JP2559718B2 - Heat resistant catalyst for catalytic combustion reaction and method for producing the same - Google Patents
Heat resistant catalyst for catalytic combustion reaction and method for producing the sameInfo
- Publication number
- JP2559718B2 JP2559718B2 JP61286730A JP28673086A JP2559718B2 JP 2559718 B2 JP2559718 B2 JP 2559718B2 JP 61286730 A JP61286730 A JP 61286730A JP 28673086 A JP28673086 A JP 28673086A JP 2559718 B2 JP2559718 B2 JP 2559718B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- resistant catalyst
- catalyst
- alkoxide
- catalyst according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Catalysts (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性触媒、特に触媒燃焼等の反応に使用さ
れる耐熱性に優れた高活性の触媒と、その製造方法に関
するものである。Description: TECHNICAL FIELD The present invention relates to a heat-resistant catalyst, particularly a highly active catalyst having excellent heat resistance and used for a reaction such as catalytic combustion, and a method for producing the same.
(従来の技術) 触媒燃焼のための触媒は、自動車排ガス中の一酸化炭
素及び炭化水素類の燃焼除去、工場排ガスの除害、脱
臭、無炎燃焼等に今日広く用いられているが、その多く
は触媒の耐熱性が不充分なため、触媒の使用温度を約80
0℃以下に限定又は制御することで触媒の活性低下を防
ぐなどの特別な配慮の下で使用している。従って、耐熱
性の一段と優れた触媒が渇望されてきた。さらに近年、
ガスタービン、ボイラー及びジェットエンジン等の分野
に於いても、より高温で触媒燃焼を行なうことが注目さ
れるようになり、その要請に答え得る触媒、例えば1200
℃を越える高温でもなお且つ高い活性を維持する耐熱性
高活性触媒の出現が強く望まれるようになってきた。(Prior Art) Catalysts for catalytic combustion are widely used today for combustion removal of carbon monoxide and hydrocarbons in automobile exhaust gas, detoxification of factory exhaust gas, deodorization, flameless combustion, etc. Since the heat resistance of many catalysts is insufficient, the catalyst operating temperature should be about 80
It is used under special consideration, such as limiting or controlling the temperature to 0 ° C or lower to prevent the activity of the catalyst from decreasing. Accordingly, there has been a desire for a catalyst having even better heat resistance. More recently,
In the field of gas turbines, boilers, jet engines, etc., attention has been paid to performing catalytic combustion at a higher temperature.
The emergence of a heat-resistant and highly active catalyst that maintains a high activity even at a high temperature exceeding ℃ has been strongly desired.
耐熱性触媒は通常耐熱性の触媒担体に触媒成分を担持
することにより得られる。本発明者等はこの観点から、
現在広く使用されている触媒担体のうち最も耐熱性に優
れているアルミナ担体をベースとしながら、遥かに耐熱
性に優れた耐熱性組成物の開発を進め、既にその成果と
して特願昭60−189967号として、MeO・6Al2O3(MeはCa
及び/又はBa及び/又はSr)を主成分として含む組成物
が耐熱性に特に優れた触媒担体となり得ることを示して
いる。The heat resistant catalyst is usually obtained by supporting a catalyst component on a heat resistant catalyst carrier. From the viewpoint of the present inventors,
Based on the most heat-resistant alumina carrier among the widely used catalyst carriers at present, we have been developing a heat-resistant composition with much better heat resistance. No. is MeO.6Al 2 O 3 (Me is Ca
And / or Ba and / or Sr) as a main component can be a catalyst carrier having particularly excellent heat resistance.
さらに本発明者等は特願昭61−140287号として、MeO
・6Al2O3を主成分とする前記組成物がアルミニウム及び
Meで表される金属の複合及び/又は混合アルコキシドよ
り製造される時、さらに優れた耐熱性組成物となること
を示し、またその好適な製造方法を提案している。Furthermore, the present inventors have filed a MeO patent application as Japanese Patent Application No. 61-140287.
The composition containing 6Al 2 O 3 as a main component is aluminum and
It has been shown that an excellent heat-resistant composition can be obtained when it is produced from a composite and / or mixed alkoxide of a metal represented by Me, and a suitable production method thereof is proposed.
(発明が解決しようとする問題点) MeO・6Al2O3(MeはCa,Ba又はSr)を主成分とする触媒
担体に含浸又はコーティングにより触媒成分を担持した
触媒は、従来のアルミナ担持触媒に比べれば著しく耐熱
性の優れた触媒であるが、1200℃を越えるような高温で
触媒燃焼反応等の触媒として用いた場合には、担持した
触媒成分の焼結が起り、そのための触媒活性の低下は避
けられず、触媒担体の優れた耐熱性が充分には生かされ
なかった。(Problems to be Solved by the Invention) A catalyst obtained by impregnating or coating a catalyst carrier containing MeO.6Al 2 O 3 (Me is Ca, Ba or Sr) as a main component with the catalyst component is a conventional alumina-supported catalyst. Although it is a catalyst with significantly superior heat resistance compared to, when it is used as a catalyst for catalytic combustion reaction at a high temperature of over 1200 ° C, the carried catalyst component sinters and the catalytic activity The decrease was inevitable, and the excellent heat resistance of the catalyst carrier was not fully utilized.
本発明はこの欠点を排除し、一層耐熱性の優れた触媒
を提供することを目的とする。An object of the present invention is to eliminate this drawback and to provide a catalyst having more excellent heat resistance.
(問題点を解決するための手段) 本発明者等はこのような一層耐熱性の優れた触媒を得
るため鋭意実験と研究を行った結果、触媒活性成分と触
媒担体成分の特殊な結合物を造ることにより極めて高活
性でしかも耐熱性の優れた触媒が得られることを見出
し、本発明を完成した。即ち、本発明は組成式ABxAl
12-yO19−α(式中AはBa及びSrより成る群から選択し
た1種以上の元素、BはMn,Co,Fe,Cu及びCrより成る群
から選択した1種以上の元素、xは約0.1〜4の範囲内
の数、yはx〜2xの範囲内の数、αは元素Bの価数Zに
よって定まり、 で表される数を示す)で表される組成物を主成分として
含有する耐熱性触媒である。(Means for Solving the Problems) The inventors of the present invention have conducted diligent experiments and research to obtain such a catalyst having more excellent heat resistance, and as a result, have found that a special combination of the catalytically active component and the catalyst carrier component has been found. It was found that a catalyst having extremely high activity and excellent heat resistance can be obtained by the production, and the present invention has been completed. That is, the present invention is a composition formula AB x Al
12-y O 19-α (wherein A is one or more elements selected from the group consisting of Ba and Sr, B is one or more elements selected from the group consisting of Mn, Co, Fe, Cu and Cr, x is a number in the range of about 0.1 to 4, y is a number in the range of x to 2x, α is determined by the valence Z of the element B, The heat-resistant catalyst contains a composition represented by the formula (1) as a main component.
本発明の触媒は特に触媒燃焼用触媒に適するものであ
るが、この用途に限定されるものではなく、高温度を必
要とする他の多くの反応にも使用できる。The catalyst of the present invention is particularly suitable as a catalyst for catalytic combustion, but is not limited to this application and can be used in many other reactions requiring high temperatures.
本発明はさらに、アルミニウム及びAがCa,Ba及びSr
より成る群から選択した1種以上の元素で表わされる金
属の複合又は混合アルコキシドを原料として用いて本発
明の耐熱性触媒を製造する方法を提供する。このアルコ
キシド法によれば、固体混合法、水溶液からの沈殿法等
の通常の触媒又は触媒担体の製造に使用される方法によ
るよりも、さらに優れた耐熱性をもつ触媒の提供が可能
となる。The present invention further provides that aluminum and A are Ca, Ba and Sr.
There is provided a method for producing a heat-resistant catalyst of the present invention using as a raw material a composite or mixed alkoxide of a metal represented by one or more elements selected from the group consisting of: According to this alkoxide method, it becomes possible to provide a catalyst having further excellent heat resistance as compared with the methods generally used for the production of catalysts or catalyst carriers such as the solid mixing method and the precipitation method from an aqueous solution.
本発明の耐熱性触媒中の元素Aの含有量が元素BとAl
の合計原子数100原子に対して8.3原子の場合、ABxAl
12-yO19−α組成物は最も安定した耐熱性の良い形とな
るが、元素Aの含有量はこの割合に限定されるものでは
なく、A:(B+Al)の割合は原子比として8.3:100に近
い値即ち約7〜9:100の範囲の値をとることが特に望ま
しいが、約2.5〜10:100の割合の値であっても良い。元
素Aの割合がこの範囲を越えて大きい場合はAO又はAO・
Al2O3、小さい場合はAl2O3として触媒中に存在する部分
が多くなり過ぎ、高温下でのそれらの酸化物の焼結に基
づく比表面積の低下が起こり、ひいては触媒活性の低下
が起るので好ましくない。The content of the element A in the heat-resistant catalyst of the present invention is such that the elements B and Al
If the total number of atoms of is 8.3 for 100 atoms, AB x Al
The 12-y O 19-α composition has the most stable and heat-resistant form, but the content of the element A is not limited to this ratio, and the ratio of A: (B + Al) is 8.3 atomically. It is particularly preferable to take a value close to: 100, that is, a value in the range of about 7 to 9: 100, but a value of a ratio of about 2.5 to 10: 100 may be used. If the ratio of element A exceeds this range, AO or AO.
Al 2 O 3 , if it is small, the amount of Al 2 O 3 present in the catalyst will be too large, and the specific surface area will decrease due to the sintering of these oxides at high temperatures, which in turn lowers the catalytic activity. It is not preferable because it will occur.
本発明の耐熱性触媒に含まれるABxAl12-yO19−α中の
活性成分Bの量を示すxの値は約0.1〜4特に約0.2〜3
の範囲内にあることが望ましい。xが0.1より小さい場
合には活性成分Bの不足により活性効果が充分でなく、
xが4より大きい場合は、活性元素Bを層状アルミネー
ト構造をとるABxAl12-yO19−α組成物結晶構造中にうま
く取り込めず、余った元素Bが単独の酸化物とて析出
し、焼結による活性低下を惹き起す原因となる。因み
に、本発明者等は、本発明の耐熱性触媒の主成分である
ABxAl12-yO19−α組成物がBaO・6Al2O3の示すマグネト
プランバイト類似構造又はβ−アルミナ類似構造等の層
状アルミネート構造をとるものとX線回折結果より推定
しており、これが耐熱性を付与するものと考えられてい
る。The value of x, which indicates the amount of the active ingredient B in AB x Al 12-y O 19-α contained in the heat-resistant catalyst of the present invention, is about 0.1 to 4, particularly about 0.2 to 3.
It is desirable to be within the range. When x is less than 0.1, the active effect is not sufficient due to lack of active ingredient B,
When x is larger than 4, the active element B cannot be incorporated into the crystal structure of the AB x Al 12-y O 19-α composition having the layered aluminate structure well, and the excess element B is precipitated as a single oxide. However, this causes a decrease in activity due to sintering. By the way, the present inventors are the main component of the heat-resistant catalyst of the present invention.
It is estimated from the X-ray diffraction results that the AB x Al 12-y O 19-α composition has a layered aluminate structure such as a magnetoplumbite-like structure or a β-alumina-like structure represented by BaO · 6Al 2 O 3. It is believed that this imparts heat resistance.
耐熱性組成物ABxAl12-yO19−αを構成するアルミナ並
びに元素A及びBの酸化物の他に、シリカ、希土類酸化
物及びアルカリ金属酸化物等の耐熱性を与える第三成分
を、耐熱性触媒中に少量含むことは本発明の範囲を逸脱
するものではない。In addition to the alumina and the oxides of the elements A and B constituting the heat-resistant composition AB x Al 12-y O 19-α , a third component that imparts heat resistance, such as silica, a rare earth oxide and an alkali metal oxide, is added. The inclusion of a small amount in the heat resistant catalyst does not depart from the scope of the present invention.
本発明の耐熱性触媒中に含まれるABxAl12-yO19−αで
表される組成物は、云わば元素Aの酸化物、元素Bの酸
化物及びアルミナの三者の複合酸化物である。次に上記
の酸化物の夫々について説明する。The composition represented by AB x Al 12-y O 19-α contained in the heat-resistant catalyst of the present invention is, so to speak, an oxide of element A, an oxide of element B and a three-component composite oxide of alumina. Is. Next, each of the above oxides will be described.
本発明の耐熱性触媒中に主成分として含まれる酸化ア
ルミニウムの為の出発原料は、固体混合法による場合、
一般に転移性アルミナとして知られるアルミナが好まし
い。転移性アルミナにはカイ、カッパ、ガンマ、イー
タ、シータ及びデルタの6種の型が知られているが、こ
れらの型のアルミナはそのままではすべて不安定で、高
温度に曝された場合α−アルミナに転移し、触媒にあっ
ては活性の低下、触媒粒子の脆化などの原因となってい
る。The starting material for aluminum oxide contained as a main component in the heat-resistant catalyst of the present invention, when a solid mixing method,
Alumina, generally known as transition alumina, is preferred. Six types of transitional alumina are known, such as chi, kappa, gamma, eta, theta, and delta, but all of these types of alumina are unstable as they are, and when exposed to high temperatures, α- It is converted to alumina and causes a decrease in activity of the catalyst and embrittlement of catalyst particles.
酸化アルミニウムの為の出発原料は、沈殿法による場
合、通常、硝酸アルミニウム、硫酸アルミニウム又はア
ルミン酸ソーダなどの水溶性の化合物が使用可能であ
る。As a starting material for aluminum oxide, when a precipitation method is used, a water-soluble compound such as aluminum nitrate, aluminum sulfate, or sodium aluminate can be generally used.
本発明の耐熱性触媒の一つの主成分としての元素Aの
酸化物のための出発原料としては、元素Aの酸化物、水
酸化物、炭酸塩、硝酸塩、硫酸塩などの各種の化合物が
使用できる。以下本発明に係る元素AをBaとして説明す
るが、Ca及びSrについても同様である。Various compounds such as oxides, hydroxides, carbonates, nitrates and sulfates of the element A are used as starting materials for the oxide of the element A as one main component of the heat resistant catalyst of the present invention. it can. Hereinafter, the element A according to the present invention will be described as Ba, but the same applies to Ca and Sr.
本発明の耐熱性触媒の主な活性成分である元素Bの酸
化物のための出発原料としては元素Bの酸化物、水酸化
物、炭酸塩、硝酸塩、硫酸塩、塩化物、錯酸塩などの有
機酸塩、アンミン錯塩等の錯塩、さらに無水クロム酸、
マンガン酸塩、クロム酸塩などの元素Bの酸及びその塩
等、一般に触媒製造原料として用いられる総ての化合物
が使用可能である。以下、本発明に係る元素BをCoとし
て説明するが、Mn,Fe,Ni,Cu及びCrについても同様であ
る。Starting materials for the oxide of element B, which is the main active component of the heat-resistant catalyst of the present invention, include oxides, hydroxides, carbonates, nitrates, sulfates, chlorides and complex salts of element B. Organic acid salts, complex salts such as ammine complex salts, chromic anhydride,
All compounds generally used as a raw material for producing a catalyst, such as an acid of element B such as manganate and chromate and salts thereof, can be used. Hereinafter, the element B according to the present invention will be described as Co, but the same applies to Mn, Fe, Ni, Cu and Cr.
これらのアルミニウム化合物、バリウム化合物、コバ
ルト化合物から触媒を製造するにあたっては、共沈法な
どの沈殿法、固体混合法、混練法、含浸法など触媒製造
時に通常用いられる各種の方法が使用できる。In producing a catalyst from these aluminum compounds, barium compounds and cobalt compounds, various methods that are usually used during catalyst production can be used, such as a precipitation method such as a coprecipitation method, a solid mixing method, a kneading method and an impregnation method.
本発明は耐熱性触媒の特殊な製造方法としてアルコキ
シド法を提起しているが、このアルコキシド法の場合の
酸化アルミニウム及び酸化バリウムの為の原料は、アル
ミニウム及びバリウムのアルコキシド類である。アルコ
キシドはメトキシド、エトキシド、イソプロポキシド及
びブトキシド等の炭素数1〜4のアルコキシド類が好ま
しい。これらのアルコキシド類は市販のものを使用して
も良いが、金属アルミニウム及び金属バリウムとアルコ
ール類を用いて調製することもできる。The present invention proposes an alkoxide method as a special method for producing a heat-resistant catalyst. In the case of the alkoxide method, raw materials for aluminum oxide and barium oxide are alkoxides of aluminum and barium. The alkoxide is preferably an alkoxide having 1 to 4 carbon atoms such as methoxide, ethoxide, isopropoxide and butoxide. These alkoxides may be commercially available ones, but they can also be prepared using metal aluminum and metal barium and alcohols.
本発明の耐熱性触媒の形状は粉体のままでも良いが、
タブレット、リング、球、押出成型形、ハニカムなど触
媒として一般的なあらゆる形状が採用可能である。The shape of the heat resistant catalyst of the present invention may be powder,
Any general shape such as tablets, rings, spheres, extruded shapes, honeycombs, etc. can be adopted as a catalyst.
本発明の耐熱性触媒は乾燥及び/又は焼成の最終工程
又は中間工程を経て製品とするのが通例であるが、焼成
は必ずしも必要ではなく、時としてこれを行なわない場
合もある。然し、触媒、特に触媒燃焼用の触媒の場合に
は、使用最高温度前後の温度での焼成は熱安定性の組成
物を得る為の重要な操作である。例えば本発明の耐熱性
触媒が触媒燃焼用触媒である場合、使用時に1300℃を越
える高温に曝されることが当然予想される。このような
場合、1300℃又はそれを越える温度で焼成しておくこと
が好ましい。このような高い焼成温度では本発明によら
ない組成物例えばγ−アルミナ担体、シリカ−アルミナ
担体、希土類、アルカリ等の耐熱性向上剤を加えたもの
などでは、α−アルミナへの転移が起り、比表面積の著
しい低下とそれに伴う活性特に低温活性の低下などを避
け得ない。The heat-resistant catalyst of the present invention is usually made into a product through a final step or an intermediate step of drying and / or calcination, but calcination is not always necessary, and sometimes it is not carried out. However, in the case of a catalyst, particularly a catalyst for catalytic combustion, calcination at a temperature around the maximum use temperature is an important operation for obtaining a thermally stable composition. For example, when the heat resistant catalyst of the present invention is a catalyst for catalytic combustion, it is naturally expected that it will be exposed to a high temperature exceeding 1300 ° C. during use. In such a case, it is preferable to bake at a temperature of 1300 ° C. or higher. At such a high firing temperature, a composition not according to the present invention, such as a γ-alumina carrier, a silica-alumina carrier, a rare-earth element, a substance to which a heat resistance improver such as an alkali is added, or the like, is converted into α-alumina, A remarkable decrease in the specific surface area and an accompanying activity, particularly a low temperature activity, cannot be avoided.
本発明の耐熱性触媒の製造にあたって、900℃以上の
温度で焼成することが通常の場合好ましいが、1300℃を
越えるような高温で焼成する場合は、焼成温度と比表面
積の相関関係を予め測定しておき、比表面積を適当な範
囲例えば特定の触媒燃焼用担体では約2m2/g以上の比表
面積にしておくことが必要である。In the production of the heat-resistant catalyst of the present invention, it is usually preferable to calcine at a temperature of 900 ° C. or higher, but when calcining at a temperature higher than 1300 ° C., the correlation between the calcining temperature and the specific surface area is measured in advance. Incidentally, it is necessary to set the specific surface area to an appropriate range, for example, a specific surface area of about 2 m 2 / g or more for a specific catalyst combustion carrier.
本発明の耐熱性触媒は好ましくは水溶性アルミニウム
塩、水溶性バリウム塩及び水溶性コバルト塩をAl:Ba:Co
の原子比として計算して100:2.5〜10:0.1〜4の割合で
混合した水溶液に共沈剤を添加して共沈物の形で混合組
成物を生成し、洗浄−濾過又は蒸発乾涸の工程を経て、
得た共沈物を約200〜500℃で仮焼後、焼1200〜1500℃で
約5〜30時間焼成することにより得られる。この場合、
水溶性アルミニウム化合物としては、硝酸アルミニウ
ム、硫酸アルミニウム、塩化アルミニウム等があり、水
溶性バリウム化合物としては硝酸バリウム、塩化バリウ
ム等があり、水溶性コバルト化合物としては硫酸コバル
ト、塩化コバルト、硝酸コバルト等がある。The heat-resistant catalyst of the present invention preferably contains a water-soluble aluminum salt, a water-soluble barium salt and a water-soluble cobalt salt as Al: Ba: Co.
The coprecipitant is added to an aqueous solution mixed in a ratio of 100: 2.5 to 10: 0.1 to 4 calculated as an atomic ratio of to produce a mixed composition in the form of a coprecipitate, and the mixture is washed-filtered or evaporated to dryness. Through the process,
The coprecipitate obtained is calcined at about 200 to 500 ° C. and then calcined at 1200 to 1500 ° C. for about 5 to 30 hours. in this case,
Examples of the water-soluble aluminum compound include aluminum nitrate, aluminum sulfate, and aluminum chloride, and examples of the water-soluble barium compound include barium nitrate and barium chloride. Examples of the water-soluble cobalt compound include cobalt sulfate, cobalt chloride, and cobalt nitrate. is there.
この場合の共沈剤としては苛性ソーダ、炭酸ソーダ、
苛性カリ、アンモニア水などが使用可能である。さらに
水溶性の原料として、アルミン酸ソーダ、水酸化バリウ
ム、コバルトアンミン錯塩なども使用できるが、この場
合の共沈剤としては例えば硝酸コバルト及び硝酸などの
酸が採用される。なお前段の仮焼段階を省略しても良
い。In this case, coprecipitants include caustic soda, sodium carbonate,
Caustic potash and ammonia water can be used. Further, as the water-soluble raw material, sodium aluminate, barium hydroxide, cobalt ammine complex salt and the like can be used. In this case, as the coprecipitating agent, acids such as cobalt nitrate and nitric acid are adopted. The preliminary calcination step may be omitted.
本発明の耐熱性触媒のさらに好ましい製造方法として
は、アルミニウム及びバリウムの複合又は混合アルコキ
シドを原料とするアルコキシド法がある。アルミニウム
及びバリウムの酸化物の生成は特に加水分解を通して行
なうことが望ましい。この場合のコバルトの添加の方法
としては、硝酸コバルト等の水溶液の形で加水分解に必
要な水と同時にコバルトを加える方法がある。An even more preferred method for producing the heat-resistant catalyst of the present invention is an alkoxide method using a composite or mixed alkoxide of aluminum and barium as a raw material. The formation of the oxides of aluminum and barium is particularly preferably effected through hydrolysis. As a method of adding cobalt in this case, there is a method of adding cobalt simultaneously with water necessary for hydrolysis in the form of an aqueous solution of cobalt nitrate or the like.
アルコキシド分解の方法は、加水分解に限定されるも
のではなく、熱分解等の方法も採用できる。また、これ
ら酸化物の全部がアルコキシドより生成するものである
必要はなく、例えばアルミナ、炭酸バリウム等をアルコ
キシドの分解生成物に加えても良い。加水分解による場
合、加水分解は常温で行うよりも、約50〜100℃に加温
して行なうことが望ましい。加水分解のために添加する
水のpHの影響は特に認められなかったが、水を添加した
後の熟成時間は耐熱性組成物の比表面積に大きく影響
し、熟成時間が長い程比表面積は増加する。従って熟成
時間は少なくとも1時間を越えることが好ましく、例え
ば5〜10時間の如く、経済的に許容される範囲で可及的
長時間とすることが特に望ましい。本発明の耐熱性組成
物の比表面積は加水分解に用いる水の量にも影響される
が、存在する複合又は混合アルコキシドの全量を水酸化
物とアルコールに加水分解するのに必要な水の量(以下
「水の当量」という)以下の水を使用した場合に於いて
も、思いがけないほど大きな比表面積が得られることを
見出した。水の添加量は従って水の当量以下でも良い
が、0.5当量以下では比表面積は急激に低下するので好
ましくない。一方、必要以上に多量の水を用いることは
処理設備及び消費エネルギー等の過大を招くので好まし
くなく、約10当量以下の範囲とすることが経済的見地か
ら好ましい。従って、水の使用量は通常約0.5〜10当量
である。しかし、水の使用量はこの範囲にのみ限定され
るものではなく、これほど好適でなければ、この範囲外
であっても良い。The method of alkoxide decomposition is not limited to hydrolysis, and methods such as thermal decomposition can also be adopted. Further, it is not necessary that all of these oxides are produced from alkoxide, and alumina, barium carbonate, etc. may be added to the decomposition product of alkoxide. In the case of hydrolysis, the hydrolysis is preferably carried out by heating to about 50 to 100 ° C. rather than at room temperature. The effect of the pH of the water added for hydrolysis was not particularly observed, but the aging time after adding water greatly affected the specific surface area of the heat-resistant composition, and the longer the aging time, the higher the specific surface area I do. Therefore, the aging time is preferably at least 1 hour, and it is particularly desirable to set the aging time as long as possible within an economically acceptable range such as 5 to 10 hours. Although the specific surface area of the heat-resistant composition of the present invention is also affected by the amount of water used for hydrolysis, the amount of water required to hydrolyze the entire amount of the complex or mixed alkoxide present to hydroxides and alcohols. It has been found that an unexpectedly large specific surface area can be obtained even when less than water (hereinafter referred to as "water equivalent") is used. The amount of water to be added may be equal to or less than the equivalent of water. On the other hand, it is not preferable to use an excessively large amount of water because it causes an excessive amount of processing equipment and energy consumption, and it is preferable to set the amount of water to about 10 equivalents or less from the economical viewpoint. Therefore, the amount of water used is usually about 0.5 to 10 equivalents. However, the amount of water used is not limited to this range, and may be outside this range if it is not so suitable.
本発明のアルコキシド法による耐熱性触媒は、好適な
一製造例では、アルミニウムアルコキシドとバリウムア
ルコキシドを、それぞれの中に含まれるAl:Ba原子比で1
00:2.5〜10の割合で存在するようアルコール類に溶解
し、当量比で約0.5〜10の範囲の量の水にCo:Al原子比で
1〜2:100となるような割合の硝酸コバルトを溶解した
溶液を加えて、50〜100℃の範囲の温度で加水分解を行
ない、5〜10時間の熟成の後、蒸発乾涸等により溶媒を
除き、得られた分解生成物の混合物を約200〜500℃で仮
焼した後、約900℃以上の温度で約5〜30時焼成するこ
とにより得られる。なお前段の仮焼段階は省略する場合
もある。The heat-resistant catalyst according to the alkoxide method of the present invention is, in a preferred production example, aluminum alkoxide and barium alkoxide in an Al: Ba atomic ratio of 1 in each.
Cobalt nitrate dissolved in alcohol so that it is present in the ratio of 00: 2.5-10, and in the amount of water in the range of approximately 0.5-10 in the equivalent ratio, cobalt nitrate in the ratio of Co: Al atomic ratio of 1-2: 100. Was added and the mixture was hydrolyzed at a temperature in the range of 50 to 100 ° C. After aging for 5 to 10 hours, the solvent was removed by evaporation to dryness, and the resulting decomposition product mixture was added to about 200 It is obtained by calcining at about 500 ° C. and then at about 900 ° C. or higher for about 5 to 30 hours. The former calcination step may be omitted.
本願発明の耐熱性触媒に低温活性を与えるためには小
量の貴金属特にPt,Ru,Rh,Pd等の白金族貴金属を更に含
浸して担持せしめることが有効である。このような貴金
属担持触媒も本願発明に含まれる。In order to impart low temperature activity to the heat-resistant catalyst of the present invention, it is effective to further impregnate and support a small amount of a noble metal, particularly a platinum group noble metal such as Pt, Ru, Rh, Pd. Such a noble metal-supported catalyst is also included in the present invention.
(作用) 本発明の耐熱性触媒の耐熱性の増加は耐熱性に優れ
た、層状アルミネート型結晶構造を持つ複合酸化物ABxA
l12-yO19−α組成物の生成に起因すると考えられる。即
た、本発明の耐熱性触媒中に於いて安定な層状アルミネ
ート型結晶構造物ABxAl12-yO19−αは遷移アルミナのα
−アルミナへの転移温度以下の比較的低温度に於いて生
成し、これがアルミナのα−アルミナへの転移及びシン
タリングを抑制し、より高温度での比表面積及び活性を
保持すると考えられる。(Function) The heat resistance of the heat-resistant catalyst of the present invention is increased due to its excellent heat resistance and a composite oxide AB x A having a layered aluminate type crystal structure.
It is believed that this is due to the formation of the l 12-y O 19-α composition. The stable layered aluminate-type crystal structure AB x Al 12-y O 19-α in the heat-resistant catalyst of the present invention is α of transition alumina.
-It is considered that it is formed at a relatively low temperature below the transition temperature to alumina, which suppresses the transition and sintering of alumina to α-alumina, and retains the specific surface area and activity at higher temperatures.
(実施例) 次に本発明を例につきさらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail by way of examples.
実施例1 酸化アルミニウム、炭酸バリウム及び酸化コバルト
(Co2O3)をボールミル中に供給し、約24時間粉砕混合
した。これらの使用した原料のモル比はAl2O3:BaCO3:Co
Oとして71.4:14.3:14.3とした。次にこの混合物を1450
℃で5時間焼成して実施例1の触媒を得た。Example 1 Aluminum oxide, barium carbonate and cobalt oxide (Co 2 O 3 ) were fed into a ball mill and ground and mixed for about 24 hours. The molar ratio of these raw materials used is Al 2 O 3 : BaCO 3 : Co
O was set to 71.4: 14.3: 14.3. Then 1450 this mixture
The catalyst of Example 1 was obtained by calcination for 5 hours.
実施例1の触媒BET比表面積は3.3m2/gであった。The catalyst BET specific surface area of Example 1 was 3.3 m 2 / g.
比較例1 酸化アルミニウムと炭酸バリウムをボールミル中に供
給し、約24時間粉砕混合した。これら両原料のモル比Al
2O3:BaCO3は85.7:14.3とした。次に得られた混合物を13
00℃で5時間焼成して触媒担体を得た。この触媒担体を
酢酸コバルトに含浸した後、1300℃で10時間焼成して比
較例1の触媒を得た。コバルトの担持量は酸化コバルト
(CoO)として触媒担体の10重量%とした。このものは
担体BaO・6Al2O3にCoOを10%担持したものであった。Comparative Example 1 Aluminum oxide and barium carbonate were fed into a ball mill and ground and mixed for about 24 hours. Molar ratio of these two raw materials Al
2 O 3 : BaCO 3 was set to 85.7: 14.3. The resulting mixture is then 13
It was calcined at 00 ° C for 5 hours to obtain a catalyst carrier. After impregnating this catalyst carrier with cobalt acetate, it was calcined at 1300 ° C. for 10 hours to obtain a catalyst of Comparative Example 1. The supported amount of cobalt was 10% by weight of the catalyst carrier as cobalt oxide (CoO). This film was that the CoO supported 10% carrier BaO · 6Al 2 O 3.
比較例1の触媒のBET比表面積は6.6m2/gであった。The BET specific surface area of the catalyst of Comparative Example 1 was 6.6 m 2 / g.
使用例1 実施例1及び比較例1の触媒を個別に用いて、常圧固
定床流通式反応装置によりメタン燃焼活性試験を行なっ
た。試験に用いたガスはメタン1容量%と空気99容量%
から成るガスで、空間速度48000-1の流速でこのガスを
触媒層に流した。USE EXAMPLE 1 Using the catalysts of Example 1 and Comparative Example 1 individually, a methane combustion activity test was carried out by an atmospheric fixed bed flow reactor. The gas used for the test was 1% by volume of methane and 99% by volume of air.
The gas consisting of the gas was flown through the catalyst layer at a flow velocity of 48,000 -1 .
試験の結果を第1表に示した。 The test results are shown in Table 1.
実施例1触媒と比較例1触媒はコバルトの含有量が同
程度であるのにも拘らず、両触媒の活性は著しく異な
り、比表面積で劣る実施例1触媒が比較例1触媒よりも
高い活性を示した。 Although the catalysts of Example 1 and Comparative Example 1 had the same cobalt content, the activities of both catalysts were remarkably different, and the Example 1 catalyst having a poor specific surface area had a higher activity than the Comparative Example 1 catalyst. showed that.
実施例2及び3 実施例1と同様な出発原料を用い、実施例1と同様な
操作により実施例2及び3の触媒を得た。然し、実施例
1の触媒がBaO・CoO・5Al2O3で表される組成を持つのに
対し、実施例2の触媒はBaCoAl11O18.5即ちBaO・CoO・
5.5Al2O3に相当する組成を持つもの、実施例3の触媒は
BaCoAl11.5O18.25即ちBaO・0.5CoO・5.75Al2O3に相当
する組成を持つものとした。Examples 2 and 3 Using the same starting materials as in Example 1, the same operations as in Example 1 were carried out to obtain the catalysts of Examples 2 and 3. However, while the catalyst of Example 1 has a composition represented by BaO.CoO.5Al 2 O 3 , the catalyst of Example 2 has BaCoAl 11 O 18.5, that is, BaO.CoO.
A catalyst having a composition equivalent to 5.5Al 2 O 3 , the catalyst of Example 3 is
It has a composition corresponding to BaCoAl 11.5 O 18.25, that is, BaO · 0.5CoO · 5.75Al 2 O 3 .
実施例2及び3の触媒のBET比表面積は夫々3.4m2/g及
び3.2m2/gであり、実施例1の触媒同様に比較例1の触
媒よりも比表面積は小さかった。The BET specific surface areas of the catalysts of Examples 2 and 3 were 3.4 m 2 / g and 3.2 m 2 / g, respectively, and like the catalyst of Example 1, the specific surface area was smaller than that of the catalyst of Comparative Example 1.
使用例2 実施例2及び3の触媒につき、使用例1と同様の活性
試験を行なった。活性試験の結果を第2表に示した。Use Example 2 The same activity test as in Use Example 1 was performed on the catalysts of Examples 2 and 3. The results of the activity test are shown in Table 2.
実施例2の触媒は比表面積で比較例1の触媒に劣り、
かつコバルト濃度がほぼ等しいのに拘らず、活性は優れ
ていた。注目すべきはコバルト濃度が比較例1の触媒と
比べて約半量と低い実施例3の触媒が比較例1触媒より
も著しく高い活性を示したことである。 The catalyst of Example 2 is inferior in specific surface area to the catalyst of Comparative Example 1,
Moreover, the activity was excellent despite the fact that the cobalt concentrations were almost equal. It should be noted that the catalyst of Example 3 having a cobalt concentration as low as about half the amount of the catalyst of Comparative Example 1 exhibited significantly higher activity than the catalyst of Comparative Example 1.
実施例4及び使用例3 窒素雰囲気下、市販のアルミニウムイソプロキシドと
金属バリウムをイソプロピルアルコール中に80℃で5時
間かけて溶解し、得られた溶液に酢酸コバルト水溶液を
滴下して加水分解を行なった。12時間熟成の後、得られ
た懸濁液を80℃で減圧乾燥、600℃で仮焼した後、1350
℃で5時間焼成を行ない、実施例4の触媒を得た。アル
コキシド法によって得たこの触媒は実施例2触媒と同じ
BaCoAl11O18.5の組成式で表される組成を有していた。Example 4 and Use Example 3 Under a nitrogen atmosphere, commercially available aluminum isoproxide and barium metal were dissolved in isopropyl alcohol at 80 ° C. for 5 hours, and a cobalt acetate aqueous solution was added dropwise to the resulting solution for hydrolysis. It was After aging for 12 hours, the resulting suspension was dried under reduced pressure at 80 ° C and calcined at 600 ° C, then 1350
The catalyst of Example 4 was obtained by calcination for 5 hours. This catalyst obtained by the alkoxide method is the same as the catalyst of Example 2.
It had a composition represented by the composition formula of BaCoAl 11 O 18.5 .
実施例4の触媒のBET比表面積は15.2m2/gであった。The BET specific surface area of the catalyst of Example 4 was 15.2 m 2 / g.
実施例4触媒につき使用例1と同様にして行なった活
性試験の結果を第3表に示した。Example 4 Table 3 shows the results of the activity test conducted on the catalyst in the same manner as in Use Example 1.
アルコキシド法により調製した実施例4の触媒は、同
一組成であるが固体混合法により調製した実施例2の触
媒に比べ活性が著しく向上し、特に高転化率領域におけ
る活性が大きく改善された。 Although the catalyst of Example 4 prepared by the alkoxide method had the same composition, the activity was remarkably improved as compared with the catalyst of Example 2 prepared by the solid mixing method, and particularly the activity in the high conversion region was significantly improved.
実施例5及び比較例2 酸化コバルト(Co2O3)の代わりに酸化クロム(Cr
2O3)を用いた他は実施例1と同様にして実施例5の触
媒を得た。この触媒の組成はBaCrAl11O19又はBaO・CrO
1.5・5.5Al2O3として表される。Example 5 and Comparative Example 2 Instead of cobalt oxide (Co 2 O 3 ), chromium oxide (Cr
A catalyst of Example 5 was obtained in the same manner as in Example 1 except that 2 O 3 ) was used. The composition of this catalyst is BaCrAl 11 O 19 or BaO.CrO.
It is expressed as 1.5 · 5.5Al 2 O 3 .
また、比較例1の触媒と同一担体を無水クロム酸に含
浸し、1300℃に5時間焼結して、比較例2の触媒を得
た。このものは担体BaO・6Al2O3にCr2O3を10重量%担持
したものであった。Further, the same carrier as that of the catalyst of Comparative Example 1 was impregnated with chromic anhydride and sintered at 1300 ° C. for 5 hours to obtain a catalyst of Comparative Example 2. In this product, 10 wt% of Cr 2 O 3 was supported on the carrier BaO · 6Al 2 O 3 .
実施例5及び比較例2の触媒のBET比表面積は夫々3.0
m2/g及び6.4m2/gであった。The BET specific surface areas of the catalysts of Example 5 and Comparative Example 2 were 3.0, respectively.
m 2 / g and 6.4 m 2 / g.
使用例4 実施例5及び比較例2のクロム触媒につき、使用例1
と同様な試験を行ない、その活性を比較した。結果を第
4表に示した。Use Example 4 Use Example 1 for the chromium catalysts of Example 5 and Comparative Example 2
The same test was carried out to compare the activities. The results are shown in Table 4.
本発明の触媒はクロム触媒の場合も、コバルト触媒の
場合と同様に、単なる含浸担持触媒に比べて優れた活性
を有していた。 In the case of the chromium catalyst, the catalyst of the present invention had excellent activity as compared with the simple impregnated and supported catalyst, as in the case of the cobalt catalyst.
実施例6及び使用例5 バリウムイソプロポキシド及びアルミニウムイソプロ
ポキシドをイソプロピルアルコール中に溶解し、酢酸マ
ンガン水溶液をこれに滴下して加水分解を行なった。12
時間熟成の後得られた懸濁液を80℃で減圧乾燥し、次い
で得られた粉末を水素気流中400℃で5時間熱分解した
後、窒素気流中で1200℃で焼成して、実施例6の触媒を
得た。Example 6 and Use Example 5 Barium isopropoxide and aluminum isopropoxide were dissolved in isopropyl alcohol, and an aqueous solution of manganese acetate was added dropwise thereto for hydrolysis. 12
The suspension obtained after the time aging was dried under reduced pressure at 80 ° C., and the obtained powder was pyrolyzed in a hydrogen stream at 400 ° C. for 5 hours and then calcined in a nitrogen stream at 1200 ° C. 6 catalyst was obtained.
実施例6の触媒のBET比表面積は10m2/gであった。The BET specific surface area of the catalyst of Example 6 was 10 m 2 / g.
実施例6の触媒につき使用例1と同様にして行なった
メタン燃焼活性試験の結果を第5表に示した。Table 5 shows the results of the methane combustion activity test conducted on the catalyst of Example 6 in the same manner as in Use Example 1.
実施例6のMnを活性成分とする触媒は、実施例1のコ
バルトを活性成分とするものに比べて特に低転化率域に
於いて著しく高い活性を示したが、転化率100%ではむ
しろ後者の方が高活性であった。 The catalyst containing Mn as an active ingredient of Example 6 exhibited a remarkably high activity particularly in the low conversion region as compared with the catalyst containing cobalt as an active ingredient of Example 1, but the latter was rather active at a conversion rate of 100%. Was more active.
実施例7〜17及び使用例6 実施例4の製法と同様にしてBdBxAl12-xO19−α(Bx
はMn,Mn2,Co,Fe,Ni,Cu,Cr,Co0.5Mn0.5又はCr0.5Ni0.5を
示す)をバリウムアルコキシド及びアルミニウムアルコ
キシドのイソプロピルアルコール溶液及び各金属Bの酢
酸塩又は硝酸塩水水溶液を用いて調製した。但し焼成温
度は各触媒共1300℃とした。次いでこれらの触媒につい
て使用例1と同様な試験方法でメタン燃焼活性を測定し
た。Examples 7 to 17 and use example 6 BdB x Al 12-x O 19-α (B x
Represents Mn, Mn 2 , Co, Fe, Ni, Cu, Cr, Co 0.5 Mn 0.5 or Cr 0.5 Ni 0.5 ) and an isopropyl alcohol solution of barium alkoxide and aluminum alkoxide and an aqueous solution of acetate or nitrate of each metal B. Was prepared using. However, the firing temperature was 1300 ° C. for each catalyst. Then, the methane combustion activity of these catalysts was measured by the same test method as in Use Example 1.
また、実施例10のコバルト触媒にさらに硝酸パラジウ
ムを含浸し、500℃で5時間熱分解の後、1200℃で5時
間焼成して、実施例17の触媒を得た。Further, the cobalt catalyst of Example 10 was further impregnated with palladium nitrate, pyrolyzed at 500 ° C. for 5 hours, and then calcined at 1200 ° C. for 5 hours to obtain a catalyst of Example 17.
測定結果を第6表に示した。 The measurement results are shown in Table 6.
(発明の効果) かくて本発明に依れば1200℃を越える高温でも触媒活
性の低下が少なく、著しく高活性である耐熱性触媒が提
供される。 (Effects of the Invention) Thus, according to the present invention, there is provided a heat-resistant catalyst having a significantly low activity even at a high temperature of more than 1200 ° C. and having a significantly low activity.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/89 B01J 23/64 104M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01J 23/89 B01J 23/64 104M
Claims (17)
の元素、BはMn,Co,Fe,Ni,Cu及びCrより成る群から選択
した1種以上の元素、xは約0.1〜4の範囲内の数、y
はx〜2xの範囲内の数、αは元素Bの価数Zによって定
まり、 で表される数を示す)で表される組成物を主成分とする
ことを特徴とする触媒燃焼反応用耐熱性触媒。1. A composition formula AB x Al 12-y O 19-α (wherein A is at least one element selected from the group consisting of Ba and Sr, B is Mn, Co, Fe, Ni, Cu and One or more elements selected from the group consisting of Cr, x is a number in the range of about 0.1 to 4, y
Is a number in the range of x to 2x, α is determined by the valence Z of the element B, A heat-resistant catalyst for a catalytic combustion reaction, characterized in that the main component is a composition represented by the formula (1).
媒上に担持して成る特許請求の範囲1記載の耐熱性触
媒。2. The heat-resistant catalyst according to claim 1, wherein a platinum group noble metal such as Pt, Ru, Rh, and Pd is supported on the heat-resistant catalyst.
に対する原子比が約2.5〜10:100の範囲にある特許請求
の範囲1記載の耐熱性触媒。3. The heat-resistant catalyst according to claim 1, wherein the atomic ratio of the element A to the total of the elements B and Al in the heat-resistant catalyst is in the range of about 2.5 to 10: 100.
に対する原子比が約7〜10:100の範囲にある特許請求の
範囲3記載の耐熱性触媒。4. The heat-resistant catalyst according to claim 3, wherein the element A is Ba and the atomic ratio of Ba to the total of the elements B and Al is in the range of about 7 to 10: 100.
の範囲1記載の耐熱性触媒。5. A refractory catalyst according to claim 1 wherein x is a number in the range of about 0.2-3.
中の元素A及びAlの一部又全部が元素A及びAlの複合及
び/又は混合アルコキシドの分解生成物である特許請求
の範囲1記載の耐熱性触媒。6. A decomposition product of a composite and / or mixed alkoxide in which a part or all of the elements A and Al in the composition represented by the composition formula AB x Al 12-y O 19-α is used. The heat-resistant catalyst according to claim 1, wherein
中の元素A及びAlの一部又は全部が元素A及びAlの複合
及び/又は混合アルコキシドの加水分解生成物及び/又
は熱分解生成物である特許請求の範囲6記載の耐熱性触
媒。7. Hydrolysis formation of a complex and / or mixed alkoxide of a part or all of the elements A and Al in the composition represented by the composition formula AB x Al 12-y O 19-α. The heat-resistant catalyst according to claim 6, which is a product and / or a thermal decomposition product.
1〜4のアルコキシドである特許請求の範囲6又は7記
載の耐熱性触媒。8. The heat resistant catalyst according to claim 6 or 7, wherein the complex and / or mixed alkoxide is an alkoxide having 1 to 4 carbon atoms.
の一部又は全部を活性元素Bを結晶格子内に取り込んだ
層状アルミネート構造の結晶として有する特許請求の範
囲1記載の耐熱性触媒。9. A crystal having a layered aluminate structure in which an active element B is incorporated into a crystal lattice, part or all of the composition represented by the composition formula AB x Al 12-y O 19-α . A heat-resistant catalyst according to range 1.
燃焼用触媒である特許請求の範囲9記載の耐熱性触媒。10. The heat-resistant catalyst according to claim 9, wherein the heat-resistant catalyst is a catalyst for catalytic combustion at a temperature of about 1000 ° C. or higher.
ウム化合物と、Ca,Ba及びSrより成る群から選択した少
なくとも1種の元素Aの水溶性又はアルコール可溶性化
合物と、Mn,Co,Fe,Ni,Cu及びCrより成る群から選択した
少なくとも1種の元素Bの水溶性又はアルコール可溶性
化合物とを、Al:A:Bの原子比100:(2.5〜10):(0.1〜
4)の割合で混合した溶液からの沈殿物又は加水分解生
成物及び/又は熱分解生成物を、約900℃以上の温度で
焼成することを特徴とする触媒燃焼反応用耐熱性触媒の
製造方法。11. A water-soluble or alcohol-soluble aluminum compound, a water-soluble or alcohol-soluble compound of at least one element A selected from the group consisting of Ca, Ba and Sr, and Mn, Co, Fe, Ni, Cu. And a water-soluble or alcohol-soluble compound of at least one element B selected from the group consisting of Cr and Cr, Al: A: B atomic ratio 100: (2.5-10): (0.1-
A method for producing a heat-resistant catalyst for catalytic combustion reaction, which comprises calcining a precipitate or a hydrolysis product and / or a thermal decomposition product from a solution mixed in a ratio of 4) at a temperature of about 900 ° C. or higher. .
ルコキシドとの複合及び/又は混合アルコキシドを、元
素Bの化合物の水溶液を用いて加水分解して加水分解生
成物を得る特許請求の範囲11記載の耐熱性触媒の製造方
法。12. The heat resistance according to claim 11, wherein a complex and / or mixed alkoxide of an aluminum alkoxide and an alkoxide of element A is hydrolyzed with an aqueous solution of a compound of element B to obtain a hydrolysis product. Method for producing catalyst.
数1〜4のアルコキシドである特許請求の範囲12記載の
耐熱性触媒の製造方法。13. The method for producing a heat-resistant catalyst according to claim 12, wherein the complex and / or mixed alkoxide is an alkoxide having 1 to 4 carbon atoms.
要な水の当量の約0.5倍以上の水を加水分解に使用する
特許請求の範囲11,12又は13記載の耐熱性触媒の製造方
法。14. The method for producing a heat-resistant catalyst according to claim 11, 12 or 13, wherein water is used in the hydrolysis in an amount of about 0.5 times or more the equivalent of water necessary for hydrolyzing the total amount of the alkoxide.
行なう特許請求の範囲11,12,13又は14記載の耐熱性触媒
の製造方法。15. The method for producing a heat-resistant catalyst according to claim 11, 12, 13 or 14, wherein the hydrolysis is carried out at a temperature in the range of about 50 to 100 ° C.
上の熟成を行なう特許請求の範囲10,11,12,13,14又は15
記載の耐熱性触媒の製造方法。16. A method according to claim 10, 11, 12, 13, 14, or 15 in which aging is performed for about 1 hour or more after addition of water for hydrolysis.
A method for producing the heat-resistant catalyst described.
の範囲11,12,13,14,15又は16記載の耐熱性触媒の製造方
法。17. The method for producing a heat-resistant catalyst according to claim 11, 12, 13, 14, 15, or 16, wherein the element A is Ba and the element B is Co.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61286730A JP2559718B2 (en) | 1986-12-03 | 1986-12-03 | Heat resistant catalyst for catalytic combustion reaction and method for producing the same |
US07/078,530 US4788174A (en) | 1986-12-03 | 1987-07-28 | Heat resistant catalyst and method of producing the same |
DE8787306662T DE3770920D1 (en) | 1986-12-03 | 1987-07-28 | FIRE-RESISTANT CATALYST AND METHOD FOR THE PRODUCTION THEREOF. |
EP87306662A EP0270203B1 (en) | 1986-12-03 | 1987-07-28 | Heat resistant catalyst and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61286730A JP2559718B2 (en) | 1986-12-03 | 1986-12-03 | Heat resistant catalyst for catalytic combustion reaction and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63141643A JPS63141643A (en) | 1988-06-14 |
JP2559718B2 true JP2559718B2 (en) | 1996-12-04 |
Family
ID=17708273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61286730A Expired - Lifetime JP2559718B2 (en) | 1986-12-03 | 1986-12-03 | Heat resistant catalyst for catalytic combustion reaction and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2559718B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2574285B2 (en) * | 1987-04-07 | 1997-01-22 | 東洋シ−シ−アイ株式会社 | Heat resistant catalyst and method for producing the same |
JP5607891B2 (en) * | 2009-03-30 | 2014-10-15 | ダイハツ工業株式会社 | Exhaust gas purification catalyst |
KR20140126366A (en) * | 2012-02-10 | 2014-10-30 | 바스프 에스이 | Hexaaluminate-comprising catalyst for reforming of hydrocarbons and reforming process |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5138291A (en) * | 1974-09-02 | 1976-03-30 | Efuimoitsuchi Doronof Arekusei |
-
1986
- 1986-12-03 JP JP61286730A patent/JP2559718B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63141643A (en) | 1988-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2768946B2 (en) | Heat-resistant noble metal catalyst and method for producing the same | |
US4788174A (en) | Heat resistant catalyst and method of producing the same | |
JP2818171B2 (en) | Catalyst for steam reforming reaction of hydrocarbon and method for producing the same | |
KR100460249B1 (en) | A Process for the Oxidation of Ammonia | |
US7641875B1 (en) | Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts | |
AU634028B2 (en) | Perovskite-type rare earth complex oxide combustion catalysts | |
US5134109A (en) | Catalyst for reforming hydrocarbon with steam | |
JP2893648B2 (en) | Catalyst support material | |
JPH09187649A (en) | Catalytic combustion method including consecutive plural catalytic zone | |
JPS62210057A (en) | Catalyst and its production | |
JP2010099638A (en) | Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst | |
JP3667801B2 (en) | Method for producing ruthenium catalyst and method for steam reforming hydrocarbon using the catalyst | |
US4771028A (en) | Heat resistant composition and method of producing the same | |
JP2003073123A (en) | Composite oxide, method for producing the same, and promoter for purifying exhaust gas | |
JP2559715B2 (en) | Heat resistant catalyst for catalytic combustion reaction and method for producing the same | |
JP2559718B2 (en) | Heat resistant catalyst for catalytic combustion reaction and method for producing the same | |
JP4771681B2 (en) | Method for producing noble metal-containing heat-resistant oxide | |
JPS60238146A (en) | Heat resistant carrier composition | |
JPH0417910B2 (en) | ||
JPH0820054B2 (en) | Catalytic combustion method of combustible gas | |
JP3757715B2 (en) | Exhaust gas purification catalyst | |
JPH0445452B2 (en) | ||
JP2574285B2 (en) | Heat resistant catalyst and method for producing the same | |
JPH01210031A (en) | Heat-resistant catalyst and its preparation | |
JPS6253737A (en) | Catalyst for purifying exhaust gas and preparation thereof |