[go: up one dir, main page]

JP2588275B2 - Secondary excitation device for AC excitation synchronous machine - Google Patents

Secondary excitation device for AC excitation synchronous machine

Info

Publication number
JP2588275B2
JP2588275B2 JP1165075A JP16507589A JP2588275B2 JP 2588275 B2 JP2588275 B2 JP 2588275B2 JP 1165075 A JP1165075 A JP 1165075A JP 16507589 A JP16507589 A JP 16507589A JP 2588275 B2 JP2588275 B2 JP 2588275B2
Authority
JP
Japan
Prior art keywords
excitation
inverter
converter
synchronous machine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1165075A
Other languages
Japanese (ja)
Other versions
JPH0332399A (en
Inventor
浩 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1165075A priority Critical patent/JP2588275B2/en
Publication of JPH0332399A publication Critical patent/JPH0332399A/en
Application granted granted Critical
Publication of JP2588275B2 publication Critical patent/JP2588275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

この発明は揚水発電所の発電機運転時の系統周波数制
御(以下AFC)調整幅を増大させた交流励磁同期機の2
次励磁装置に関する。
The present invention relates to an AC-excited synchronous machine having an increased system frequency control (AFC) adjustment range during operation of a generator of a pumped storage power plant.
The present invention relates to a secondary excitation device.

【従来の技術】[Prior art]

最近の電力系統は原子力の比率の増大および火力のデ
ーリースタートストップ回数の増大に伴ない、深夜帯の
AFC調整容量が不足し、この対応として揚水発電所の入
力調整が必要となって来た。第5図は電学誌,107巻3
号,昭62,湊,実松『可変速水力発電システム』に示さ
れた従来の可変速発電システムの代表的な回路構成図で
あり、図において1は交流励磁同期機(以下、AESMと略
称)の固定子、2は同じく回転子(2次コイル)、3は
可逆式ポンプ水車、4はシャフト、5は励磁変換器用変
圧器、6は励磁用変換器(以下、EXと略称)、7は回転
位相検出器(レゾルバ)、8はEXの制御器、9は高調波
抑制用フィルタである。 次に動作について説明する。まず、交流励磁同期機
(AESM)は回転子2上に電気的に回転移動する磁界を作
る必要があるため三相巻線を平衡に分布して収めた構造
とする。 そして、AESMを可変速で運転するには、AESMをEX6に
よって2次励磁する励磁側(回転子側)制御方式が通常
採用される。 この制御方式は回転数が変っても、系統周波数と一致
するようにスベリ分だけ2次励磁により周波数を補正し
てやるもので系統との並列運転が可能となる。EX6とし
ては、交流から直接に交流を作るサイクロコンバータ方
式が使用される。すなわち、EX6は電源用の励磁変換器
用変圧器5を経て商用周波の交流電源を取込み数Hzの低
周波交流に交換してAESMの回転子(2次コイル)2に供
給する。また、レゾルバ7の出力信号(位相検出信号)
をマイクロコンピュータによって演算を行うEXの制御器
8に与え、EX6のサイリスタゲート制御や可逆式ポンプ
水車3を制御するガバナ制御信号等に用いる。第4図に
示すように設定された有効電力指令,無効電力指令,電
圧及び最適回転数になるようにEXの制御器8を制御して
AESMを運転する。
Recent power systems have been operating late at night due to an increase in the ratio of nuclear power and an increase in the number of daily starts and stops of thermal power.
Insufficient AFC adjustment capacity has necessitated input adjustment of pumped storage power plants as a response. Fig. 5 is IEEJ, 107, 3
No., Sho 62, Minato, and Mimatsu It is a typical circuit configuration diagram of the conventional variable speed power generation system shown in "Variable speed hydropower generation system". In the figure, 1 is an AC excitation synchronous machine (hereinafter abbreviated as AESM). , 2 is a rotor (secondary coil), 3 is a reversible pump turbine, 4 is a shaft, 5 is a transformer for an excitation converter, 6 is a converter for excitation (hereinafter abbreviated as EX), 7 is A rotational phase detector (resolver), 8 is an EX controller, and 9 is a harmonic suppression filter. Next, the operation will be described. First, the AC excitation synchronous machine (AESM) has a structure in which three-phase windings are distributed and stored in an equilibrium because it is necessary to create a magnetic field that rotates electrically on the rotor 2. In order to operate the AESM at a variable speed, an excitation side (rotor side) control method in which the AESM is secondarily excited by EX6 is usually adopted. This control method corrects the frequency by the secondary excitation by the amount of slip so as to match the system frequency even if the rotational speed changes, and thus enables parallel operation with the system. As the EX6, a cycloconverter system that produces an AC directly from an AC is used. That is, the EX 6 takes in the commercial frequency AC power through the excitation converter transformer 5 for the power supply, replaces it with a low frequency AC of several Hz, and supplies it to the AESM rotor (secondary coil) 2. Also, the output signal (phase detection signal) of the resolver 7
Is supplied to an EX controller 8 which performs an operation by a microcomputer, and is used for a thyristor gate control of EX6, a governor control signal for controlling the reversible pump turbine 3 and the like. The EX controller 8 is controlled so that the active power command, the reactive power command, the voltage, and the optimum rotational speed set as shown in FIG. 4 are obtained.
Drive AESM.

【発明が解決しようとする課題】[Problems to be solved by the invention]

従来の交流励磁同期機の2次励磁装置は以上のように
構成されているので、励磁用変換器の電源側の力率が悪
く、かつ励磁変換器用変圧器の複雑な構成、また交流励
磁同期機の容量大等のために装置の設置スペースが大と
なり、交流励磁方式可変速システム全体として不経済で
あるなどの課題があった。 この発明は上記のような課題を解消するためになされ
たもので、励磁用変換器の回路構成、及び制御方法の改
善を図ることにより経済的な揚水運転時のAFC調整が可
能な交流励磁同期機の2次励磁装置を得ることを目的と
する。
Since the secondary excitation device of the conventional AC excitation synchronous machine is configured as described above, the power factor on the power supply side of the excitation converter is poor, and the complicated configuration of the excitation converter transformer and the AC excitation synchronization There is a problem that the installation space of the apparatus becomes large due to the large capacity of the machine and the like, and the entire AC excitation variable speed system is uneconomical. SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and is intended to improve the circuit configuration of the excitation converter and the control method, thereby achieving AC excitation synchronization capable of AFC adjustment during economical pumping operation. The purpose is to obtain a secondary excitation device for the machine.

【課題を解決するための手段】[Means for Solving the Problems]

この発明に係る交流励磁同期機の2次励磁装置は、励
磁用変換器をコンバータおよび強制転流式のインバータ
で構成し、前記インバータの始動時と運転時とを切替え
て制御するため、該インバータに制御指令を与えるため
の運転・始動切替回路と、前記インバータの始動時には
前記運転・始動切替回路を始動側に切替えて該インバー
タに交流励磁同期機の漸増始動を指令する始動時周波数
指令回路と、前記インバータ始動の所定時間後に運転・
始動切替回路を運転側に切替え該インバータに対し出力
3相電流をd,q軸の2軸変換して交流励磁同期機を制御
するため有効電力,最適無効電力,電圧及び最適回転数
制御の諸指令による演算を実行するインバータ制御部
と、前記コンバータに対して直流出力電圧一定制御と電
源側力率1.0近似の制御を行う励磁用変換器の制御部と
を備えたものである。
The secondary excitation device for an AC excitation synchronous machine according to the present invention is configured such that the excitation converter is constituted by a converter and a forced commutation type inverter, and the inverter is controlled by switching between start-up and operation of the inverter. An operation / start switching circuit for giving a control command to the inverter, and a start frequency command circuit for switching the operation / start switching circuit to the starting side when starting the inverter and instructing the inverter to gradually start the AC excitation synchronous machine. After a predetermined time from the start of the inverter,
The start switching circuit is switched to the operation side and the inverter controls the AC excitation synchronous machine by converting the output three-phase current into two axes, d and q axes, to control the AC excitation synchronous machine. An inverter control unit that executes an operation based on a command, and a control unit of an excitation converter that performs DC output voltage constant control and power supply side power factor approximation of 1.0 for the converter.

【作用】[Action]

この発明における励磁用変換器は、強制転流式のイン
バータおよびコンバータを含んで構成され、このインバ
ータは電力制御および最適回転数制御が施され、また、
コンバータは力率が1.0となるように制御されるととも
に出力電圧一定制御が施される。
The excitation converter according to the present invention is configured to include a forced commutation type inverter and a converter, and the inverter is subjected to power control and optimum rotational speed control, and
The converter is controlled so that the power factor becomes 1.0 and the output voltage constant control is performed.

【発明の実施例】DESCRIPTION OF THE PREFERRED EMBODIMENTS

以下、この発明の一実施例を図について説明する。図
中、第5図と同一の部分は同一の符号をもって図示した
第1図において、6−1はEX6のインバータ、6−2は
同じくEX6のコンバータ、10はコンバータ6−2の電源
側の力率を1.0に制御する力率改善回路である。 次に動作について説明する。まずEXの制御器8に入力
された有効電力指令,無効電力指令,電圧及び最適回転
数等の制御指令はインバータ6−1を制御する制御指令
を生成し、該インバータ6−1の出力は回転子2に可変
周波数の交流電力を与える。一方、力率改善回路10は前
記インバータ6−1とは独立して構成されたコンバータ
6−2の電源側力率が常に1.0に近似するように該コン
バータ6−2を制御する。(従来のサイクロコンバータ
方式ではコンバータ部が独立していなかったために力率
制御が単独に行えないため通常の力率は0.2程度と非常
に低い。) 第2図はこの発明の各部波形の一例を示したものであ
る。また、従来のサイクロコンバータ方式の各部波形の
一例を第6図に示す。第2図に示したように力率改善回
路10によって力率1.0に近似の制御が行われるとインバ
ータ6−1の出力側a.AESM側)とコンバータ6−2の入
力側(b.電源側)の電圧,電流は明らかにEXの制御器8
による波形改善の効果が顕著に現われている。すなわ
ち、電圧と電流間に位相のずれは見当らない。特に第6
図の従来例と比較した場合には第2図の場合、電源側に
おける電圧電流の位相差に力率改善の成果が明確に現わ
れていることがわかる。 また、従来のサイクロンコンバータ方式では回路上励
磁変換器用変圧器5の構成が複雑になるのに対し、この
発明では極めて単純化された構造になっていることがわ
かる。これはEX6をインバータ6−1とコンバータ6−
2とに完全に機能分離の構成としたことによる。 更に、b.電源側の波形もこの発明の場合にはリップル
含有率が少いために各部フィルタの容量が小さくなる。 また、この発明のパワー回路にはGTO(ゲートターン
オフ)素子20が使用される。GTO素子20を採用すると並
列,直列スナバ回路(サージ抑制回路)21,22が必要と
なるので、そのスバナ回路21,22の損失も大きい。そこ
で、第3図に示すようにスナバエネルギ回生回路23を設
けることにより前記損失を小さく抑えることができる。
図中、24はスナバコンデンサ、25はスナバリアクトル、
26は補助GTO、27はCT(電流検出器)、28は直列コンデ
ンサ、29はフライホイールダイオードである。 なお、第3図はインバータ回路6−1の1アームを取
出して示した要部の詳細図である。 また、上記実施例では励磁用変換器6を一例として強
制転流式12相電圧コンバータについて説明したが、12相
でなく多相形であってもよい。また、片側強制転流式で
あってもよい。 次に、第4図にこの発明の他の実施例を示す。図は交
流励磁同期機の2次励磁装置のブロック図である。図に
おいて、11はインバータ制御部、12は系統の電流を検出
する変流器、13は同じく系統の電圧を検出する変成器、
14は有効電力,最適回転数制御部、15は電圧,無効電力
制御部、16は位相の(d,q)軸制御部、17は運転・始動
切替回路、18は始動時周波数指令回路である。 次に動作について説明する。まず、この場合にはEX6
を強制転流式の多相インバータとコンバータと完全分離
するために該インバータ6−1は有効電力,最適回転数
制御部14によって制御し、コンバータ6−2は出力電圧
一定制御と電源側力率1.0となるように制御区分したも
のである。インバータ制御部11は大きくは有効電力,最
適回転数制御部14及び電圧,無効電力制御部15から制御
指令とレゾルバ7によって検出される位相信号とを取込
んで交流励磁同期機の3相電流をd,q軸の2軸変換し、
有効電力,最適無効電力,電圧と最適回転数制御とを行
う演算が行われる。また、始動時には運転・始動切替回
路17をb(始動)側に切替えておき、始動時周波数指令
回路18からの指令によってインバータ6−1を運転開始
し、AESMを徐々に加速する。しかる後に運転・始動切替
回路17をa(運転)側に切替えて通常運転に入る。ま
た、位相制御の基準となる信号を前記レゾルバ7によっ
て検出し系統周波数と回転速度との差を生成し、この基
準信号を基にして励磁電流の大きさと位相とをインバー
タ6−1で制御して回転子2に入力し固定子1の電圧及
び電力を最終的に制御する。 なお、上記実施例では励磁用変換器6の一例として強
制転流式多相電圧インバータについて説明したが、強制
転流は片側あるいは両側強制転流式であってもよく並列
多重としてもよい。また、電圧形でも電流形でもよく、
素子はGTO,トランジスタ,または他の素子であってもよ
く上記実施例と同様の効果を奏する。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as those in FIG. 5 are denoted by the same reference numerals, and in FIG. 1, 6-1 is the inverter of EX6, 6-2 is the converter of EX6, and 10 is the power on the power supply side of converter 6-2. This is a power factor improvement circuit that controls the rate to 1.0. Next, the operation will be described. First, a control command such as an active power command, a reactive power command, a voltage, and an optimum rotational speed input to the EX controller 8 generates a control command for controlling the inverter 6-1. A variable frequency AC power is supplied to the slave 2. On the other hand, the power factor improving circuit 10 controls the converter 6-2 so that the power factor on the power supply side of the converter 6-2 configured independently of the inverter 6-1 always approaches 1.0. (In the conventional cycloconverter system, the power factor control cannot be performed independently because the converter unit is not independent, so the normal power factor is very low, about 0.2.) FIG. 2 shows an example of the waveform of each unit of the present invention. It is shown. FIG. 6 shows an example of waveforms of various parts of the conventional cycloconverter system. As shown in FIG. 2, when the power factor improving circuit 10 controls the power factor to approximately 1.0, the output side of the inverter 6-1 a. The AESM side and the input side of the converter 6-2 (b. ) Voltage and current are clearly EX controller 8
The effect of the waveform improvement due to this is remarkably exhibited. That is, there is no phase shift between the voltage and the current. Especially the sixth
In comparison with the conventional example shown in the figure, in the case of FIG. 2, it can be seen that the result of the power factor improvement clearly appears in the phase difference between the voltage and the current on the power supply side. Also, it can be seen that in the conventional cyclone converter system, the configuration of the transformer for exciting converter 5 on the circuit is complicated, whereas in the present invention, the structure is extremely simplified. This converts EX6 into inverter 6-1 and converter 6-
This is due to the fact that the configuration is completely separated from that of the second embodiment. Further, b. In the case of the present invention, the waveform on the power supply side also has a small ripple content, so that the capacitance of each filter becomes small. Further, a GTO (gate turn-off) element 20 is used in the power circuit of the present invention. When the GTO element 20 is adopted, parallel and series snubber circuits (surge suppression circuits) 21 and 22 are required, so that the losses of the snubber circuits 21 and 22 are large. Therefore, by providing the snubber energy regeneration circuit 23 as shown in FIG. 3, the loss can be suppressed to a small value.
In the figure, 24 is a snubber capacitor, 25 is a snubber reactor,
26 is an auxiliary GTO, 27 is a CT (current detector), 28 is a series capacitor, and 29 is a flywheel diode. FIG. 3 is a detailed view of a main part of the inverter circuit 6-1 taken out from one arm. Further, in the above-described embodiment, the forced commutation type 12-phase voltage converter has been described by taking the converter 6 for excitation as an example, but may be a polyphase type instead of a 12-phase type. Further, a one-side forced commutation type may be used. Next, FIG. 4 shows another embodiment of the present invention. The figure is a block diagram of the secondary excitation device of the AC excitation synchronous machine. In the figure, 11 is an inverter control unit, 12 is a current transformer that detects a system current, 13 is a transformer that also detects a system voltage,
14 is an active power and optimum rotational speed control unit, 15 is a voltage and reactive power control unit, 16 is a (d, q) axis control unit for phase, 17 is an operation / start switching circuit, and 18 is a start frequency command circuit. . Next, the operation will be described. First, in this case EX6
6-1 is controlled by the active power and optimum rotational speed control unit 14 to completely separate the inverter from the forced commutation type polyphase inverter and the converter, and the converter 6-2 controls the output voltage constant and the power supply side power factor. The control is divided so that it becomes 1.0. The inverter control unit 11 mainly takes in the active power, the optimum rotational speed control unit 14 and the voltage, the control command from the reactive power control unit 15 and the phase signal detected by the resolver 7, and outputs the three-phase current of the AC excitation synchronous machine. d and q axis conversion
An operation for performing the active power, the optimal reactive power, the voltage, and the optimal rotation speed control is performed. Also, at the time of starting, the operation / start switching circuit 17 is switched to the b (start) side, and the operation of the inverter 6-1 is started by a command from the starting frequency command circuit 18 to gradually accelerate the AESM. After that, the operation / start switching circuit 17 is switched to the a (operation) side to start the normal operation. Further, a signal serving as a reference for phase control is detected by the resolver 7 to generate a difference between the system frequency and the rotation speed, and the magnitude and phase of the exciting current are controlled by the inverter 6-1 based on the reference signal. To the rotor 2 to finally control the voltage and power of the stator 1. In the above embodiment, the forced commutation type multi-phase voltage inverter has been described as an example of the converter 6 for excitation. However, the forced commutation may be a single-sided or double-sided forced commutation type, or may be a parallel multiplex. Also, voltage type or current type may be used.
The element may be a GTO, a transistor, or another element, and has the same effect as the above embodiment.

【発明の効果】【The invention's effect】

以上のように、この発明によれば交流励磁同期機の2
次励磁装置を、励磁用変換器として強制転流式電圧形の
コンバータを使用するように、または、強制転流式のイ
ンバータおよびコンバータを使用するように構成したの
で、電源側力率を1.0とする制御が可能となって交流励
磁同期機の容量を低減でき、かつ、回路構成を簡易にで
きる経済的なものが得られる効果がある。
As described above, according to the present invention, the AC excitation synchronous machine 2
Since the secondary excitation device is configured to use a forced commutation type voltage-type converter as the excitation converter or to use a forced commutation type inverter and converter, the power factor on the power supply side is set to 1.0. This makes it possible to reduce the capacity of the AC excitation synchronous machine and to obtain an economical one that can simplify the circuit configuration.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による交流励磁同期機の2
次励磁回路のブロック構成図、第2図はこの発明の要部
波形の説明図、第3図はこの発明のスナバエネルギー回
生回路の説明図、第4図はこの発明の他の実施例を示す
インバータ制御部のブロック構成図、第5図は従来の交
流励磁同期機の2次励磁回路のブロック構成図、第6図
は従来の要部波形の説明図である。 図において、2は回転子,3は可逆式ポンプ水車、6は励
磁用変換器、6−1はインバータ、6−2はコンバー
タ、8は励磁用変換器の制御器、10は力率改善回路、11
はインバータ制御部、14は有効電力,最適回転数制御
部、15は電圧,無効電力制御部、17は運転・始動切替回
路、18は始動時周波数指令回路である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 shows an AC excitation synchronous machine 2 according to an embodiment of the present invention.
FIG. 2 is a block diagram of a secondary excitation circuit, FIG. 2 is an explanatory diagram of a main part waveform of the present invention, FIG. 3 is an explanatory diagram of a snubber energy regenerating circuit of the present invention, and FIG. 4 shows another embodiment of the present invention. FIG. 5 is a block diagram of an inverter control unit, FIG. 5 is a block diagram of a secondary excitation circuit of a conventional AC excitation synchronous machine, and FIG. In the figure, 2 is a rotor, 3 is a reversible pump turbine, 6 is a converter for excitation, 6-1 is an inverter, 6-2 is a converter, 8 is a controller of the converter for excitation, 10 is a power factor improvement circuit. , 11
Is an inverter control unit, 14 is an active power and optimum rotational speed control unit, 15 is a voltage and reactive power control unit, 17 is an operation / start switching circuit, and 18 is a start frequency command circuit. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可逆式ポンプ水車に直結された交流励磁同
期機の回転子を励磁用変換器により制御し可変速運転を
行うように構成した交流励磁同期機の2次励磁装置にお
いて、前記励磁用変換器は強制転流式のインバータ及び
コンバータで構成され、前記インバータの始動時と運転
時とを切替えて制御するため、該インバータに制御指令
を与えるための運転・始動切替回路と、前記インバータ
の始動時には前記運転・始動切替回路を始動側に切替え
て該インバータに交流励磁同期機の漸増始動を指令する
始動時周波数指令回路と、前記インバータ始動の所定時
間後に運転・始動切替回路を運転側に切替え該インバー
タに対し出力3相電流をd,q軸の2軸変換して交流励磁
同期機を制御するため有効電力,最適無効電力,電圧及
び最適回転数制御の諸指令による演算を実行するインバ
ータ制御部と、前記コンバータに対して直流出力電圧一
定制御と電源側力率1.0近似の制御を行う励磁用変換器
の制御部とを備えたことを特徴とする交流励磁同期機の
2次励磁装置。
1. A secondary excitation device for an AC excitation synchronous machine configured to perform a variable speed operation by controlling a rotor of an AC excitation synchronous machine directly connected to a reversible pump-turbine by an excitation converter. The converter for use is composed of a forced commutation type inverter and a converter, and in order to control the inverter by switching between start and operation, the operation / start switching circuit for giving a control command to the inverter, and the inverter A starting frequency command circuit for switching the operation / start switching circuit to the starting side and instructing the inverter to gradually start the AC excitation synchronous machine; and To control the AC excitation synchronous machine by converting the output three-phase current to the d- and q-axes for the inverter and controlling the AC excitation synchronous machine. AC excitation, comprising: an inverter control unit that executes a calculation based on a command; and a control unit of an excitation converter that performs constant DC output voltage control and power supply side power factor approximation of 1.0 for the converter. Secondary excitation device for synchronous machine.
JP1165075A 1989-06-27 1989-06-27 Secondary excitation device for AC excitation synchronous machine Expired - Fee Related JP2588275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165075A JP2588275B2 (en) 1989-06-27 1989-06-27 Secondary excitation device for AC excitation synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165075A JP2588275B2 (en) 1989-06-27 1989-06-27 Secondary excitation device for AC excitation synchronous machine

Publications (2)

Publication Number Publication Date
JPH0332399A JPH0332399A (en) 1991-02-12
JP2588275B2 true JP2588275B2 (en) 1997-03-05

Family

ID=15805395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165075A Expired - Fee Related JP2588275B2 (en) 1989-06-27 1989-06-27 Secondary excitation device for AC excitation synchronous machine

Country Status (1)

Country Link
JP (1) JP2588275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112039B1 (en) * 2020-06-30 2025-01-31 Supergrid Power transfer system between an alternating current network and a reversible hydraulic turbine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475514A (en) * 1977-11-30 1979-06-16 Hitachi Ltd Exciting device of thyristor
JPS5812596A (en) * 1981-07-14 1983-01-24 Meidensha Electric Mfg Co Ltd Power factor regulating method for wound-rotor induction motor

Also Published As

Publication number Publication date
JPH0332399A (en) 1991-02-12

Similar Documents

Publication Publication Date Title
US5483140A (en) Thyristor based DC link current source power conversion system for motor driven operation
CA1293529C (en) Ac motor drive apparatus
US4511835A (en) Voltage-controlled, inverter-motor system
US6486627B1 (en) Flywheel uninterruptible power source
JP4112930B2 (en) Inverter device
JP3073719B2 (en) Pumped storage generator
JP2588275B2 (en) Secondary excitation device for AC excitation synchronous machine
JP2001218470A (en) Power supply unit
JP2000139085A (en) Power-converting device
JPH11313490A (en) Power conversion device and additional device for regeneration of the device
JP3398416B2 (en) Frequency converter
JP2662050B2 (en) Secondary excitation device for AC excitation synchronous machine
JP2001218469A (en) Power supply unit
JP3333256B2 (en) Converter for AC excitation
JPH1052046A (en) Portable power supply unit
JP2641358B2 (en) Variable speed pumped storage power generation system
JPH0527344B2 (en)
JPH10146093A (en) Control device for switched reluctance motor
SU1554101A1 (en) Method of braking frequency-controlled m-phase induction electric motor
JP2544967B2 (en) Pumped storage power generation system
JPH0258878B2 (en)
JP2000188866A (en) Power supply device
JPH03164100A (en) Secondary exciter for ac excited synchronous machine
Hobbs et al. Variable-speed-drive range utilising brushless synchronous motors
JPH0531392B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees