JP2591770Y2 - Dissolved ozone concentration measurement device - Google Patents
Dissolved ozone concentration measurement deviceInfo
- Publication number
- JP2591770Y2 JP2591770Y2 JP1993066688U JP6668893U JP2591770Y2 JP 2591770 Y2 JP2591770 Y2 JP 2591770Y2 JP 1993066688 U JP1993066688 U JP 1993066688U JP 6668893 U JP6668893 U JP 6668893U JP 2591770 Y2 JP2591770 Y2 JP 2591770Y2
- Authority
- JP
- Japan
- Prior art keywords
- sample water
- dissolved ozone
- ozone concentration
- polymer film
- concentration measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims description 63
- 238000005259 measurement Methods 0.000 title claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 55
- 229920006254 polymer film Polymers 0.000 claims description 25
- 229920005597 polymer membrane Polymers 0.000 claims description 14
- 238000007599 discharging Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 32
- 239000012071 phase Substances 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000008235 industrial water Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- -1 amine chloride Chemical class 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
【考案の詳細な説明】[Detailed description of the invention]
【0001】[0001]
【産業上の利用分野】本考案は、上水、工業用水等から
採取させた試料水中の溶存オゾンを微孔性の高分子膜を
介して気相中に移動させて半導体素子構造等のガスセン
サにより測定し、その測定値に基づいて試料水中の溶存
オゾン濃度を測定する溶存オゾン濃度測定装置に関する
ものである。BACKGROUND OF THE INVENTION The present invention relates to a gas sensor for a semiconductor element structure or the like by dissolving dissolved ozone in a sample water sampled from tap water or industrial water into a gas phase through a microporous polymer membrane. The present invention relates to a dissolved ozone concentration measuring device for measuring the dissolved ozone concentration in sample water based on the measured value.
【0002】[0002]
【従来技術とその問題点】一般に、上水、工業用水等の
オゾンの利用分野においては、オゾンの水中への溶解度
が、水温や気相中のオゾン濃度により大きく変化し、ま
た、オゾンそのものが生成と同時に分解する等の不安定
な性質を有しているために、オゾン濃度の連続的な測定
を必要としている。2. Description of the Related Art In general, in the field of use of ozone such as clean water and industrial water, the solubility of ozone in water greatly changes depending on the water temperature and the ozone concentration in the gas phase. Due to its unstable properties such as decomposition at the time of generation, continuous measurement of ozone concentration is required.
【0003】従来より主に使用されている溶存オゾンの
濃度測定装置には、例えば、試薬を使用した濃度測定と
比較して極めて精度が高く、また、自動化等にも優れた
吸光光度法の紫外線吸収方式による濃度測定装置が知ら
れている。この紫外線吸収方式は、オゾンが紫外線領域
に254nm付近をピークとする吸収スペクトル(ハー
トレー帯)を有していることを利用して、紫外線透過性
のフローセル内の試料水へ253.7nmに強い輝線ス
ペクトルを有する低圧水銀ランプ等で紫外線を直接照射
し、その透過量を測定することにより、ランバート.ベ
ールの法則に基づいて濃度測定するものである。[0003] Conventionally, the concentration measuring apparatus of dissolved ozone is extremely high in accuracy compared with, for example, concentration measurement using a reagent, and is also excellent in automation and the like. 2. Description of the Related Art A concentration measuring device using an absorption method is known. This ultraviolet absorption method utilizes the fact that ozone has an absorption spectrum (Hartley band) having a peak around 254 nm in the ultraviolet region, and a strong emission line at 253.7 nm is applied to the sample water in the ultraviolet-permeable flow cell. UV light is directly radiated from a low-pressure mercury lamp having a spectrum and the like, and the Lambert. The concentration is measured based on Beer's law.
【0004】[0004]
【考案が解決しようとする課題】ところが、従来型の一
般的な吸光光度法の濃度測定装置は、試料水中の含有成
分を波長の違いにより選択的に測定できる等の多くの利
点が存在するものの、オゾン以外の共存物質である無機
物イオンやアミノ酸、蛋白質、アンモニア、塩化アミ
ン、ミクロルアシアン等が測定値に悪影響を与えるた
め、これ等のオゾン以外の共存物質を除去する特別な装
置を設けなければならない。However, the conventional general concentration measuring apparatus of the absorption spectrophotometric method has many advantages such as that the components contained in the sample water can be selectively measured by the difference in wavelength. Since inorganic ions, amino acids, proteins, ammonia, amine chloride, microluocyan, etc., which are coexisting substances other than ozone, adversely affect the measured values, special equipment must be provided to remove these coexisting substances other than ozone. Must.
【0005】これに対して、紫外線吸収方式による濃度
測定装置と同様に、試薬を用いない方式として、膜分離
法を用いて液相オゾンを測定する測定装置が提案されて
いる。この種の膜分離法を採用した装置は、例えば、微
孔性の高分子膜であるPTFE等から成る小径の内管の
外周へ硝子等の外管を配置した二重管を気相への溶存オ
ゾンを移すための分離器及びフローセルとして用いたも
のである。On the other hand, similarly to the concentration measuring apparatus using the ultraviolet absorption method, there has been proposed a measuring apparatus which measures liquid phase ozone using a membrane separation method as a method without using a reagent. An apparatus employing this kind of membrane separation method is, for example, a double tube in which an outer tube such as glass is disposed around the outer periphery of a small-diameter inner tube made of PTFE or the like, which is a microporous polymer membrane, into a gas phase. It was used as a separator and a flow cell for transferring dissolved ozone.
【0006】上記の構成の装置において、内管に流入さ
せた試料水中のオゾンは、微孔性の高分子膜の内管を通
過して、内管と外管の間に設けた空間部に移動するの
で、空間部内へ清浄空気を流入させることによりオゾン
を含有したガスを化学発光式等の適宜な測定手段に導く
ことができ、この方法によれば試料水中の共存物質の測
定値への影響を回避できる。In the apparatus having the above structure, the ozone in the sample water flowing into the inner tube passes through the inner tube of the microporous polymer film, and enters the space provided between the inner tube and the outer tube. Since it moves, the ozone-containing gas can be guided to appropriate measurement means such as a chemiluminescence method by flowing clean air into the space, and according to this method, the measured value of the coexisting substance in the sample water can be measured. The effect can be avoided.
【0007】然し乍ら、これ等の濃度測定装置は、何れ
も低濃度のオゾンの濃度測定には適しておらず、メンテ
ナンスに手間がかかり、又、装置構成が複雑で大型化や
コスト高を免れない等の問題があった。However, none of these concentration measuring devices are suitable for measuring the concentration of low-concentration ozone, which requires time and effort for maintenance, and the structure of the device is complicated, so that the size and cost are inevitable. And so on.
【0008】[0008]
【課題を解決する手段】本考案は、上記の事由に鑑み
て、微孔性の高分子膜による薄膜分離法を採用し、更に
装置構成を工夫して簡易構造の濃度測定装置の提供を試
みたものである。即ち、試料水中の溶存オゾンを密閉容
体に設けた微孔性の高分子膜を介して気相中に移動し、
そのオゾンを半導体素子構造等のガスセンサで測定させ
ることにより、装置構成の簡略化とコストの低減を図る
と共に、請求項1で開示した溶存オゾン濃度測定装置で
は、試料水の導入口へ接触管を設けることにより、気相
へのオゾンの移動を円滑に行わせて、より機能性、信頼
性を向上させ、請求項2で開示した溶存オゾン濃度測定
装置では、具体的な構造として、ガスセンサを配設する
測定室を筒状継手で形成する一方、先端面に微孔性の高
分子膜の壁面を設けたキャップ体を形成して、これを筒
状継手へ着脱自在に取付ける構造とさせてメンテナンス
性を向上させたものである。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention employs a thin film separation method using a microporous polymer membrane, and further attempts to provide a concentration measuring device having a simple structure by devising the device configuration. It is a thing. That is, the dissolved ozone in the sample water moves into the gas phase through the microporous polymer membrane provided in the closed container,
By measuring the ozone with a gas sensor having a semiconductor element structure or the like, the device configuration can be simplified and the cost can be reduced. In the dissolved ozone concentration measuring device disclosed in claim 1, a contact pipe is connected to the sample water inlet. With this arrangement, it is possible to smoothly transfer ozone to the gas phase, thereby further improving the functionality and reliability. In the dissolved ozone concentration measuring device disclosed in claim 2, a gas sensor is provided as a specific structure. While the measurement chamber to be installed is formed by a cylindrical joint, a cap body with a microporous polymer membrane wall formed at the tip surface is formed, and this is configured to be detachably attached to the cylindrical joint for maintenance. It is the one with improved performance.
【0009】[0009]
【考案の目的】本考案の主たる目的は、前述の如く、こ
の種の濃度測定装置として、微孔性の高分子膜による薄
膜分離法を採用し、更に、気相に移動させたオゾンを半
導体素子構造等のガスセンサにより測定することで、簡
易構造の溶存オゾン濃度を提供する目的である。The main object of the present invention is, as described above, a thin film separation method using a microporous polymer membrane as this type of concentration measuring apparatus, and furthermore, ozone transferred to the gas phase is used as a semiconductor. An object of the present invention is to provide a dissolved ozone concentration having a simple structure by measuring with a gas sensor having an element structure or the like.
【0010】[0010]
【考案の構成】本考案の実用新案登録請求の範囲の請求
項1の構成は、試料水導入口と試料水排出口とを設けた
密閉容体を形成し、密閉容体へは微孔性の高分子膜の壁
面を形成すると共に該高分子膜の外側に測定室を形成さ
せ、測定室へガスセンサを配設させ、試料水導入口へは
高分子膜の壁面に向けて試料水を吐出させる接触管を設
けた構成であり、実用新案登録請求の範囲の請求項2の
構成は、実用新案登録請求の範囲の請求項1に記載の溶
存オゾン濃度測定装置において、測定室を密閉容体の外
側から中側へ貫通状態で配設させた筒状継手と、筒状継
手の密閉容体の中側と成る先端部へ着脱自在に固定させ
ると共に先端面に微孔性の高分子膜の壁面を設けたキャ
ップ体とで形成させた構成である。According to a first aspect of the present invention, a sealed container having a sample water inlet and a sample water outlet is formed, and the sealed container is provided with a highly porous material. Forming the wall surface of the molecular film and forming a measurement chamber outside the polymer film, disposing a gas sensor in the measurement room, and discharging the sample water toward the wall surface of the polymer film to the sample water inlet. The configuration according to claim 2 of the utility model registration claim is a configuration in which a pipe is provided, and in the dissolved ozone concentration measurement device according to the claim 1 of the utility model registration claim, the measurement chamber is disposed outside the closed container. A cylindrical joint disposed in a penetrating state to the middle side, and detachably fixed to a distal end portion on the inner side of the sealed container of the cylindrical joint, and a wall surface of a microporous polymer film is provided on the distal end surface. This is a configuration formed with a cap body.
【0011】[0011]
【考案の実施例〕 斯る目的を達成した本考案を以下実
施例の図面によって説明する。 【0012】図1は本考案の実用新案登録請求の範囲の
請求項1の溶存オゾン濃度測定装置の概要図であり、図
2は本考案の実用新案登録請求の範囲の請求項2の第1
実施例の溶存オゾン濃度測定装置を示す概要断面図であ
り、図3は本考案の実用新案登録請求の範囲の請求項2
の第2実施例の溶存オゾン濃度測定装置を示す概要断面
図である。[Embodiment of the Invention] The present invention that has achieved the object will be described below with reference to the drawings of the embodiments. FIG. 1 is a schematic diagram of a dissolved ozone concentration measuring device according to claim 1 of the present invention, and FIG. 2 is a first diagram of claim 2 of the present invention.
FIG. 3 is a schematic sectional view showing a dissolved ozone concentration measuring device according to an embodiment, and FIG.
It is a schematic sectional drawing which shows the dissolved ozone concentration measuring apparatus of the 2nd Example.
【0013】本考案の溶存オゾン濃度測定装置は、図1
及び図2に図示の如く、上水、工業用水等から採取させ
た試料水A中の溶存オゾンを密閉容体1に設けた微孔性
の高分子膜2を介して測定室3の気相中に移動させ、気
相中のオゾンを測定室3に配置した半導体素子構造等の
ガスセンサ4により測定させて、その測定値に基づいて
試料水A中の溶存オゾンの濃度測定を行う簡易構造の溶
存オゾン濃度測定装置である。The dissolved ozone concentration measuring device of the present invention is shown in FIG.
As shown in FIG. 2, dissolved ozone in sample water A collected from tap water, industrial water, or the like is injected into the gas phase of the measurement chamber 3 through the microporous polymer membrane 2 provided in the closed container 1. And the ozone in the gaseous phase is measured by a gas sensor 4 such as a semiconductor device structure disposed in the measurement chamber 3, and the concentration of dissolved ozone in the sample water A is measured based on the measured value. It is an ozone concentration measuring device.
【0014】実用新案登録請求の範囲の請求項1に記載
の溶存オゾン濃度測定装置は、図1の概要図に図示の如
く、試料水導入口1aと試料水排出口1bとを設けた密
閉容体1を形成し、該密閉容体1へは微孔性の高分子膜
2の壁面を形成すると共に該高分子膜2の外側に測定室
3を形成させ、該測定室3へガスセンサ4を配設させ、
前記試料水導入口1aへは高分子膜2の壁面に向けて試
料水Aを吐出させる接触管5を設けたことを要旨とす
る。A dissolved ozone concentration measuring device according to claim 1 of the present invention is a sealed container provided with a sample water inlet 1a and a sample water outlet 1b as shown in the schematic diagram of FIG. 1, a wall of a microporous polymer film 2 is formed on the closed container 1 and a measurement chamber 3 is formed outside the polymer membrane 2, and a gas sensor 4 is provided in the measurement chamber 3. Let
The gist is that a contact tube 5 for discharging the sample water A toward the wall surface of the polymer film 2 is provided at the sample water inlet 1a.
【0015】即ち、請求項1に記載の溶存オゾン濃度測
定装置1は、測定用のフローセルの役割を果たすものと
して、底面等の下方辺に試料水導入口1aを設けると共
に側面等の上方辺に試料水排出口1bを設けた適宜形状
の密閉容体1を形成させたものである。That is, in the dissolved ozone concentration measuring apparatus 1 according to the present invention, a sample water inlet 1a is provided on a lower side such as a bottom surface and a upper side such as a side surface is provided on a lower side such as a bottom surface, as a function of a flow cell for measurement. An appropriately shaped hermetically sealed container 1 provided with a sample water outlet 1b is formed.
【0016】前記密閉容体1の試料水導入口1aはポン
プ装置等を配設させた試料水Aの導入側配管路(図示せ
ず)に接続されると共に試料水排出口1bは試料水Aの
排出側配管路(図示せず)に接続されており、試料水A
中の溶存オゾン濃度の測定は、前記試料水導入口1aか
ら試料水排出口1bに向けて試料水Aを連続的に流入さ
せ乍ら、後述する測定室3内に配設させたガスセンサ4
により行われる。The sample water inlet 1a of the sealed container 1 is connected to a sample water A inlet piping (not shown) provided with a pump device and the like, and the sample water outlet 1b is connected to the sample water A. The sample water A is connected to a discharge-side pipe line (not shown).
The concentration of dissolved ozone in the sample is measured by a gas sensor 4 disposed in a measurement chamber 3 described later while continuously flowing sample water A from the sample water inlet 1a toward the sample water outlet 1b.
It is performed by
【0017】前記測定室3は、例えば、密閉容体1の上
面を内部側に膨出させた気密空間として形成させるもの
で、該測定室3の底面へは水等の液体は通過させさない
がオゾン等の気体を透過させるPTFE等の微孔性の薄
膜から成る高分子膜2の壁面を形成させると共に、測定
室3の空間部へは表示装置6等と接続させた半導体素子
構造等のガスセンサ4を配設させたものである。The measuring chamber 3 is formed, for example, as an airtight space in which the upper surface of the sealed container 1 is bulged inward, and a liquid such as water does not pass through the bottom of the measuring chamber 3. A gas sensor, such as a semiconductor element structure, having a wall surface of a polymer film 2 made of a microporous thin film made of PTFE or the like that allows gas such as ozone to pass therethrough, and having a space in the measurement chamber 3 connected to a display device 6 or the like. 4 is provided.
【0018】前記ガスセンサ4は、抵抗器等を用いた解
析回路、制御回路等へ電気的に接続させた、例えば、S
nO2、ZnO、Fe2O2等の金属酸化物半導体から成
り、該ガスセンサ4の表面へオゾンが接触すると電気抵
抗値(電気伝導率)が変化するものである。The gas sensor 4 is electrically connected to an analysis circuit using a resistor or the like, a control circuit, or the like.
The gas sensor 4 is made of a metal oxide semiconductor such as nO 2 , ZnO, and Fe 2 O 2, and its electric resistance (electric conductivity) changes when ozone comes into contact with the surface of the gas sensor 4.
【0019】本考案の溶存オゾン濃度測定装置は、前記
密閉容体1の内部の試料水A中に溶存するオゾンを微孔
性の高分子膜2を介して測定室3内の気相中にオゾンガ
スとして移動させると共にオゾンガスの接触により変化
したガスセンサ4の電気抵抗値に基づいて溶存オゾン濃
度を測定させるものであるが、この高分子膜2の表面に
気泡が蓄積すると、試料水A中の溶存オゾンが測定室3
内の気相中へ円滑に移動せず、その結果、測定値にバラ
ツキが生じる等の精度の低下を招く。The dissolved ozone concentration measuring apparatus of the present invention converts ozone dissolved in the sample water A inside the closed container 1 into a gas phase in the measuring chamber 3 through the microporous polymer film 2. The dissolved ozone concentration is measured based on the electric resistance value of the gas sensor 4 changed by the contact of the ozone gas. When the bubbles accumulate on the surface of the polymer film 2, the dissolved ozone in the sample water A is dissolved. Is measuring room 3
It does not move smoothly into the gas phase inside, resulting in a decrease in accuracy such as a variation in measured values.
【0020】この為、本考案の溶存オゾン濃度測定装置
においては、前記試料水導入口1aへ前記高分子膜2の
近傍に排出口を配置した接触管5を設け、試料水Aの密
閉容体1内への導入時には高分子膜2の壁面に向けて試
料水Aを吐出させて高分子膜2上の気泡発生を防止させ
たものである。For this reason, in the dissolved ozone concentration measuring apparatus of the present invention, a contact tube 5 having a discharge port disposed in the vicinity of the polymer membrane 2 is provided at the sample water inlet 1a, and the closed container 1 for the sample water A is provided. At the time of introduction into the inside, the sample water A is discharged toward the wall surface of the polymer film 2 to prevent generation of bubbles on the polymer film 2.
【0021】次に、実用新案登録請求の範囲の請求項2
に記載の溶存オゾン濃度測定装置は、図2及び図3の概
要断面図に図示の如く、試料水導入口1aと試料水排出
口1bとを設けた密閉容体1を形成し、該密閉容体1へ
は微孔性の高分子膜2の壁面を形成すると共に該高分子
膜2の外側に測定室3を形成させ、該測定室3へガスセ
ンサ4を配設させ、前記試料水導入口1aへは前記高分
子膜2の壁面に向けて試料水Aを吐出させる接触管5を
設けた請求項1に記載の溶存オゾン濃度測定装置におい
て、前記測定室3を密閉容体1の外側から内側へ貫通状
態で配設させた筒状継手3aと、該筒状継手3aの密閉
容体1の内側と成る管端部へ着脱自在に固定させると共
に先端面に微孔性の高分子膜2の壁面を設けたキャップ
体3bとで形成させたことを要旨とする。Next, claim 2 of the utility model registration claim
As shown in the schematic cross-sectional views of FIGS. 2 and 3, the dissolved ozone concentration measuring device forms a closed container 1 provided with a sample water inlet 1a and a sample water outlet 1b. In addition, a wall of the microporous polymer membrane 2 is formed and a measurement chamber 3 is formed outside the polymer membrane 2, a gas sensor 4 is disposed in the measurement chamber 3, and the sample water inlet 1a is 2. The dissolved ozone concentration measuring apparatus according to claim 1, further comprising a contact tube for discharging the sample water toward the wall surface of the polymer film. A tubular joint 3a disposed in this state, and a tubular joint 3a detachably fixed to a tube end inside the sealed container 1 and a wall surface of a microporous polymer film 2 provided at a distal end surface. The gist is that the cap body 3b is formed with the cap body 3b.
【0022】即ち、実用新案登録請求の範囲の請求項2
に記載の溶存オゾン濃度測定装置は、請求項1で開示し
た溶存オゾン濃度測定装置において、更に、具体的な装
置構造を開示させたものであり、主として、密閉容体1
と高分子膜2の壁面及び測定室3を形成するための汎用
の筒状継手3a及びキャップ体3bとで構成されたもの
である。That is, Claim 2 of the utility model registration claim.
The dissolved ozone concentration measuring device described in (1) further discloses a specific device structure in the dissolved ozone concentration measuring device disclosed in claim 1, and mainly includes a closed container 1
And a general-purpose cylindrical joint 3 a and a cap body 3 b for forming the wall surface of the polymer film 2 and the measurement chamber 3.
【0023】前記密閉容体1は、例えば、円筒状の容器
本体と該容器本体の上面開口部及び底面開口部へ環状リ
ング等の適宜なシール手段を介して嵌合させた蓋体等か
ら成り、該上面の蓋体の一部へ略円形状の貫通孔を形成
し、該貫通孔へ適宜なシール手段を介して筒状継手3a
を挿入固定させたものであり、図2及び図3の実施例で
は、貫通孔へ螺子部を形成し、該螺子部へ筒状継手3a
の螺子部を螺入させて固定したものである。The hermetically sealed container 1 is composed of, for example, a cylindrical container main body and a lid or the like fitted to the upper opening and the lower opening of the container main body via appropriate sealing means such as an annular ring. A substantially circular through-hole is formed in a part of the lid on the upper surface, and the cylindrical joint 3a is inserted into the through-hole through a suitable sealing means.
2 and 3, a screw portion is formed in the through hole, and a cylindrical joint 3a is formed in the screw portion.
Are screwed and fixed.
【0024】前記筒状継手3aは、密閉容体1の内部側
と成る一方の管端部の外周面に螺子部を備えた汎用の合
成樹脂製の管継手等で形成されると共に、該筒状継手3
aの螺子部へ螺合可能なキャップ体3bを形成して、該
筒状継手3aとキャップ体3bとを着脱自在に固定させ
たものである。The cylindrical joint 3a is formed of a general-purpose synthetic resin pipe joint or the like having a threaded portion on the outer peripheral surface of one end of the tube which forms the inner side of the sealed container 1. Fitting 3
The cylindrical joint 3a and the cap body 3b are detachably fixed to each other by forming a cap body 3b that can be screwed to the threaded portion a.
【0025】前記密閉容体1の外部側と成る他方の管端
部から胴部内の空間部へは外部に配設された表示手段6
と接続させた半導体素子構造のガスセンサ4を配設させ
ると共に、該他方の管端部を適宜手段により密閉させ、
前記キャップ体3bと筒状継手3aの胴部で囲まれた空
間部を測定室3として用いたものである。A display means 6 provided outside is provided from the other end of the tube on the outside of the sealed container 1 to the space in the body.
And a gas sensor 4 having a semiconductor element structure connected thereto, and the other end of the tube is sealed by appropriate means,
A space surrounded by the body of the cap body 3b and the cylindrical joint 3a is used as the measurement chamber 3.
【0026】前記キャップ体3bの先端面には開口部が
形成されており、該キャップ体3bを前記筒状継手3a
へ螺合させる際に、シート状の微孔性の高分子膜2をキ
ャップ体3bと筒状継手3aの間に挾み込んで、キャッ
プ体3bの開口部を高分子膜2で閉塞させることによ
り、前記測定室3へ高分子膜2の壁面を形成させるもの
である。An opening is formed in the tip surface of the cap body 3b, and the cap body 3b is connected to the cylindrical joint 3a.
At the time of screwing, the sheet-like microporous polymer film 2 is sandwiched between the cap 3b and the cylindrical joint 3a, and the opening of the cap 3b is closed with the polymer film 2. Thereby, the wall surface of the polymer film 2 is formed in the measurement chamber 3.
【0027】本考案の請求項2の溶存オゾン濃度測定装
置は、高分子膜2を配設したキャップ体3bが筒状継手
3aに対して着脱可能であるため、経時の使用で高分子
膜2が劣化した際には、キャップ体3bを取り外して高
分子膜2を交換するだけで良く、メンテナンスが極めて
容易である。In the dissolved ozone concentration measuring apparatus according to the second aspect of the present invention, since the cap body 3b provided with the polymer film 2 is detachable from the cylindrical joint 3a, the polymer film 2 can be used with time. When is deteriorated, it is only necessary to remove the cap body 3b and replace the polymer film 2, and maintenance is extremely easy.
【0028】尚、図示の溶存オゾン濃度測定装置では、
試料水導入口1aは、有底円筒状の密閉容体1の底壁に
設けられると共に試料水排出口1bは密閉容体1の側壁
に形成されているが、試料水導入口1aを底面開口部に
嵌合させた蓋体に設けたり、また、試料水排出口1bを
上面開口部に嵌合させた蓋体に設ける等の種々の設計的
変更が可能である。In the illustrated dissolved ozone concentration measuring apparatus,
The sample water inlet 1a is provided on the bottom wall of the closed cylindrical container 1 having a bottom, and the sample water outlet 1b is formed on the side wall of the closed container 1. The sample water inlet 1a is provided at the bottom opening. Various design changes are possible, such as providing on the fitted lid or providing the sample water outlet 1b on the lid fitted on the upper surface opening.
【0029】[0029]
【考案の効果】本考案は、試料水中の溶存オゾンを密閉
容体に設けた微孔性の高分子膜を介して気相中に移動
し、そのオゾンを半導体素子構造等のガスセンサで測定
させたので、紫外線吸収方式の濃度測定装置の如く、試
料水中の共存物質による妨害がなく、装置構成を簡略化
させて低コストの装置を提供することができるだけでな
く、特に、半導体素子構造のガスセンサを使用すれば、
低濃度の溶存オゾンを高感度で測定することができると
共に残留オゾン濃度のリーク管理に適した測定装置を提
供できる。また、本考案の請求項1で開示した溶存オゾ
ン濃度測定装置では、試料水の導入口へ接触管を設けた
ので、高分子膜上へ気泡が蓄積することなく、気相への
オゾンの移動が円滑に行われるので、機能性、信頼性に
優れ、請求項2で開示した溶存オゾン濃度測定装置で
は、更に、ガスセンサを配設する測定室を筒状継手で形
成し、これに先端面に微孔性の高分子膜の壁面を設けた
キャップ体を着脱自在に取付ける構造とさせたので、前
述の効果に加えて、膜交換の簡易化等のメンテナンス性
にも優れた画期的で且つ極めて有意義な考案である。According to the present invention, the dissolved ozone in the sample water is moved into the gas phase through a microporous polymer film provided in a closed container, and the ozone is measured by a gas sensor such as a semiconductor element structure. Therefore, unlike the concentration measuring apparatus of the ultraviolet absorption method, there is no interference by coexisting substances in the sample water, and the apparatus configuration can be simplified to provide a low-cost apparatus. If you use
It is possible to provide a measuring device that can measure low-concentration dissolved ozone with high sensitivity and is suitable for leak management of residual ozone concentration. Further, in the dissolved ozone concentration measuring device disclosed in claim 1 of the present invention, since the contact tube is provided at the inlet of the sample water, the ozone moves into the gas phase without accumulating air bubbles on the polymer film. Is performed smoothly, so that the function and the reliability are excellent. In the dissolved ozone concentration measuring device disclosed in claim 2, a measuring chamber in which a gas sensor is disposed is further formed by a cylindrical joint, and the measuring chamber is formed on the distal end surface. Since the cap body with the microporous polymer membrane wall is detachably attached, it is an epoch-making and excellent maintenance in addition to the above-mentioned effects and simplification of membrane exchange. This is a very meaningful idea.
【0029】[0029]
【図1】本考案の実用新案登録請求の範囲の請求項1の
溶存オゾン濃度測定装置の概要図である。FIG. 1 is a schematic view of a dissolved ozone concentration measuring apparatus according to claim 1 of the present invention;
【図2】本考案の実用新案登録請求の範囲の請求項2の
第1実施例の溶存オゾン濃度測定装置を示す概要断面図
である。FIG. 2 is a schematic sectional view showing a dissolved ozone concentration measuring apparatus according to a first embodiment of claim 2 of the present invention;
【図3】本考案の実用新案登録請求の範囲の請求項2の
第2実施例の溶存オゾン濃度測定装置を示す概要断面図
である。FIG. 3 is a schematic sectional view showing a dissolved ozone concentration measuring apparatus according to a second embodiment of claim 2 of the present invention;
【0030】[0030]
A 試料水 1 密閉容体 1a 試料水導入口 1b 試料水排出口 2 高分子膜 3 測定室 3a 筒状継手 3b キャップ体 4 ガスセンサ 5 接触管 6 表示装置 A sample water 1 sealed container 1a sample water inlet 1b sample water outlet 2 polymer membrane 3 measurement chamber 3a cylindrical joint 3b cap body 4 gas sensor 5 contact tube 6 display device
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−204242(JP,A) 特開 平4−264229(JP,A) 特開 平4−131756(JP,A) 特開 平6−258269(JP,A) 特開 平2−240539(JP,A) 特開 平2−240538(JP,A) 実開 平3−85564(JP,U) 実開 昭59−109954(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01N 27/12 G01N 1/22 G01N 33/18 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-204242 (JP, A) JP-A-4-264229 (JP, A) JP-A-4-131756 (JP, A) JP-A-6-204 258269 (JP, A) JP-A-2-24039 (JP, A) JP-A-2-240538 (JP, A) JP-A-3-85564 (JP, U) JP-A-59-109954 (JP, U) (58) Fields surveyed (Int. Cl. 6 , DB name) G01N 27/12 G01N 1/22 G01N 33/18
Claims (2)
閉容体を形成し、該密閉容体へは微孔性の高分子膜の壁
面を形成すると共に該高分子膜の外側に測定室を形成さ
せ、該測定室へガスセンサを配設させ、前記試料水導入
口へは高分子膜の壁面に向けて試料水を吐出させる接触
管を設けたことを特徴とする溶存オゾン濃度測定装置。1. A closed container provided with a sample water inlet and a sample water outlet is formed, and a wall of a microporous polymer film is formed on the closed container and measurement is performed outside the polymer film. A gas sensor is disposed in the measurement chamber, and a contact pipe for discharging sample water toward the wall surface of the polymer film is provided in the sample water inlet, the dissolved ozone concentration measuring device being characterized in that: .
の溶存オゾン濃度測定装置において、前記測定室を密閉
容体の外側から内側へ貫通状態で配設させた筒状継手
と、該筒状継手の密閉容体の内側と成る管端部へ着脱自
在に固定させると共に先端面に微孔性の高分子膜の壁面
を設けたキャップ体とで形成させたことを特徴とする溶
存オゾン濃度測定装置。2. The dissolved ozone concentration measuring device according to claim 1, wherein the measuring chamber is disposed so as to penetrate from the outside to the inside of the sealed container. Dissolved ozone concentration measurement characterized in that it is detachably fixed to the tube end inside the closed container of the tubular joint and is formed by a cap body provided with a microporous polymer membrane wall surface at the end surface apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1993066688U JP2591770Y2 (en) | 1993-11-22 | 1993-11-22 | Dissolved ozone concentration measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1993066688U JP2591770Y2 (en) | 1993-11-22 | 1993-11-22 | Dissolved ozone concentration measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0732560U JPH0732560U (en) | 1995-06-16 |
JP2591770Y2 true JP2591770Y2 (en) | 1999-03-10 |
Family
ID=13323129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1993066688U Expired - Lifetime JP2591770Y2 (en) | 1993-11-22 | 1993-11-22 | Dissolved ozone concentration measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2591770Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6611140B1 (en) * | 2018-07-12 | 2019-11-27 | 株式会社ピュアロンジャパン | Dissolved gas measuring device |
KR200490024Y1 (en) * | 2019-02-26 | 2019-09-10 | 김석규 | Cell measuring ozone gas |
-
1993
- 1993-11-22 JP JP1993066688U patent/JP2591770Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0732560U (en) | 1995-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009544020A (en) | Protective device for humidity sensor in erosive outside air | |
US4531398A (en) | Calibration system for gas analyzers | |
NZ227936A (en) | Method and apparatus for testing low pressure refrigerant for contamination | |
CA2164438A1 (en) | Gas detection, identification and elemental and quantitative analysis system | |
JP2591770Y2 (en) | Dissolved ozone concentration measurement device | |
CN106596880A (en) | Stepped dosing method and device for chemical oxygen demand detection | |
EP0990152A1 (en) | FLOW THROUGH FLUID pH AND CONDUCTIVITY SENSOR | |
US4651087A (en) | Apparatus for measuring impurities in ultrapure water | |
CN106018861A (en) | Elemental analyzer-stable isotope mass spectrometer combined device and gas isotope ratio detecting method thereof | |
US6322751B1 (en) | Optrode for the detection of volatile chemicals | |
JPH0532764Y2 (en) | ||
CN211825569U (en) | Light scattering particulate matter detector | |
CN210376250U (en) | Gas chromatograph with monitoring jam condition | |
KR0184899B1 (en) | Counterflow device to reduce the negative impact of contaminating materials used in moisture sensitive apparatus | |
CN208153842U (en) | valve body and valve | |
CN216622289U (en) | Waste liquid collecting bottle for analyzer | |
CN206756782U (en) | A kind of foul gas sensor collector-shoe gear | |
CN220425382U (en) | Sampling bottle for water quality detection | |
JP3622024B2 (en) | Gas detection method and gas detection device | |
CN215448939U (en) | Absorption pool for detecting high-concentration ozone | |
US20050042133A1 (en) | Chemical analyzer probe with chemical selective filter | |
JPH0514206Y2 (en) | ||
CN217431158U (en) | Air filter and PID detector comprising same | |
CN115389292B (en) | Quantitative small-volume sample pH value detection device for aerosol enrichment and design method thereof | |
CN221528061U (en) | Sampling device |