed as described above, the lever main body 21 needs to be conductive. However, after the probe 22 is deposited, the lever main body 21 may not be conductive. May be removed.
【0010】以上のように堆積カーボンのプローブ22
はその細径を著しく細くすることができるから、例えば
図1Bに示すように試料面に微細な溝13が存在しても
その溝13の底面にプローブ22の先端を接近乃至接地
させることができ、溝13の内面に沿わせてプローブ2
2を移動させることができ、その形状を正しく測定する
ことができる。また図1Cに示すように導電層24を通
じて電源25からプローブ22に電位を与え、試料26
の表面の電位との反発力又は吸引力を測定することによ
り、試料26の表面電位を測定することもできる。この
場合はレバー本体21を金属製にするか、絶縁材上に導
電層24を形成したものとするかにより導電性のものと
する。As described above, the deposited carbon probe 22
Since the diameter of the probe 22 can be significantly reduced, the tip of the probe 22 can approach or touch the bottom surface of the groove 13 even if there is a fine groove 13 on the sample surface as shown in FIG. 1B, for example. Probe 2 along the inner surface of groove 13
2 can be moved, and its shape can be measured correctly. Further, as shown in FIG. 1C, a potential is applied from a power supply 25 to the probe 22 through the conductive layer 24, and the sample
The surface potential of the sample 26 can be measured by measuring a repulsive force or a suction force with respect to the surface potential of the sample 26. In this case, the lever main body 21 is made of a metal or a conductive layer 24 formed on an insulating material to be conductive.
【0011】図2Aに示すように板状レバー本体21の
一端部の板面にほぼ直角にプローブ22を形成してもよ
い。また図2Bに示すようにプローブ22の端部を逆く
字状に折曲げ溝13の内壁面の形状を測定することもで
きる。このような探針によれば、図2Cに示すように例
えば絶縁材の試料26内に埋め込まれ、溝13の壁面に
露出している導電層27の電位を測定する場合に便利で
ある。プローブ22を構成する堆積導電物としては、W
(CO)6 の雰囲気で電子ビーム照射してWを堆積し、
あるいは有機金属、例えばAl(CH)3 の雰囲気で電
子ビーム照射してAlを堆積するなど他の導電物でもよ
い。また狭義の電子間力顕微鏡のカンチレバーとしての
みならず、電子間力顕微鏡の原理を用いて、例えばIC
チップを試験する装置のカンチレバーにもこの考案を適
用することができる。As shown in FIG. 2A, the probe 22 may be formed substantially at right angles to the plate surface at one end of the plate-like lever main body 21. It is also possible to measure the shape of the inner wall surface of the bent grooves 13 end of the probe 22 to Gyakuku <br/> shape as shown in FIG. 2 B. According to such a probe, as shown in FIG. 2C , it is convenient to measure the potential of the conductive layer 27 which is embedded in, for example, an insulating sample 26 and is exposed on the wall surface of the groove 13. As the deposited conductor constituting the probe 22, W
W is deposited by irradiating an electron beam in an atmosphere of (CO) 6 ,
Alternatively, another conductive material may be used, such as depositing Al by irradiating an electron beam in an atmosphere of an organic metal, for example, Al (CH) 3 . In addition, not only cantilever of electron force microscope in a narrow sense, but also IC
The present invention can be applied to a cantilever of a device for testing a chip.
【0012】[0012]
【考案の効果】以上述べたようにこの考案によれば堆積
導電物のプローブを用いるため、線径を300Å以下の
ものとすることも容易であり、従って高分解能のものと
することができ、試料の微細な溝の形状や、微細パター
ンの電位の測定を正しく行うことができる。As described above, according to the present invention, since the probe of the deposited conductor is used, it is easy to reduce the wire diameter to 300 mm or less, and therefore, it is possible to achieve a high resolution. It is possible to correctly measure the shape of the fine groove of the sample and the potential of the fine pattern.
【図1】Aはこの考案の実施例を示す断面図、Bはその
カンチレバーを用いて試料の溝を走査する状態を示す断
面図、Cはそのカンチレバーを用いて試料の表面電位を
測定する状態を示す断面図である。1A is a cross-sectional view showing an embodiment of the present invention, B is a cross-sectional view showing a state in which a groove of a sample is scanned using the cantilever, and C is a state in which the surface potential of the sample is measured using the cantilever. FIG.
【図2】Aはこの考案の他の実施例を示す断面図、B及
びCはそれぞれ更に他の実施例の要部を示す断面図であ
る。FIG. 2A is a cross-sectional view showing another embodiment of the present invention, and FIGS. 2B and 2C are cross-sectional views showing main parts of still another embodiment.
【図3】Aは従来のカンチレバーを示す斜視図、Bはそ
の問題点を説明するための図である。FIG. 3A is a perspective view showing a conventional cantilever, and FIG. 3B is a view for explaining the problem.
Claims (1)
電物よりなる線状のプローブが取付けられ、上記プロー
ブは線径が300Å以下、長さが300Å以上、曲率半
径が300Å以下とされたものであることを特徴とする
原子間力顕微鏡用カンチレバー。The end portion of claim 1. A lever body, linear probe consisting of carbon deposits conductive material is attached, the probe
The wire has a wire diameter of 300 mm or less, a length of 300 mm or more, and a half curvature.
A cantilever for an atomic force microscope having a diameter of 300 ° or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991104954U JP2593887Y2 (en) | 1991-12-19 | 1991-12-19 | Cantilever for atomic force microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991104954U JP2593887Y2 (en) | 1991-12-19 | 1991-12-19 | Cantilever for atomic force microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0552711U JPH0552711U (en) | 1993-07-13 |
JP2593887Y2 true JP2593887Y2 (en) | 1999-04-19 |
Family
ID=14394491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1991104954U Expired - Fee Related JP2593887Y2 (en) | 1991-12-19 | 1991-12-19 | Cantilever for atomic force microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2593887Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024706A (en) * | 2005-07-19 | 2007-02-01 | Daiken Kagaku Kogyo Kk | Nanotube probe |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3030574B2 (en) * | 1990-08-16 | 2000-04-10 | キヤノン株式会社 | Micro-displacement information detecting probe element, scanning tunnel microscope, atomic force microscope, and information processing apparatus using the same |
-
1991
- 1991-12-19 JP JP1991104954U patent/JP2593887Y2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0552711U (en) | 1993-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4943719A (en) | Microminiature cantilever stylus | |
US5540958A (en) | Method of making microscope probe tips | |
US7100430B2 (en) | Dual stage instrument for scanning a specimen | |
US4916002A (en) | Microcasting of microminiature tips | |
US7507958B2 (en) | Conductive carbon nanotube tip, probe having the conductive carbon nanotube tip, and method of manufacturing the conductive carbon nanotube tip | |
US6788086B2 (en) | Scanning probe system with spring probe | |
US5021364A (en) | Microcantilever with integral self-aligned sharp tetrahedral tip | |
JP3272935B2 (en) | Manufacturing method of chip for nuclear microscope | |
US5581083A (en) | Method for fabricating a sensor on a probe tip used for atomic force microscopy and the like | |
US7258901B1 (en) | Directed growth of nanotubes on a catalyst | |
US8397555B1 (en) | Scanning probe devices | |
JPH01262403A (en) | Probe and its manufacturing method | |
JP2002357529A (en) | Spm cantilever | |
US8484761B2 (en) | Method for cost-efficient manufacturing diamond tips for ultra-high resolution electrical measurements and devices obtained thereof | |
US6121771A (en) | Magnetic force microscopy probe with bar magnet tip | |
US5965218A (en) | Process for manufacturing ultra-sharp atomic force microscope (AFM) and scanning tunneling microscope (STM) tips | |
Jarvis et al. | A new force controlled atomic force microscope for use in ultrahigh vacuum | |
US6156216A (en) | Method for making nitride cantilevers devices | |
JP2593887Y2 (en) | Cantilever for atomic force microscope | |
JPH1090287A (en) | Probe for interatomic force microscope and its manufacture | |
Jensen | Z calibration of the atomic force microscope by means of a pyramidal tip | |
JPH05164514A (en) | Probe used for both of tunnel microscope and interatomic force microscope | |
JPH10170530A (en) | Afm cantilever and its manufacture | |
TWI287803B (en) | SPM sensor | |
JPH04162339A (en) | Manufacture of probe for surface observation device and surface observation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981117 |
|
LAPS | Cancellation because of no payment of annual fees |