JP2562585B2 - Liquid crystal device and method for manufacturing liquid crystal device - Google Patents
Liquid crystal device and method for manufacturing liquid crystal deviceInfo
- Publication number
- JP2562585B2 JP2562585B2 JP61288527A JP28852786A JP2562585B2 JP 2562585 B2 JP2562585 B2 JP 2562585B2 JP 61288527 A JP61288527 A JP 61288527A JP 28852786 A JP28852786 A JP 28852786A JP 2562585 B2 JP2562585 B2 JP 2562585B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal device
- substrate
- thin film
- ferroelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 22
- 230000005684 electric field Effects 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 11
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 9
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 claims description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims 1
- 239000010408 film Substances 0.000 description 33
- 230000010287 polarization Effects 0.000 description 13
- 239000004990 Smectic liquid crystal Substances 0.000 description 8
- 230000002269 spontaneous effect Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 1
- 101100446679 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FLC1 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Description
【発明の詳細な説明】 『発明の利用分野』 この発明はスメクチック液晶に関するもので、特にそ
の代表例の1つである強誘電性液晶(以下FLCという)
を用いた液晶装置に関し、コントラスト比の向上および
グレースケールの可能化を図り、マイクロ・コンピュー
タ、ワードプロセッサまたはテレビ等の表示部の薄型化
を目的とする液晶装置、さらにディスクメモリ等のメモ
リ装置、スピーカ等の音響機器へ応用する液晶装置の作
製方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention This invention relates to smectic liquid crystals, and one of the typical examples thereof is a ferroelectric liquid crystal (hereinafter referred to as FLC).
A liquid crystal device using a liquid crystal device for the purpose of improving the contrast ratio and enabling gray scale, and thinning the display portion of a microcomputer, a word processor, a television, or the like, a memory device such as a disk memory, and a speaker. The present invention relates to a method for manufacturing a liquid crystal device applied to audio equipment such as.
『従来技術』 従来、スメクチック液晶を用いて液晶装置を作製せん
とする場合、この液晶の一対の基板の内側に一対の電極
を設け、その電極上の液晶側に対称配向膜を設ける方式
が知られている。[Prior Art] Conventionally, in the case of manufacturing a liquid crystal device using a smectic liquid crystal, a method is known in which a pair of electrodes is provided inside a pair of substrates of this liquid crystal, and a symmetrical alignment film is provided on the liquid crystal side of the electrodes. Has been.
しかし、かかる単純マトリックス構造または各画素に
非線型素子が直列に連結されたアクティブ素子構造にお
いては、前記したスメクチック液晶が十分大きいEc(臨
界電界またはスレッシュホールド電界)を有することが
最も重要である。このEcは、液晶が所定の電界以下では
初期の状態(例えば非透過)を保持し、所定の電界以上
においてきわめて急峻に反転し、他の状態(例えば透
過)を呈する現象、およびこの逆に透過より非透過とな
る現象をいう。即ち、このEcはEc+(正に電界を加える
場合に観察される臨界電界)と、逆にEc−(負に電界を
加える場合に存在する電界)とがある。However, in such a simple matrix structure or an active device structure in which a non-linear device is connected in series to each pixel, it is most important that the smectic liquid crystal has a sufficiently large Ec (critical electric field or threshold electric field). This Ec is a phenomenon in which the liquid crystal retains its initial state (eg, non-transmissive) below a predetermined electric field, inverts extremely sharply above a predetermined electric field, and exhibits other states (eg, transmissive), and vice versa. It is a phenomenon that makes it more impermeable. That is, Ec includes Ec + (a critical electric field observed when a positive electric field is applied) and conversely, Ec− (an electric field existing when a negative electric field is applied).
しかしかかるEc+とEc−はスメクチック液晶において
はきわめてその存在が乏しく、特にカイラルスメクチッ
クC相を発現する液晶においては、この液晶の印加する
パルス電界の電界強度とそのパルス巾との値に大きく依
存している。そのためマトリックス表示においては「AC
駆動法」として知られている駆動方式を用いなければな
らない。即ち、正方向に書き換えんとする時、一度負の
パルスを加え、次に正のパルスを所定の電界強度と時間
とを精密に制御して加える。また逆に、負方向に書き換
えんとする場合も一度正のパルスを加え、次に負のパル
スを所定の電界強度と時間との精密な制御のもとに加え
なければならない。However, such Ec + and Ec- are extremely scarce in the smectic liquid crystal, and particularly in the liquid crystal exhibiting the chiral smectic C phase, they greatly depend on the electric field strength of the pulse electric field applied by the liquid crystal and its pulse width. ing. Therefore, in the matrix display, "AC
The drive method known as "drive method" must be used. That is, when rewriting in the positive direction, a negative pulse is added once, and then a positive pulse is added by precisely controlling the predetermined electric field strength and time. On the contrary, when rewriting in the negative direction, a positive pulse must be added once, and then a negative pulse must be added under the precise control of a predetermined electric field strength and time.
『発明が解決しようとする問題点』 かくの如きスメクチック液晶であって、特に強誘電性
液晶として用いんとした時、これまでの技術では前記し
た如き「AC駆動法」を用いなければならない。また、表
面安定化したFLC(Surface Stabilized FLCまたはSSFLC
という)技術を用いなければならない。しかしかかる技
術はグレイスケールが出しにくく、表面というきわめて
不安定な面の物性を用いなければならないという大きな
欠点を有していた。このためSSFLC技術を用いない手段
が求められていた。本発明はかかる発明を実効するため
になされたものである。[Problems to be Solved by the Invention] When a smectic liquid crystal like this is used as a ferroelectric liquid crystal in particular, the "AC driving method" as described above must be used in the conventional technology. In addition, surface stabilized FLC (Surface Stabilized FLC or SSFLC)
Technology) must be used. However, such a technique has a major drawback in that it is difficult to produce gray scale and the physical properties of the surface, which is extremely unstable, must be used. For this reason, there has been a demand for means that does not use SSFLC technology. The present invention has been made in order to carry out the invention.
本発明はかかる強誘電性液晶を用いた場合、液晶それ
自体にEcを有することを求めるのではなくこの液晶と配
向膜(配向処理)とを一体物とみなし、その全体で実質
的に有効なEcを得んとしたものである。In the present invention, when such a ferroelectric liquid crystal is used, the liquid crystal itself is not required to have Ec, but the liquid crystal and the alignment film (alignment treatment) are regarded as an integral body, and the whole is substantially effective. Ec is what you get.
『問題を解決するための手段』 かかる問題を解くため、本発明はEcを決定する要素と
してFLCに密接または実質的に密接(互いに電気的影響
を及ぼしつつも離れている)する一方または双方の配向
処理面の下層(電極側の層)として、または配向膜それ
自体として、自発分極の向きが液晶に近い側を一方の極
(正または負に固定された極)となるべく配設した強誘
電体(以下FEともいう)を設けたものである。そしてこ
のスメクチック液晶の強誘電体の向きを実質的にFEの有
する一方の極の向きにより決めんとするものである。言
い換えれば、SSFLCに示される如く、表面によって決め
られるのではなく、FEのもつ自発分極の向きにより決め
ることができる。[Means for Solving the Problem] In order to solve such a problem, the present invention makes one or both of close or substantially close contact with FLC as a factor for determining Ec (they are electrically separated from each other). Ferroelectric which is arranged as a lower layer (layer on the electrode side) of the orientation-treated surface or as the orientation film itself so that the side where the spontaneous polarization direction is closer to the liquid crystal is one pole (the pole fixed to positive or negative). The body (hereinafter also referred to as FE) is provided. The direction of the ferroelectric substance of this smectic liquid crystal is determined substantially by the direction of one pole of FE. In other words, as shown in SSFLC, it can be determined not by the surface but by the direction of the spontaneous polarization of FE.
即ち、本発明においてはこのFEを配向処理面下に一方
の向きに自発分極を固定して配設する、または配向膜の
一部にFEを混合(ブレンド)し、かつその自発分極の向
きを固定して下層として用いる。この配向膜部が固定し
た自発分極を有し、かつその平均厚さを5000Å以下、例
えば200〜300Åとする。その結果、FLCがFEのもつ固有
の極の向きより一方の向きを自ら向いている状態を第1
の安定な配向として用いる。さらに次にそれを挟む一対
の電極に加える電圧により他方の逆向きにFLCを配向さ
せることにより、第2の安定な配向として用いる。する
とこの方式はいわゆるSSFLCではなく、固定電荷配向(F
CS即ちFixed Charge Stabilized)方式とする。That is, in the present invention, this FE is arranged below the orientation-treated surface while fixing the spontaneous polarization in one direction, or FE is mixed (blended) with a part of the alignment film and the direction of the spontaneous polarization is changed. It is fixed and used as the lower layer. The orientation film portion has a fixed spontaneous polarization and its average thickness is 5000 Å or less, for example, 200 to 300 Å. As a result, the first condition is that the FLC faces itself in one direction rather than the unique pole direction of FE.
It is used as a stable orientation of. Further, the FLC is oriented in the opposite direction to the other by the voltage applied to the pair of electrodes sandwiching it, and is used as the second stable orientation. Then this method is not so-called SSFLC, but fixed charge orientation (F
CS or Fixed Charge Stabilized) method.
その縦断面図の一例を第1図に示す。 An example of the vertical sectional view is shown in FIG.
第1図において強誘電性液晶(FLC)は間隙(1)に
最終工程で充填される。この図面では、配向膜(2),
(2′),FEを含有する膜(3),(3′),一対を構
成する透光性電極(4),(4′),さらに透光性基板
(5),(5′)を有する。この配向膜(3)または
(3′)の液晶に接する表面の一方をラビングし配向処
理面として用いる。In FIG. 1, the ferroelectric liquid crystal (FLC) is filled in the gap (1) in the final step. In this drawing, the alignment film (2),
(2 '), FE-containing films (3), (3'), a pair of translucent electrodes (4), (4 '), and translucent substrates (5), (5'). Have. One of the surfaces of the alignment film (3) or (3 ') in contact with the liquid crystal is rubbed and used as an alignment treated surface.
そして配向膜中に存在するFEは液晶が(1)に充填さ
れた後は、電圧により向きを変えることができないよう
にする。The FE existing in the alignment film prevents the direction from being changed by the voltage after the liquid crystal is filled in (1).
その工程を略記すると以下の如くである。即ち電極
(4),(4′)を形成の後、その電極の一方または双
方上にこのFEを有機樹脂中にブレンドし、塗布する。そ
して溶融状態またはプリベークがなされている状態で、
この一対の電極間に直流の電圧を印加する。この直流の
高電圧のため、FEの分極した極は一方の向きに配向す
る。The process is abbreviated as follows. That is, after forming the electrodes (4) and (4 '), the FE is blended in an organic resin and applied onto one or both of the electrodes. And in the molten state or the state where prebaking is done,
A direct current voltage is applied between the pair of electrodes. Due to this high DC voltage, the polarized poles of the FE are oriented in one direction.
例えば上側の電極(4)が下側の電極(4′)に対し
正の直流電圧が印加されるとFE(3),(3′)は液晶
が充填されるべき空間(1)側にそれぞれ相対的に正及
び負の極が存在する如く配設される。For example, when a positive DC voltage is applied to the upper electrode (4) with respect to the lower electrode (4 '), FEs (3) and (3') are respectively placed on the space (1) side where the liquid crystal should be filled. Arranged such that there are relatively positive and negative poles.
かくの如く直流の電圧を印加しつつ、これら全体を加
熱し、FEをブレンドした有機樹脂を熱硬化させる。As described above, while applying the DC voltage, the whole is heated to thermally cure the FE-blended organic resin.
するとこの結果、FEは液晶の充填される側に一方の極
があるため、次に空間(1)にFLCを充填してもこの向
きはFEの分極の極性に伴って配向することが可能とな
る。Then, as a result, since FE has one pole on the side where the liquid crystal is filled, even if the space (1) is filled with FLC next, this direction can be oriented according to the polarization polarity of FE. Become.
さらに次の工程で、このFEを十分固定した後、再びこ
の一対の基体の一方に対しラビング処理を施し、十分洗
浄した後、この第1図の空間(1)に対し所望のFLCを
充填し液晶装置とする。In the next step, after sufficiently fixing the FE, one of the pair of substrates is again rubbed and thoroughly washed, and then the desired FLC is filled in the space (1) in FIG. Liquid crystal device.
本発明においては、電圧を印加しない時にFLCの向き
は自ずから一方に配向するようになる。即ち、FLCは上
側(3)に負極側が、下側(3′)に正極側が、外部よ
り何らの電圧を印加しなくても配向させ得る。In the present invention, the FLC is naturally oriented in one direction when no voltage is applied. That is, the FLC can be oriented on the upper side (3) on the negative electrode side and on the lower side (3 ') on the positive electrode side without applying any voltage from the outside.
そして他方に配向させる場合には電極間に他方の配向
とするべく電圧を印加させんとするものである。When the other orientation is applied, a voltage is applied between the electrodes so that the other orientation is achieved.
かかるFEは第1図は(3),(3′)に示したが、そ
の一方(3)のみまたは(3′)のみとしてもよい。ま
た配向膜(2),(2′)と一方または双方はかねて用
いてもよいことはいうまでもない。Although such FE is shown in FIGS. 1 (3) and (3 '), only one of them (3) or (3') may be used. Needless to say, one or both of the alignment films (2) and (2 ') may be used as the former.
『作用』 その結果、これを大面積またはマトリックス構成とせ
しめた場合でも、このFEの固定分極電荷配向によりFLC
の充填プロセスに対し大きなマージンをもって作ること
ができる。また他方の向きにFLCを再配向させるのに加
える電圧は、上側電極(4)を負の電極とすればよく、
その場合、FLCにとってはFEの固定分極によって発生
する電界との差で行わしめるため、これまでのSSFLC方
式ではまったく不可能であったグレースケールの成就の
可能性すら有する。"Action" As a result, even if it is made to have a large area or matrix structure, the FLC is caused by the fixed polarization charge orientation of this FE.
Can be made with a large margin for the filling process. The voltage applied to reorient the FLC in the other direction may be such that the upper electrode (4) is the negative electrode,
In that case, FLC can do so by the difference from the electric field generated by the fixed polarization of FE, so there is even a possibility of achieving gray scale, which was completely impossible with the SSFLC method up to now.
以下に本発明の実施例を示す。 Hereinafter, examples of the present invention will be described.
『実施例1』 第1図は本発明の構成の縦断面図である。Example 1 FIG. 1 is a vertical sectional view of the constitution of the present invention.
図面において、ガラス基板(5),(5′)上に透明
導電膜(4),(4′)、例えばITO(酸化インジュー
ム・スズ)、さらにこの一方の上面に第1のFEを含有す
る有機膜(3)および配向膜(2)を設けた。他方、他
の電極(4′)の上面に第2のFEを有する膜(3′)お
よび配向膜(2′)を設けた。In the drawing, transparent conductive films (4) and (4 ') are formed on glass substrates (5) and (5'), for example ITO (indium tin oxide), and a first FE is contained on the upper surface of one of them. An organic film (3) and an alignment film (2) were provided. On the other hand, a film (3 ') having a second FE and an alignment film (2') were provided on the upper surface of the other electrode (4 ').
即ちFEとしてここでは有機物を用いた。例えばビニリ
デンフロライド(CH2CF2)n)(VDFという)にトリフ
ロロエチレン(TrFE)を重合し、コポリマとして用い
た。これをスピン法にて電極上に添加し薄膜とするた
め、これを10重量%メチル・エチル・ケトン溶液にとか
した。さらにFEを固定分極させるため、ポリイミド系の
樹脂にブレンドを行った。スピンコートすると、この薄
め方とスピナの回転スピードに従って、FEを含むブレン
ド有機物(3),(3′)の厚さを制御できる。That is, an organic material was used here as FE. For example, vinylidene fluoride (CH 2 CF 2 ) n) (referred to as VDF) was polymerized with trifluoroethylene (TrFE) and used as a copolymer. This was added to the electrode by the spin method to form a thin film, and this was dissolved in a 10 wt% methyl ethyl ketone solution. Furthermore, in order to make FE fixedly polarized, it was blended with a polyimide resin. By spin coating, the thickness of the blended organic substances (3) and (3 ′) containing FE can be controlled according to the thinning method and the rotation speed of the spinner.
これのプリベークを約70℃で行った。さらにこれらを
一体化した基体を一定の間隔をおいて他の基体と配向せ
しめ、ここに約20〜100V例えば50Vの電圧を全体に印加
し、膜(3),(3′)中のFEが一方の極に分極すべく
行った。This was prebaked at about 70 ° C. Further, the substrate in which these are integrated is orientated at a certain interval with respect to the other substrate, and a voltage of about 20 to 100 V, for example, 50 V is applied to the entire substrate so that the FE in the films (3) and (3 ') is It was done to polarize to one pole.
この後、この有機樹脂膜内の不要溶液を加熱気化除去
かつ熱硬化を行った。本発明においては、この有機物
(3),(3′)の表面をより滑らかにするため、さら
にこのFE上に対しポリイミド配向膜(2)をきわめて薄
く形成した。さらにこの一方に対してラビング処理を施
し、配向させ、配向膜部(6)とした。他の電極上には
同様のポリイミド配向膜(2′)を形成させ、他の配向
膜部(6′)とした。この側の表面に対しては、ラビン
グ処理を施すことを省略し非対称配向膜とした。After that, the unnecessary solution in the organic resin film was removed by vaporization by heating and thermosetting. In the present invention, in order to make the surfaces of the organic substances (3) and (3 ') smoother, the polyimide alignment film (2) is formed extremely thin on the FE. Further, a rubbing treatment was performed on one of the surfaces to orient it to form an orientation film portion (6). A similar polyimide alignment film (2 ') was formed on the other electrode to form another alignment film portion (6'). The rubbing treatment was omitted on the surface on this side to form an asymmetric alignment film.
次にこの配向膜が形成された一対の基板の周辺部を互
いに封止(図示せず)し、公知の方法にてFLCを充填し
た。このFLCは、例えばエステル系とビフェル系のFLC1:
1のブレンド品を用いた。又例えば特開昭56−107216、
特開昭59−98051、特開昭59−118744に示される液晶を
用いてもよい。Next, the peripheral portions of the pair of substrates on which the alignment films were formed were sealed (not shown) with each other and filled with FLC by a known method. This FLC is, for example, an ester-based and bifel-based FLC1:
A blend of 1 was used. Further, for example, JP-A-56-107216,
The liquid crystals disclosed in JP-A-59-98051 and JP-A-59-118744 may be used.
本実施例において、固定分極を成就するためのFEとブ
レンドする有機樹脂およびその上の配向膜または配向処
理面下の有機樹脂としてポリイミドを用いたが、他の物
質(例えばナイロン)でもよい。またこれらの被膜の形
成方法として、他の形成方法(例えばスパッタリング
法、DIP法、スクリーン印刷法等)でも可能である。In this embodiment, polyimide is used as the organic resin blended with FE for achieving the fixed polarization and the alignment film on the organic resin or the organic resin under the alignment treatment surface, but other substances (for example, nylon) may be used. Further, as a method for forming these coatings, other forming methods (for example, a sputtering method, a DIP method, a screen printing method, etc.) are also possible.
かかるセルの各ピクセルの電極は1mm×1mmとし、2×
2のマトリックス構成させた。電圧をまったく印加しな
い時(OVの時)系のすべてのピクセルは黒の非透過(偏
向膜の配設向きによりすべて透過も可)となった。そし
て分極の向きと異なる電圧例えば+20Vの電圧を第2の
電極(4′)に加えた。するとこの電圧を加えた部分の
み透過となった。また電圧を0とすると非透過となっ
た。即ち電圧を0または正(または分極の向きにより0
または負の電極)即ちー極性電圧でもFLCの動作が可能
であることが判明した。The electrode of each pixel of such cell is 1mm x 1mm, 2x
Two matrix configurations were made. When no voltage was applied at all (at OV), all pixels in the system were black non-transmissive (all transmissive depending on the orientation of the deflection film). Then, a voltage different from the direction of polarization, for example, a voltage of +20 V was applied to the second electrode (4 '). Then, only the part to which this voltage was applied became transparent. Further, when the voltage was set to 0, it became opaque. That is, the voltage is 0 or positive (or 0 depending on the direction of polarization).
It was found that the FLC can be operated even with a negative electrode), that is, with a negative polarity voltage.
第3図(A)は縦軸に透過率(フォトマルで電気信号
に変換)、横軸に印加時間を示している。また第3図
(B)はそれに対応して一定の電圧(+20V83μ秒)を
間歇的(17m秒毎)に加えた場合(領域(10),(1
0′))と加えない場合(領域(11))とを示してい
る。すると第3図(B)の如く、電圧を0とすると領域
(11)で第3図(A)の如く非透過(15)となり、また
電圧を直流のみならずACパルスを加えた(領域(10))
場合でもそのパルス巾および高さを制御すれば透過状態
(第3図(A)(16))を成就できることが判明した。In FIG. 3 (A), the vertical axis represents the transmittance (converted into an electric signal by photomal) and the horizontal axis represents the application time. In addition, Fig. 3 (B) shows that when a constant voltage (+ 20V, 83μs) is applied intermittently (every 17msec) (region (10), (1
0 ')) and no addition (area (11)). Then, as shown in FIG. 3 (B), when the voltage is set to 0, the region (11) becomes non-transparent (15) as shown in FIG. 3 (A), and the voltage is not only DC but also AC pulse is applied (region ( Ten))
Even in such a case, it was found that the transmission state (Figs. 3 (A) and (16)) can be achieved by controlling the pulse width and height.
図面においてオンからがオフに移る速度が少し遅い
が、これは液晶の改良により可となると推定できる。ま
たオフにする際、FLCの再配列を助けるべく若干逆の電
圧を加えてもよい。さらにFEの固定分極の値を大きくす
ればよい。In the drawing, the speed of transition from on to off is slightly slower, but it can be estimated that this is possible due to the improvement of the liquid crystal. When turned off, a slightly opposite voltage may be applied to help rearrange FLCs. Further, the value of the fixed polarization of FE may be increased.
そしてかかるー極性駆動方式(液晶装置に0および
正、または0および負の電圧を印加させることにより、
液晶を駆動する方式)により、例えば720×480画素を有
する大面積のディスプレイに対してもまったくクロスト
ークのない表示をさせることが可能となり得る。And such a-polarity drive method (by applying 0 and positive voltage or 0 and negative voltage to the liquid crystal device,
By the method of driving the liquid crystal), it may be possible to display without crosstalk at all even for a large area display having, for example, 720 × 480 pixels.
またFE膜は、一般に化学的に不安定で、溶媒や液晶自
身により分解または溶解する可能性があるが、本発明の
ように配向膜中または配向処理面の有機物中に固定分極
方式のFEを設けることによりこれまで動作不安定なSSFL
Cを避けて駆動させることが可能となった。Further, the FE film is generally chemically unstable and may be decomposed or dissolved by a solvent or liquid crystal itself, but as in the present invention, a fixed polarization type FE is used in the alignment film or the organic substance on the alignment treated surface. SSFL has been unstable until now by providing
It became possible to drive while avoiding C.
『効果』 本発明は以上に示す如く、固定分極化した強誘電体を
配向膜の一部とし、それを一方または双方に配設したも
のである。そのためより一層Ecの明確な液晶装置を得る
ことができた。[Effect] As described above, the present invention is one in which a fixedly polarized ferroelectric substance is used as a part of the alignment film and is provided on one or both of the alignment films. Therefore, it was possible to obtain a liquid crystal device having a more clear Ec.
またFE膜上の配向膜は液晶を配向させるだけではな
く、化学的に不安定なFE膜を実質的に覆う保護膜として
機能している。The alignment film on the FE film not only aligns the liquid crystal, but also functions as a protective film that substantially covers the chemically unstable FE film.
またこの強誘電体(FE)は第1図の電極等の上のみに
選択的に形成しても、また電極を含む全面に形成しても
よい。Further, the ferroelectric substance (FE) may be selectively formed only on the electrodes in FIG. 1 or the like, or may be formed on the entire surface including the electrodes.
この液晶装置は単にディスプレイのみならずスピー
カ、プリンタまたはディスクメモリ、イメージセンサ用
のシャッタに対しても適用でき、スメクチック液晶の光
学異方性の適用可能な製品に適用できる。This liquid crystal device can be applied not only to a display but also to a speaker, a printer or a disk memory, a shutter for an image sensor, and can be applied to a product to which the optical anisotropy of smectic liquid crystal can be applied.
第1図は本発明の液晶装置の縦断面図である。 第2図は本発明で得られた結果の一例を示す。 FIG. 1 is a longitudinal sectional view of the liquid crystal device of the present invention. FIG. 2 shows an example of the results obtained by the present invention.
Claims (9)
電極と、 前記基板の少なくとも一方の内側に設けられた強誘電性
薄膜とを有し、 前記強誘電性薄膜は、有機樹脂と強誘電性物質との混合
物でなり、双極子モーメントが前記基板に垂直に固定さ
れていることを特徴とする液晶装置。1. A first substrate, a second substrate having a light-transmitting property, a liquid crystal layer disposed between the first and second substrates, and provided on the first and second substrates. A striped electrode and a ferroelectric thin film provided on the inner side of at least one of the substrates, the ferroelectric thin film is a mixture of an organic resin and a ferroelectric substance, and has a dipole. A liquid crystal device, wherein a moment is fixed vertically to the substrate.
電性薄膜は配向処理されていることを特徴とする液晶装
置。2. A liquid crystal device according to claim 1, wherein the ferroelectric thin film is oriented.
電性物質は、ビニリデンフロライドとトリフロロエチレ
ンでなる重合体であることを特徴とする液晶装置。3. A liquid crystal device according to claim 1, wherein the ferroelectric substance is a polymer composed of vinylidene fluoride and trifluoroethylene.
層は強誘電性液晶であることを特徴とする液晶装置。4. A liquid crystal device according to claim 1, wherein the liquid crystal layer is a ferroelectric liquid crystal.
電性薄膜のしきい値は、前記液晶層のしきい値より大き
いことを特徴とする液晶装置。5. The liquid crystal device according to claim 1, wherein the threshold value of the ferroelectric thin film is larger than the threshold value of the liquid crystal layer.
混合物を塗布して薄膜を形成する工程と、 前記薄膜に対し、前記基板に対して垂直な方向に電界を
印加する工程と、 前記薄膜を硬化する工程と、 前記基板を対向基板と貼り合わせる工程と、 前記基板間に液晶層を配置する工程とでなることを特徴
とする液晶装置の作製方法。6. A step of applying a mixture of a ferroelectric substance and an organic resin on a substrate to form a thin film, and a step of applying an electric field to the thin film in a direction perpendicular to the substrate. A method of manufacturing a liquid crystal device, comprising: a step of curing the thin film; a step of adhering the substrate to a counter substrate; and a step of disposing a liquid crystal layer between the substrates.
上に電極を配置する工程を有することを特徴とする液晶
装置の作製方法。7. A method for manufacturing a liquid crystal device according to claim 6, further comprising the step of disposing electrodes on the substrate.
する工程は、前記強誘電性物質と有機樹脂とを溶媒で希
釈して、前記基板上に薄膜状に塗布し、焼成により溶媒
を除去して実施されることを特徴とする液晶装置の作製
方法。8. The method according to claim 7, wherein in the applying step, the ferroelectric substance and the organic resin are diluted with a solvent and applied in a thin film on the substrate, and the solvent is applied by baking. A method for manufacturing a liquid crystal device, which is carried out after removal.
印加工程は、一対の基板間に配置された一対の電極に、
電圧を印加して行われることを特徴とする液晶装置の作
製方法。9. The electric field applying step according to claim 6, wherein the pair of electrodes is disposed between the pair of substrates.
A method for manufacturing a liquid crystal device, which is performed by applying a voltage.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61288527A JP2562585B2 (en) | 1986-12-02 | 1986-12-02 | Liquid crystal device and method for manufacturing liquid crystal device |
US07/094,872 US4850680A (en) | 1986-09-19 | 1987-09-10 | Liquid crystal device with a ferroelectric film |
US07/184,009 US4919633A (en) | 1986-09-19 | 1988-04-20 | Liquid crystal device with a ferroelectric film and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61288527A JP2562585B2 (en) | 1986-12-02 | 1986-12-02 | Liquid crystal device and method for manufacturing liquid crystal device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63141024A JPS63141024A (en) | 1988-06-13 |
JP2562585B2 true JP2562585B2 (en) | 1996-12-11 |
Family
ID=17731389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61288527A Expired - Fee Related JP2562585B2 (en) | 1986-09-19 | 1986-12-02 | Liquid crystal device and method for manufacturing liquid crystal device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2562585B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11600712B2 (en) | 2018-12-21 | 2023-03-07 | Samsung Electronics Co., Ltd. | Ferroelectric structure including a ferroelectric film having a net polarization oriented to a polarization enhancement film and semiconductor device including the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0774873B2 (en) * | 1984-07-03 | 1995-08-09 | 株式会社ニコン | Liquid crystal display |
JPH0731324B2 (en) * | 1985-01-07 | 1995-04-10 | セイコーエプソン株式会社 | Liquid crystal electro-optical device |
-
1986
- 1986-12-02 JP JP61288527A patent/JP2562585B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11600712B2 (en) | 2018-12-21 | 2023-03-07 | Samsung Electronics Co., Ltd. | Ferroelectric structure including a ferroelectric film having a net polarization oriented to a polarization enhancement film and semiconductor device including the same |
US12176413B2 (en) | 2018-12-21 | 2024-12-24 | Samsung Electronics Co., Ltd. | Ferroelectric structure including a ferroelectric film having a first net polarization oriented toward a first polarization enhancement film and semiconductor device including the same |
Also Published As
Publication number | Publication date |
---|---|
JPS63141024A (en) | 1988-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5831704A (en) | Alignment layer including electrodeposited layer for liquid crystal display device and method for fabricating | |
US4775225A (en) | Liquid crystal device having pillar spacers with small base periphery width in direction perpendicular to orientation treatment | |
JPS62159124A (en) | Liquid crystal device | |
US5838410A (en) | Optical modulation element | |
JPH08122750A (en) | Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method | |
US4846560A (en) | Liquid crystal device with ferroelectric liquid crystal oriented at non-pixel portions | |
JP2759581B2 (en) | Rubbing apparatus and rubbing method | |
JPH052209B2 (en) | ||
JPH03164713A (en) | Ferrodielectric liquid crystal electrooptical device and its production | |
JP2562585B2 (en) | Liquid crystal device and method for manufacturing liquid crystal device | |
JPS63141025A (en) | Liquid crystal device | |
JP2620066B2 (en) | Liquid crystal device | |
EP0200427A1 (en) | Chiral smectic liquid crystal electro-optical device and method of driving same | |
JPH052210B2 (en) | ||
JP2761581B2 (en) | Liquid crystal device | |
JP3176079B2 (en) | Optical modulator | |
JPH0711632B2 (en) | Voltage application method for chiral smectic liquid crystal device | |
JP2761583B2 (en) | Driving method of liquid crystal device | |
JPS63168628A (en) | Liquid crystal device | |
JP2505751B2 (en) | Optical modulator | |
JP2819822B2 (en) | Ferroelectric liquid crystal panel | |
JP2598276B2 (en) | Ferroelectric liquid crystal device | |
JPH06118418A (en) | Optical modulation element | |
KR20030079221A (en) | Method of producing FLCD | |
JPS61203426A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |