[go: up one dir, main page]

JP2584846B2 - Method for producing tetraalkylammonium hydroxide - Google Patents

Method for producing tetraalkylammonium hydroxide

Info

Publication number
JP2584846B2
JP2584846B2 JP63266017A JP26601788A JP2584846B2 JP 2584846 B2 JP2584846 B2 JP 2584846B2 JP 63266017 A JP63266017 A JP 63266017A JP 26601788 A JP26601788 A JP 26601788A JP 2584846 B2 JP2584846 B2 JP 2584846B2
Authority
JP
Japan
Prior art keywords
cation exchange
exchange membrane
anode
chamber
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63266017A
Other languages
Japanese (ja)
Other versions
JPH02115387A (en
Inventor
久彦 岩本
俊勝 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP63266017A priority Critical patent/JP2584846B2/en
Publication of JPH02115387A publication Critical patent/JPH02115387A/en
Application granted granted Critical
Publication of JP2584846B2 publication Critical patent/JP2584846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安定して長期に連続運転が容易な高純度の
水酸化テトラアルキルアンモニウムの製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing high-purity tetraalkylammonium hydroxide which is stable and easy to operate continuously for a long period of time.

〔従来の技術〕 陽イオン交換膜を用いた電解槽による電解方法は、有
機、無機を問わず種々の化合物を製造するのに広く使用
されている。一般に製造コストの低減がより重要な課題
となる、例えばカセイソーダなどの化合物を工業的に製
造する方法では、陽極と陰極との間に1枚の陽イオン交
換膜を配した電解槽が用いられる。
[Prior Art] An electrolysis method using an electrolytic cell using a cation exchange membrane is widely used for producing various compounds regardless of organic or inorganic. Generally, in a method of industrially producing a compound such as caustic soda, for example, in which production cost reduction is a more important issue, an electrolytic cell having one cation exchange membrane disposed between an anode and a cathode is used.

これに対して、特に高純度であることが要求されてい
る化合物、例えば水酸化テトラアルキルアンモニウムな
どを工業的に製造する方法では、陰極室に生成する製品
に不純物を含まないように、陽極と陰極の間に2枚以上
の陽イオン交換膜を配した電解槽を使用する態様が多
い。
In contrast, in a method for industrially producing a compound that is required to be particularly high in purity, such as a tetraalkylammonium hydroxide, the anode and the anode are produced so that the product produced in the cathode chamber does not contain impurities. In many cases, an electrolytic cell having two or more cation exchange membranes disposed between cathodes is used.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記したような陽極と陰極の間に2枚
以上の陽イオン交換膜を配した電解槽によるテトラアル
キルアンモニウム塩の電解方法、例えば特公昭45−2856
4号公報に記載の方法等では、高純度の水酸化テトラア
ルキルアンモニウムは或る程度得ることが可能である
が、長期に安定して連続運転することが容易でないとい
う問題点があった。
However, a method of electrolyzing a tetraalkylammonium salt using an electrolytic cell having two or more cation exchange membranes disposed between the anode and the cathode as described above, for example, Japanese Patent Publication No. 45-2856
According to the method described in Japanese Patent Publication No. 4 (1994) -A, high-purity tetraalkylammonium hydroxide can be obtained to some extent, but there is a problem that it is not easy to stably operate continuously for a long period of time.

例えば、陽極と陰極の間に2枚の陽イオン交換膜を配
して陽極室、中間室および陰極室の3室に区画した電解
槽においてテトラアルキルアンモニウム塩から高純度の
水酸化テトラアルキルアンモニウムを製造する方法で
は、陽極室にテトラアルキルアンモニウム塩、中間室お
よび陰極室に所定の水酸化テトラアルキルアンモニウム
をそれぞれ電解質水溶液として循環供給し通電して、陰
極室より高純度の水酸化テトラアルキルアンモニウムを
取得する。
For example, high purity tetraalkylammonium hydroxide is converted from a tetraalkylammonium salt in an electrolytic cell in which two cation exchange membranes are arranged between an anode and a cathode and are divided into three compartments of an anode compartment, an intermediate compartment and a cathode compartment. In the manufacturing method, a tetraalkylammonium salt is supplied to the anode chamber, and a predetermined tetraalkylammonium hydroxide is circulated and supplied to the intermediate chamber and the cathode chamber as an aqueous electrolyte solution, respectively, and energized. get.

このような3室の電解槽を用い連続運転して水酸化テ
トラアルキルアンモニウムを製造する場合、電解槽の電
圧あるいは温度が上昇したり、各室への電解質溶液の循
環供給が不安定となるため、ついには運転を停止しなけ
ればならない状態となる。
When tetraalkylammonium hydroxide is manufactured by continuous operation using such three-chamber electrolytic cells, the voltage or temperature of the electrolytic cells increases, and the circulating supply of the electrolyte solution to each chamber becomes unstable. Eventually, the operation must be stopped.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者らは、上記の問題点に鑑み鋭意研究した。そ
の結果、2枚以上の陽イオン交換膜を用いる多室電解槽
において、該陽イオン交換膜の電流効率をそれぞれ特定
して異なる状態で電解することにより、問題点を解決で
きる知見を得て、本発明を完成するに至ったものであ
る。即ち、本発明は、陽極と陰極との間に2枚以上の陽
イオン交換膜を配し、且つ陽イオン交換膜と陽極との間
に陰イオン交換膜を配した電解槽において、該陽イオン
交換膜として、陽極側より陰極側へ順次に電流効率の低
い陽イオン交換膜を配列し、陽イオン交換膜と陰イオン
交換膜との間にテトラアルキルアンモニウム塩を供給し
て電解を行うことを特徴とする水酸化テトラアルキルア
ンモニウムの製造方法である。
The present inventors have made intensive studies in view of the above problems. As a result, in a multi-chamber electrolyzer using two or more cation exchange membranes, the current efficiency of the cation exchange membrane was specified and electrolysis was performed in different states to obtain knowledge that could solve the problem, The present invention has been completed. That is, the present invention provides an electrolytic cell in which two or more cation exchange membranes are disposed between an anode and a cathode, and an anion exchange membrane is disposed between the cation exchange membrane and the anode. As an exchange membrane, a cation exchange membrane having a low current efficiency is sequentially arranged from the anode side to the cathode side, and electrolysis is performed by supplying a tetraalkylammonium salt between the cation exchange membrane and the anion exchange membrane. This is a method for producing a tetraalkylammonium hydroxide, which is a feature.

本発明の電解方法において、安定して長期の連続運転
を効率よく達成するためには、陽極側に電流効率が出来
るだけ高く、一般に70%以上の陽イオン交換膜を用いる
ことが好ましく、また陽極側より陰極側へ隣接して配す
る互の陽イオン交換膜における電流効率の差を一般に1
〜15%,特に5〜10%に維持することが好ましい。この
ような本発明に用いる陽イオン交換膜としては、公知の
陽イオン交換膜で特に制限されず、例えばスルホン酸
基,カルボン酸基などの陽イオン交換基を有する炭化水
素系あるいはパーフルオロカーボン系の陽イオン交換膜
である。
In the electrolysis method of the present invention, in order to efficiently achieve stable and long-term continuous operation efficiently, it is preferable to use a cation exchange membrane having a current efficiency as high as possible on the anode side and generally 70% or more. The difference in current efficiency between the cation exchange membranes arranged adjacent to the cathode side from the cathode side is generally 1 unit.
It is preferably maintained at 15%, especially 5-10%. The cation exchange membrane used in the present invention is not particularly limited as a known cation exchange membrane, and is, for example, a hydrocarbon-based or perfluorocarbon-based cation exchange group having a cation exchange group such as a sulfonic acid group and a carboxylic acid group. It is a cation exchange membrane.

しかして、本発明において、2枚以上の陽イオン交換
膜を陽極側より陰極側へ配した順に低く維持する方法と
しては、一般にイオン交換容量、含水量など一般に固定
イオン濃度を調整して電流効率を異にする2枚以上の陽
イオン交換膜を得て、それぞれ電解槽の電極に所定の関
係位置に配すればよい。なお、各陽イオン交換膜の電流
効率は、該陽イオン交換膜の陰極側に所定濃度の電解質
溶液を供して測定すればよいが、実際に用いる電解槽の
構成および電解条件を勘案して、それぞれ予め所定の電
流効率が決定される。
Thus, in the present invention, as a method of keeping two or more cation exchange membranes lower in the order in which they are arranged from the anode side to the cathode side, generally, a fixed ion concentration such as an ion exchange capacity and a water content is adjusted to improve the current efficiency. What is necessary is just to obtain two or more cation exchange membranes different from each other, and arrange them at predetermined positions on the electrodes of the electrolytic cell. The current efficiency of each cation exchange membrane may be measured by providing an electrolyte solution of a predetermined concentration on the cathode side of the cation exchange membrane, but in consideration of the configuration and electrolysis conditions of the electrolytic cell actually used, A predetermined current efficiency is determined in advance for each.

また、本発明においては、陽極の腐食、陽極室におけ
る副反応を防止するために、陽極と陽極側の陽イオン交
換膜との間に陰イオン交換膜を配した電解槽を用いる。
この場合、陽極室に酸水溶液を供給する方法が好まし
い。さらに、陽極における有毒なハロゲンガスの発生、
あるいは上記の電解槽において陰イオン交換膜の劣化を
防止するために、該陰イオン交換膜の陽極側に耐酸化性
の陽イオン交換膜を配する態様も好ましい。
Further, in the present invention, in order to prevent corrosion of the anode and side reactions in the anode chamber, an electrolytic cell having an anion exchange membrane disposed between the anode and the cation exchange membrane on the anode side is used.
In this case, a method of supplying an aqueous acid solution to the anode chamber is preferable. In addition, the generation of toxic halogen gas at the anode,
Alternatively, in order to prevent the anion exchange membrane from deteriorating in the electrolytic cell, an embodiment in which an oxidation-resistant cation exchange membrane is provided on the anode side of the anion exchange membrane is also preferable.

〔作用および効果〕[Action and effect]

イオン交換膜は、一般に使用時間の経過につれて劣化
し、その電流効率が次第に低下する。前記したような2
枚の陽イオン交換膜を配して陽極室、中間室および陰極
室の3室に区画された電解槽を使用して水酸化テトラア
ルキルアンモニウムを製造する場合には、両陽イオン交
換膜の劣化速度が異なり電流効率に差を生じてくる。即
ち、原料のテトラアルキルアンモニウム塩に含まれる不
純物のため、該テトラアルキルアンモニウム塩の水溶液
を供給する陽極室を区画している陽イオン交換膜の方
が、陰極室を区画している陽イオン交換膜よりも速く劣
化し電流効率も速く低下する場合が多い。
Ion exchange membranes generally degrade over time and their current efficiency gradually decreases. 2 as described above
In the case where tetraalkylammonium hydroxide is produced by using an electrolytic cell having three cation exchange membranes and divided into an anode compartment, an intermediate compartment, and a cathode compartment, deterioration of both cation exchange membranes The speed differs and the current efficiency differs. In other words, because of the impurities contained in the raw material tetraalkylammonium salt, the cation exchange membrane that partitions the anode chamber that supplies the aqueous solution of the tetraalkylammonium salt is better than the cation exchange membrane that partitions the cathode chamber. It often deteriorates faster than the film, and the current efficiency often decreases faster.

このような状態の電解槽において、陽極室から中間室
を経て陰極室へそれぞれ陽イオン交換膜を介して移動す
るテトラアルキルアンモニウムイオンは、陰極室へ向か
って中間室から出てゆく量が、陽極室から中間室へ入っ
てくる量に比べて多くなるため、中間室のテトラアルキ
ルアンモニウムイオンが次第に減少する傾向になる。こ
の中間室におけるテトラアルキルアンモニウムイオンの
減少により、該中間室に循環供給される水酸化テトラア
ルキルアンモニウム水溶液における水酸化テトラアルキ
ルアンモニウムの当量数は減少する。また、テトラアル
キルアンモニウムイオンは、通常4分子程度の水分子を
同伴するため、中間室に循環供給される水酸化テトラア
ルキルアンモニウム水溶液の液量も、テトラアルキルア
ンモニウムイオンの減少に伴って減少していくことにな
る。このような中間室に循環供給される水酸化テトラア
ルキルアンモニウム水溶液における水酸化テトラアルキ
ルアンモニウムの当量数あるいは液量が減少する結果、
各室への溶液の循環供給が不安定になるとともに、槽電
圧および温度が上昇する問題を招き、ひいては電解運転
を停止せざるを得ない状態に至る。
In the electrolytic cell in such a state, the amount of tetraalkylammonium ions moving from the anode chamber to the cathode chamber via the intermediate chamber via the cation exchange membrane, respectively, and exiting from the intermediate chamber toward the cathode chamber is equal to the amount of the anode. The amount of tetraalkylammonium ions in the intermediate chamber tends to gradually decrease because the amount is larger than the amount entering the intermediate chamber from the chamber. Due to the decrease of the tetraalkylammonium ion in the intermediate chamber, the equivalent number of the tetraalkylammonium hydroxide in the aqueous tetraalkylammonium hydroxide solution circulated to the intermediate chamber is reduced. In addition, since the tetraalkylammonium ion is usually accompanied by about 4 water molecules, the amount of the tetraalkylammonium hydroxide aqueous solution circulated and supplied to the intermediate chamber also decreases as the tetraalkylammonium ion decreases. Will go. As a result of the decrease in the number of equivalents or the amount of tetraalkylammonium hydroxide in the aqueous solution of tetraalkylammonium hydroxide circulated and supplied to such an intermediate chamber,
The circulating supply of the solution to each chamber becomes unstable, and a problem arises in that the cell voltage and the temperature rise, and eventually, the electrolysis operation must be stopped.

これに対して、本発明の電解方法によれば、電解槽に
配した2枚以上の陽イオン交換膜について、それぞれ互
に所定の電流効率を維持させることにより、上記した如
き従来法における問題が解消し、長期に安定した連続運
転を可能にしたものである。
On the other hand, according to the electrolysis method of the present invention, the two or more cation exchange membranes arranged in the electrolytic cell maintain a predetermined current efficiency with respect to each other. It has eliminated long-term stable continuous operation.

〔実施例〕 以下、本発明の代表的な実施例を挙げて説明するが、
本発明はこれに制限されるものでない。
[Examples] Hereinafter, the present invention will be described with reference to typical examples,
The present invention is not limited to this.

実施例1 陽極と陰極との間に、陽極側より順にイオン交換膜
(徳山曹達社製、ネオセプタAM−1)、陽イオン交換膜
1〔ナフィオン901(デュポン社製パーフルオロ系陽イ
オン交換膜)のカルボン酸層を有する面を陰極側に向け
て配置〕および陽イオン交換膜2(徳山曹達社製、ネオ
セプタ066−10F)をそれぞれ配して、陽極室、陰イオン
交換膜と陽イオン交換膜1とにより区画された中間室
1、陽イオン交換膜1と陽イオン交換膜2とにより区画
された中間室2および陰極室からなる有効通電面積2dm2
の4室電解槽を構成した。なお、陽極には白金をコーテ
ィングしたチタン板、陰極にはニッケルを用いた。
Example 1 Between an anode and a cathode, an ion exchange membrane (manufactured by Tokuyama Soda Co., Ltd., Neosepta AM-1) and a cation exchange membrane 1 [Nafion 901 (a perfluoro-based cation exchange membrane manufactured by DuPont) in this order from the anode side. And the cation exchange membrane 2 (Neoceptor 066-10F, manufactured by Tokuyama Soda Co., Ltd.), respectively, and the anode chamber, the anion exchange membrane and the cation exchange membrane are arranged. 1; an intermediate chamber 2 defined by a cation exchange membrane 1 and a cation exchange membrane 2; and an effective energization area 2 dm 2 comprising a cathode chamber.
Was constructed. Note that a titanium plate coated with platinum was used for the anode, and nickel was used for the cathode.

上記の4室電解槽を用いて、陽極室に0.5規定の塩
酸、中間室1に2.5規定の炭酸テトラメチルアンモニウ
ム水溶液、中間室2に2.0規定の水酸化テトラメチルア
ンモニウム水溶液および陰極室に2.0規定の水酸化テト
ラメチルアンモニウム水溶液をそれぞれ外部のタンクを
介して線速度10cm/secで循環供給し、電流密度20A/dm2
で電解し陰極室から高純度の水酸化テトラメチルアンモ
ニウムを取得した。なお、陰極室における水酸化テトラ
メチルアンモニウム水溶液の濃度を2.0規定に維持する
ために、純粋を加えて調節した。
Using the above four-chamber electrolytic cell, 0.5N hydrochloric acid in the anode chamber, 2.5N aqueous solution of tetramethylammonium carbonate in the intermediate chamber 1, 2.0N aqueous tetramethylammonium hydroxide in the intermediate chamber 2, and 2.0N in the cathode chamber. Of tetramethylammonium hydroxide aqueous solution was circulated and supplied at a linear velocity of 10 cm / sec through external tanks, and the current density was 20 A / dm 2
And high-purity tetramethylammonium hydroxide was obtained from the cathode chamber. In order to maintain the concentration of the tetramethylammonium hydroxide aqueous solution in the cathode chamber at 2.0 N, the concentration was adjusted by adding pure water.

その結果、2ケ月間の連続運転を実施したが、槽電圧
は23Vの略一定であり、また中間室2に循環供給される
水酸化テトラメチルアンモニウム水溶液の液量はわずか
ばかり増加しただけであり、温度の変化もなく、さらに
安定して運転を続行することも可能であった。なお、上
記の電解における陽イオン交換膜1および陽イオン交換
膜2のそれぞれ電流効率は、陽極と陰極との間に陽イオ
ン交換膜1あるいは陽イオン交換膜2として使用される
各陽イオン交換膜を夫々配して、陽極室および陰極室か
らなる有効通電面積0.2dm2の2室電解槽を構成して測定
した。すなわち、まず陽極室に1.5規定のテトラメチル
アンモニウムクロライド水溶液、陰極室に0.5規定の水
酸化テトラメチルアンモニウム水溶液をそれぞれ満た
し、電流密度20A/dm2で1時間電解した。電解終了後、
陰極室に満たした水酸化テトラメチルアンモニウム水溶
液の濃度を測定し、電解の前後における水酸化テトラメ
チルアンモニウム水溶液の濃度差から電流効率を得た。
同様に、陰極室に満たす水酸化テトラメチルアンモニウ
ム水溶液の濃度を1.0、1.5、2.0規定として電解を行
い、それぞれの電解について陽イオン交換膜の電流効率
を得た。次いで、それぞれの電解における水酸化テトラ
メチルアンモニウム水溶液の平均濃度と電流効率との間
の関係をグラフに表した。ここで、水酸化テトラメチル
アンモニウム水溶液の平均濃度とは、電解の開始時にお
ける濃度と電解終了時における濃度の平均値である。こ
のように作成したグラフから、陽イオン交換膜1として
使用したナフィオン901の電流効率は、陽極側の面に接
触する水酸化テトラメチルアンモニウム水溶液における
水酸化テトラメチルアンモニウムの濃度が2.0規定であ
るとき、73%であり、陽イオン交換膜2として使用した
ネオセプタC66−10Fの同一条件における電流効率は、70
%であった。
As a result, continuous operation was performed for two months, but the cell voltage was almost constant at 23 V, and the amount of the aqueous solution of tetramethylammonium hydroxide circulated and supplied to the intermediate chamber 2 increased only slightly. It was possible to continue the operation more stably without a change in temperature. The current efficiency of each of the cation exchange membrane 1 and the cation exchange membrane 2 in the above-described electrolysis depends on the cation exchange membrane used as the cation exchange membrane 1 or the cation exchange membrane 2 between the anode and the cathode. , And a two-chamber electrolytic cell comprising an anode chamber and a cathode chamber and having an effective energization area of 0.2 dm 2 was configured and measured. That is, first, a 1.5 N aqueous solution of tetramethylammonium chloride was filled in the anode chamber, and a 0.5 N aqueous solution of tetramethylammonium hydroxide was filled in the cathode chamber, and electrolysis was performed at a current density of 20 A / dm 2 for 1 hour. After electrolysis,
The concentration of the aqueous tetramethylammonium hydroxide solution filled in the cathode chamber was measured, and the current efficiency was obtained from the difference in the concentration of the aqueous tetramethylammonium hydroxide solution before and after electrolysis.
Similarly, electrolysis was performed with the concentration of the aqueous solution of tetramethylammonium hydroxide filling the cathode chamber being 1.0, 1.5, and 2.0 normal, and the current efficiency of the cation exchange membrane was obtained for each electrolysis. Next, the relationship between the average concentration of the aqueous solution of tetramethylammonium hydroxide and the current efficiency in each electrolysis was shown in a graph. Here, the average concentration of the tetramethylammonium hydroxide aqueous solution is an average value of the concentration at the start of electrolysis and the concentration at the end of electrolysis. From the graph created in this manner, the current efficiency of Nafion 901 used as the cation exchange membrane 1 was determined when the concentration of tetramethylammonium hydroxide in the aqueous solution of tetramethylammonium hydroxide in contact with the anode-side surface was 2.0 normal. , 73%, and the current efficiency of Neoceptor C66-10F used as the cation exchange membrane 2 under the same conditions was 70%.
%Met.

比較例1 実施例1において、陽イオン交換膜1としてネオセプ
タC66−10F、陽イオン交換膜2としてNafion901を使用
したこと以外は、実施例1と同一の条件で電解を実施し
た。
Comparative Example 1 Electrolysis was performed under the same conditions as in Example 1 except that Neoceptor C66-10F was used as the cation exchange membrane 1 and Nafion901 was used as the cation exchange membrane 2.

その結果、運転開始の直後より中間室2に循環供給さ
れる水酸化テトラメチルアンモニウム水溶液の液量が減
少し、1週間後には水酸化テトラメチルアンモニウム水
溶液を安定して供給することができなくなったため、電
解槽の運転を停止した。
As a result, the amount of the aqueous solution of tetramethylammonium hydroxide circulated and supplied to the intermediate chamber 2 was reduced immediately after the start of operation, and it became impossible to stably supply the aqueous solution of tetramethylammonium hydroxide one week later. The operation of the electrolytic cell was stopped.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陽極と陰極との間に2枚以上の陽イオン交
換膜を配し、且つ陽イオン交換膜と陽極との間に陰イオ
ン交換膜を配した電解槽において、該陽イオン交換膜と
して、陽極側より陰極側へ順次に電流効率の低い陽イオ
ン交換膜を配列し、陽イオン交換膜と陰イオン交換膜と
の間にテトラアルキルアンモニウム塩を供給して電解を
行うことを特徴とする水酸化テトラアルキルアンモニウ
ムの製造方法。
1. An electrolytic cell comprising two or more cation exchange membranes disposed between an anode and a cathode and an anion exchange membrane disposed between the cation exchange membrane and the anode. As a membrane, a cation exchange membrane with low current efficiency is sequentially arranged from the anode side to the cathode side, and a tetraalkylammonium salt is supplied between the cation exchange membrane and the anion exchange membrane to perform electrolysis. For producing tetraalkylammonium hydroxide.
JP63266017A 1988-10-24 1988-10-24 Method for producing tetraalkylammonium hydroxide Expired - Lifetime JP2584846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63266017A JP2584846B2 (en) 1988-10-24 1988-10-24 Method for producing tetraalkylammonium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266017A JP2584846B2 (en) 1988-10-24 1988-10-24 Method for producing tetraalkylammonium hydroxide

Publications (2)

Publication Number Publication Date
JPH02115387A JPH02115387A (en) 1990-04-27
JP2584846B2 true JP2584846B2 (en) 1997-02-26

Family

ID=17425219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266017A Expired - Lifetime JP2584846B2 (en) 1988-10-24 1988-10-24 Method for producing tetraalkylammonium hydroxide

Country Status (1)

Country Link
JP (1) JP2584846B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108396327B (en) * 2018-05-23 2024-04-09 柏川新材料科技(宁波)有限公司 Equipment and method for producing tetramethyl ammonium hydroxide by continuous method
CN110318066B (en) * 2019-06-20 2024-08-02 青岛鼎海电化学科技有限公司 Preparation method of tetraalkylammonium hydroxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123386A (en) * 1980-03-03 1981-09-28 Konosuke Kishida Method and apparatus for electrolysis of salt
JPS59211582A (en) * 1983-05-17 1984-11-30 Toagosei Chem Ind Co Ltd Production of aqueous caustic alkali solution having high purity
JPS60131986A (en) * 1983-12-19 1985-07-13 Showa Denko Kk Manufacture of quaternary ammonium hydroxide of high purity

Also Published As

Publication number Publication date
JPH02115387A (en) 1990-04-27

Similar Documents

Publication Publication Date Title
US9611555B2 (en) Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
JPH10286571A (en) Electrolytic cell for acidic water and alkaline water preparation
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
EP1808512B1 (en) Electrolysis electrode and method for producing aqueous quaternary ammonium hydroxide solution using such electrolysis electrode
US20010025798A1 (en) Synthesis of tetramethylammonium hydroxide
EP0132816B1 (en) A method for preventing degradation in activity of a low hydrogen overvoltage cathode
US5242552A (en) System for electrolytically generating strong solutions by halogen oxyacids
JP2584846B2 (en) Method for producing tetraalkylammonium hydroxide
US6203687B1 (en) Method for shutting down an electrolysis cell with a membrane and an oxygen-reducing cathode
EP0235908A2 (en) Method for the production of L-cysteine
JP3265495B2 (en) Method for producing nickel hypophosphite
US6402929B1 (en) Method of operating alkali chloride electrolytic cell
JPH0830048B2 (en) Amino acid production method
US4981573A (en) Process for the production of alkali dichromates and chromic acid employing an anode of valve metal activated by electrodepositing noble metals from melts
JP2637112B2 (en) Method for producing quaternary ammonium hydroxide
EP0184381B1 (en) Electrochemical process and cell
US5071522A (en) Process for the preparation of chromic acid
US5480517A (en) Electrolytic production of hypophosphorous acid
JPH0978279A (en) Hydrochloric acid electrolysis device
JPH01184293A (en) Production of iodine and iodate
JPH09202986A (en) Three-compartment electrolytic cell
JP4062917B2 (en) Method for producing sodium hydroxide
JPH09217185A (en) Three-chamber based electrolytic cell
JPH06248483A (en) Electrolytic cell for chloride alkali electrolysis and electrolytic method
JPH1161476A (en) Starting operation of electrolytic bath in ion-exchange membrane electrolytic process