[go: up one dir, main page]

JP2557466B2 - Low-frequency replacement circuit for MUSE decoder - Google Patents

Low-frequency replacement circuit for MUSE decoder

Info

Publication number
JP2557466B2
JP2557466B2 JP63116064A JP11606488A JP2557466B2 JP 2557466 B2 JP2557466 B2 JP 2557466B2 JP 63116064 A JP63116064 A JP 63116064A JP 11606488 A JP11606488 A JP 11606488A JP 2557466 B2 JP2557466 B2 JP 2557466B2
Authority
JP
Japan
Prior art keywords
low
circuit
signal
frequency
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63116064A
Other languages
Japanese (ja)
Other versions
JPH01286688A (en
Inventor
隆一 藤村
佑一 二宮
俊郎 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Japan Broadcasting Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Hoso Kyokai NHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Hoso Kyokai NHK filed Critical NEC Home Electronics Ltd
Priority to JP63116064A priority Critical patent/JP2557466B2/en
Publication of JPH01286688A publication Critical patent/JPH01286688A/en
Application granted granted Critical
Publication of JP2557466B2 publication Critical patent/JP2557466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Television Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MUSE方式のテレビジョン受像機内に設置さ
れるMUSEデコーダの低域置換回路に関するものである。
TECHNICAL FIELD The present invention relates to a low-frequency replacement circuit of a MUSE decoder installed in a MUSE-type television receiver.

(従来の技術) 現在、放送衛星を利用するハイビジョン(高品位)テ
ジョン方式の最有力候補であるMUSE(Multiple Sub−ny
quist Sampling Encoding)方式のテレビジョン放送の
実験が開始されている。
(Prior Art) Currently, MUSE (Multiple Sub-ny), which is the most promising candidate for the high-definition (high-definition) television system using broadcasting satellites
The quist Sampling Encoding) television broadcasting experiment has begun.

このMUSE方式では、帯域幅22MHzの輝度信号と帯域幅7
MHzの色信号とを含むベースバンド信号を周波数変調
し、これを衛星放送の帯域幅27MHzの1チャンネルを用
いて伝送するために、上記ベースバンド信号が約8MHzに
帯域圧縮される。この帯域圧縮は、原映像信号から抽出
した完全なサンプリング点群を所定の規則に従って間引
くことによって行われる。このサンプリング点の間引き
に際しては、画面上の斜め方向の解像度が上下、左右方
向よりも低下するという視聴者の生理的特性を利用して
フィールド間オフセット・サンプリングが行われる。ま
た、動きのある領域では解像度が多少低下してもそれほ
どの画質劣化を感じないという視聴者の生理的特性も利
用される。すなわち、送出対象の画面が動き領域と静止
領域とに分けられ、動き領域についてはサンプリング点
の間引き率が静止領域のそれよりも増加される。
With this MUSE method, a luminance signal with a bandwidth of 22 MHz and a bandwidth of 7
In order to frequency-modulate a baseband signal including a color signal of MHz and to transmit this by using one channel of a satellite broadcasting bandwidth of 27 MHz, the baseband signal is band-compressed to about 8 MHz. This band compression is performed by thinning out a complete sampling point group extracted from the original video signal according to a predetermined rule. At the time of thinning out the sampling points, the inter-field offset sampling is performed by utilizing the physiological characteristic of the viewer that the resolution in the diagonal direction on the screen is lower than that in the vertical and horizontal directions. In addition, the physiological characteristic of the viewer that the image quality is not so deteriorated even if the resolution is slightly lowered in a moving area is also used. That is, the screen to be transmitted is divided into a moving area and a still area, and the thinning rate of the sampling points for the moving area is increased more than that of the still area.

受信側のデコーダでは、送信側のエンコーダで間引か
れたサンプリング点が実際に送出され受信された前後の
サンプリング点群をもとに再生され、欠落個所に挿入さ
れる。この欠落サンプリング点の再生と挿入の処理は、
内挿処理と称される。この内挿処理には、同一フィール
ド内の隣接サンプリング点群を利用して行うフィールド
内内挿と、隣接フィールドの対応の位置のサンプリング
点群を利用して行うフィールド間内挿とがある。この内
挿処理にあたっては、受信画面から動き領域と静止領域
とが検出され、動き領域についてはフィールド内内挿が
行われ、静止領域についてはフィールド間内挿が行われ
る。
In the decoder on the receiving side, the sampling points thinned out by the encoder on the transmitting side are reproduced based on the sampling point groups before and after actually transmitted and received, and are inserted in the missing portions. The process of reproducing and inserting this missing sampling point is
This is called interpolation processing. The interpolation processing includes field interpolation performed by using adjacent sampling point groups in the same field and interfield interpolation performed by using sampling point groups at corresponding positions of adjacent fields. In this interpolation process, a moving area and a still area are detected from the reception screen, field interpolation is performed on the moving area, and interfield interpolation is performed on the still area.

送信側でのフィールド間オフセット・サンプリング後
の伝送信号成分は、第3図の一点鎖線で示すように、
(垂直解像度1025TV本,水平解像度0MHz)と(垂直解像
度0TV本,水平解像度24.3MHz)の2点間を結ぶ右下がり
の直線となる。最終的に送信される信号成分は、上記フ
ィールド間オフセット・サンプリングの後段で行われる
低域通過濾波処理、サンプリング周波数の変換処理及び
フレーム間/ライン間オフセット・サンプリング処理の
結果、0MHzから8.1MHzの間に帯域圧縮されると共に8.1M
Hz以上の高域成分が4Hzと8.1MHzの間に二重に折り返さ
れたものとなる。
The transmission signal component after inter-field offset sampling on the transmission side is as shown by the alternate long and short dash line in FIG.
It is a straight line that descends to the right between two points (vertical resolution 1025 TV lines, horizontal resolution 0 MHz) and (vertical resolution 0 TV lines, horizontal resolution 24.3 MHz). The final transmitted signal component is 0MHz to 8.1MHz as a result of the low-pass filtering processing, sampling frequency conversion processing and inter-frame / inter-line offset sampling processing performed after the above inter-field offset sampling. Bandwidth compressed between 8.1M
High-frequency components above Hz are double-folded between 4Hz and 8.1MHz.

受信側のデコーダでは、第3図の一点鎖線で示す信号
成分に対し、周波数変換、濾波、内挿などによる折り返
しの復元と高周波数成分の再生によるデコードが行われ
る。このデコードに際し、フィルタなど各種処理回路の
簡易化・経済化を図る目的で、低域置換の手法が適用さ
れる。すなわち、第3図の実線で示すように、垂直方向
の濾波特性の不十分さから生ずる高垂直解像度成分の欠
落した処理特性が許容されると共に、処理前の信号の4M
Hz以下の帯域に含まれる高垂直解像度成分が切り取られ
処理済みの信号成分に重畳される。この低域置換処理に
より、第4図の実線で示すようにデコードに伴う高垂直
解像度の信号成分の欠落が補われる。
In the decoder on the receiving side, the signal components indicated by the alternate long and short dash line in FIG. 3 are restored by folding back by frequency conversion, filtering, interpolation, etc., and decoded by reproducing high frequency components. At the time of this decoding, a low-frequency replacement method is applied for the purpose of simplifying and making economical the various processing circuits such as filters. That is, as shown by the solid line in FIG. 3, the processing characteristics lacking the high vertical resolution component caused by insufficient filtering characteristics in the vertical direction are allowed, and 4M of the unprocessed signal is obtained.
The high vertical resolution component included in the band below Hz is cut out and superimposed on the processed signal component. This low-frequency replacement processing compensates for the loss of high-vertical resolution signal components due to decoding as shown by the solid line in FIG.

上記従来のMUSEデコーダでは、処理回路に必然的に含
まれるフレームメモリの入出力間にループを形成するこ
とにより、表示画面を所望の時点で静止させる静止表示
機能が付加される。この静止表示画面についても上述の
低域置換による垂直解像度の改善を施そうとすれば、静
止表示画面の未処理の信号を蓄積しておいて繰り返し読
出すためのフレームメモリが必要になる。しかしなが
ら、静止表示画面の垂直解像度の改善という特殊な目的
だけで高価なフレームメモリを備えることは、経済性の
点で困難である。このため、従来は、静止表示画面に対
する低域置換による垂直解像度の改善が省略されてき
た。
In the conventional MUSE decoder described above, a still display function is added to make the display screen stand still at a desired time point by forming a loop between the input and output of the frame memory that is necessarily included in the processing circuit. In order to improve the vertical resolution of the still display screen by the above low frequency replacement, a frame memory for accumulating the unprocessed signal of the still display screen and repeatedly reading it is necessary. However, it is economically difficult to provide an expensive frame memory only for the special purpose of improving the vertical resolution of a still display screen. For this reason, conventionally, improvement of vertical resolution by low-frequency replacement for a still display screen has been omitted.

(発明が解決しようとする課題) 上記従来のMUSEデコーダでは、静止表示画面に対する
低域置換による画質の改善が経済性の点で省略されてき
た。しかしながら、静止表示画面では高垂直解像度成分
の欠落による画質の劣化(ぼけ)が通常の表示画面もり
も目立つので、通常の場合よりもむしろ低域置換が必要
になるという問題がある。
(Problems to be Solved by the Invention) In the above-mentioned conventional MUSE decoder, the improvement of the image quality by the low-frequency substitution for the still display screen has been omitted from the economical point of view. However, in a static display screen, the deterioration (blurring) of image quality due to the loss of high vertical resolution components is more noticeable than in a normal display screen, so there is a problem that low-frequency replacement is required rather than in the normal case.

(課題を解決するための手段) 本発明に係わるMUSEデコーダの低域置換回路は、静止
表示動作の開始時にはフレーム間内挿処理直前の映像信
号を動き検出用のフレームメモリに取り込み、これを繰
り返し読出しつつその低域成分を用いて低域置換を行う
手段を備えている。
(Means for Solving the Problem) The low-frequency replacement circuit of the MUSE decoder according to the present invention loads the video signal immediately before the interframe interpolation processing into the frame memory for motion detection at the start of the still display operation, and repeats this. A means for performing low-frequency replacement using the low-frequency component while reading is provided.

すなわち、本発明の低域置換回路は、MUSEデコーダ中
に必ず含まれると共に静止表示動作中は必ず不要となる
動き検出用のフレームメモリを静止表示画面の未処理信
号を蓄積しておくフレームメモリに転用することによ
り、高価な専用のフレームメモリを追加するこそなく静
止表示画面の画質の改善を実現するように構成されてい
る。
That is, the low-frequency replacement circuit of the present invention uses a frame memory for motion detection, which is always included in the MUSE decoder and is unnecessary during the still display operation, as a frame memory for storing unprocessed signals of the still display screen. By diverting, the image quality of the still display screen is improved without adding an expensive dedicated frame memory.

以下、本発明の作用を実施例と共に詳細に説明する。 Hereinafter, the operation of the present invention will be described in detail with reference to Examples.

(実施例) 第1図は、本発明の一実施例の低域置換回路を含むMU
SEデコーダの主要部の構成の一部を示すブロック図であ
る。
(Embodiment) FIG. 1 shows an MU including a low-frequency replacement circuit according to an embodiment of the present invention.
It is a block diagram which shows a part of structure of the principal part of an SE decoder.

このMUSEデコーダにおいて、INは受信映像信号の入力
端子、1はA/D変換回路、2は前処理回路、3はコント
ロール信号抽出回路、4はフレーム間内挿部、5は動き
検出部である。更に、6は輝度信号処理部、7は色信号
処理部、8は低域置換回路、9はテンポラリ・フィル
タ、10は線順次デコーダ、11はマトリクス回路、12は静
止表示の動作指令入力端子、O1〜O3はR,G,B信号の出力
端子である。
In this MUSE decoder, IN is an input terminal of a received video signal, 1 is an A / D conversion circuit, 2 is a pre-processing circuit, 3 is a control signal extraction circuit, 4 is an inter-frame interpolation section, and 5 is a motion detection section. . Further, 6 is a luminance signal processing unit, 7 is a color signal processing unit, 8 is a low-frequency replacement circuit, 9 is a temporary filter, 10 is a line-sequential decoder, 11 is a matrix circuit, 12 is an operation command input terminal for stationary display, O 1 to O 3 are output terminals for R, G, B signals.

入力端子INに出現するMUSE映像信号は、A/D変換回路
1において16.2MHzのサンプリング周波数で10ビット幅
のディジタル信号に変換される。このA/D変換されたデ
ィジタル映像信号に対し、前処理回路2でノンリニア・
ディエンファシスや逆ガンマ補正などの前処理が行われ
る。コントロール信号抽出回路3は、A/D変換されたデ
ィジタル映像信号から動きベクトル信号やサブサンプル
位相情報などを含むコントロール信号を抽出し、フレー
ム間内挿部4、輝度信号処理部6、色信号処理部7など
に供給する。
The MUSE video signal appearing at the input terminal IN is converted in the A / D conversion circuit 1 into a 10-bit width digital signal at a sampling frequency of 16.2 MHz. The A / D converted digital video signal is non-linear
Pre-processing such as de-emphasis and inverse gamma correction is performed. The control signal extraction circuit 3 extracts a control signal including a motion vector signal and sub-sampling phase information from the A / D-converted digital video signal, and the inter-frame interpolating unit 4, the luminance signal processing unit 6, and the color signal processing. It is supplied to the part 7 or the like.

なお、図示は省略しているが、このMUSEデコーダには
A/D変換されたディジタル映像信号から各種の同期信号
を抽出する同期抽出回路や、この抽出された同期信号か
ら16.2MHz,32.4MHz,48.6MHzのクロック信号を再生して
各部に供給する回路や、音声信号の分離・デコード回路
なども設置されている。
Although not shown, this MUSE decoder
A sync extraction circuit that extracts various sync signals from the A / D-converted digital video signal, a circuit that regenerates 16.2MHz, 32.4MHz, and 48.6MHz clock signals from the extracted sync signals and supplies them to various parts. , A voice signal separation / decoding circuit, etc. are also installed.

前処理回路2から出力された映像信号は、フレーム間
内挿回路4aとフレームメモリ4bで構成されるフレーム間
内挿部4において、抽出済みのコントロール信号に含ま
れる動きベクトル信号などに基づきフレーム間内挿処理
される。動き検出回路6aとフレームメモリ6bで構成され
る動き検出部6は、フレーム間内挿処理前後の映像信号
について1フレームや2フレーム前のフレーム間差信号
の大きさから画面中の動きの大きさを検出し、輝度信号
処理部6と色信号処理部7内の適応合成部6cと7cに供給
する。
The video signal output from the pre-processing circuit 2 is inter-frame interpolated by the inter-frame interpolating circuit 4a and the frame memory 4b based on a motion vector signal included in the extracted control signal. Interpolated. The motion detection unit 6 including the motion detection circuit 6a and the frame memory 6b determines the magnitude of the motion in the screen from the magnitude of the inter-frame difference signal of one frame or two frames before the video signal before and after the inter-frame interpolation processing. Is detected and supplied to the adaptive synthesizing units 6c and 7c in the luminance signal processing unit 6 and the color signal processing unit 7.

フレーム間内挿済みの映像信号に含まれる輝度信号
は、通過帯域0〜12MHzの低域通過濾波回路6dを経てフ
ィールド間内挿回路6aに供給され、フィールド間内挿処
理が施される。また、フレーム間内挿済みの映像信号に
含まれる輝度信号はフィールド内内挿回路6bにも供給さ
れ、フィールド内内挿処理が施される。フィールド間内
挿済みの輝度信号とフィールド内内挿済みの輝度信号と
は、適応合成回路6cにおいて、動き検出回路5aで検出済
みの動きの大きさに応じて適応制御される合成比率に従
って適応合成される。適応合成済みの輝度信号は、低域
置換回路8の低域置換器8aで低域置換処理を受けたの
ち、テンポラリ・フィルタ9を経てマトリクス回路11に
供給される。
The luminance signal included in the inter-frame interpolated video signal is supplied to the inter-field interpolation circuit 6a via the low-pass filter circuit 6d having a pass band of 0 to 12 MHz and subjected to inter-field interpolation processing. Further, the luminance signal included in the inter-frame interpolated video signal is also supplied to the field interpolating circuit 6b and subjected to field interpolating processing. The inter-field interpolated luminance signal and the inter-field interpolated luminance signal are adaptively combined in the adaptive combining circuit 6c according to a combining ratio that is adaptively controlled according to the magnitude of the motion detected by the motion detection circuit 5a. To be done. The adaptively synthesized luminance signal is low-pass replaced by the low-pass replacer 8a of the low-pass replacer circuit 8, and then supplied to the matrix circuit 11 via the temporary filter 9.

時間軸伸張回路7dと7eとにおいて時間軸が4倍に伸張
された色信号についても同様に、フィールド間内挿回路
7aとフィールド内内挿回路7bとで内挿処理が施される。
内挿済みの各色信号は適応合成回路7cにおいて、動き検
出回路5aで検出済みの動きの大きさに応じて適応制御さ
れる合成比率に従って適応合成される。この適応合成済
みの色信号には、(R−Y)信号と(B−Y)信号が1
ラインおきに交互に出現するデータ圧縮が施されてい
る。この色信号は、線順次デコーダ10において、ライン
内挿によるライン連続の色信号に変換され、マトリクス
回路11に供給される。
Similarly, for the color signals whose time axis is expanded four times in the time axis expansion circuits 7d and 7e, the inter-field interpolation circuit is also used.
Interpolation processing is performed by 7a and the field interpolation circuit 7b.
The interpolated color signals are adaptively combined in the adaptive synthesizing circuit 7c according to a synthesizing ratio adaptively controlled according to the magnitude of the motion detected by the motion detecting circuit 5a. In this adaptively combined color signal, the (RY) signal and the (BY) signal are 1
The data is compressed so that it appears alternately every line. This color signal is converted into a line continuous color signal by line interpolation in the line sequential decoder 10 and supplied to the matrix circuit 11.

マトリクス回路11は、供給された輝度信号Yと色信号
(R−Y),(B−Y)とからR,G,R信号を生成し、出
力端子O1,O2,O3のそれぞれに供給する。
The matrix circuit 11 generates R, G and R signals from the supplied luminance signal Y and color signals (RY) and (BY), and outputs them to output terminals O 1 , O 2 and O 3 , respectively. Supply.

なお、図示の煩雑化を回避するため、第1図の低域通
過濾波回路6dとフィールド間内挿回路6aとの間及びフィ
ールド内内挿回路6bと輝度信号適応合成回路6cとの間に
設置される32.4MHzから48.6MHzへの周波数変換回路につ
いては図示が省略されている。また、第1図に示したMU
SEデコーダの低域置換回路8以外については、更に詳細
な説明が必要であればNEC技報Vol.41No.3/1988に掲載さ
れた「MUSEデコーダ」の題する本発明者らの論文を参照
されたい。
In addition, in order to avoid complication of illustration, it is installed between the low-pass filtering circuit 6d and the inter-field interpolation circuit 6a of FIG. 1 and between the field interpolation circuit 6b and the luminance signal adaptive synthesis circuit 6c. Illustration of the frequency conversion circuit from 32.4 MHz to 48.6 MHz is omitted. Also, the MU shown in FIG.
Except for the low-frequency replacement circuit 8 of the SE decoder, if further detailed explanation is required, refer to the present inventors' paper entitled "MUSE Decoder" published in NEC Technical Report Vol.41 No.3 / 1988. I want to.

低域置換回路8のスイッチ8cを構成するスイッチS1
S2は、通常動作時にはいずれも図中の上方の接点に切替
えられる。これに伴い、前処理回路2において前処理が
行われだけの映像信号がスイッチ8cと遅延器8bを経て低
域置換器8aに供給される。
The switch S 1 that constitutes the switch 8c of the low-frequency replacement circuit 8 and
In normal operation, S 2 is switched to the upper contact in the figure. Along with this, the video signal that has been pre-processed in the pre-processing circuit 2 is supplied to the low-pass replacing unit 8a via the switch 8c and the delay unit 8b.

低域置換器8aは、第2図に示すように、適応合成済み
の輝度信号を受ける入力端子I1と、遅延器8bから前処理
済みの映像信号を受ける入力端子I2と、4MHz〜20MHzの
帯域通過フィルタ21と、4MHzの低域通過フィルタ22と、
係数器23と、加算器24と、出力端子Oとから構成されて
いる。入力端子I1に出現する第3図の実線で示すような
信号成分は、4MHz以下の低域成分のみが適宜量の減衰を
受けつつ帯域通過フィルタ21を通過か加算器24の一方の
入力端子に供給される。一方、入力端子I2に出現する第
3図の一点鎖線で示すような信号成分は、4MHz以下の低
域成分のみが抽出されつつ低域通過フィルタ22を通過
し、係数器23において帯域通過フィルタ21の減衰量に応
じた値の係数が乗ぜられつつ加算器24の他方の入力端子
に供給される。加算器24は、両入力端子の濾波信号を合
成することにより、第4図の実線で示すような適宜な比
率で低域置換が施された輝度信号を生成し出力端子Oに
供給する。
As shown in FIG. 2, the low-frequency replacer 8a has an input terminal I 1 for receiving a luminance signal after adaptive synthesis, an input terminal I 2 for receiving a preprocessed video signal from the delay device 8b, and 4 MHz to 20 MHz. Band pass filter 21 of 4MHz, low pass filter 22 of 4MHz,
It is composed of a coefficient unit 23, an adder 24, and an output terminal O. The signal component appearing at the input terminal I 1 as shown by the solid line in FIG. 3 passes through the band pass filter 21 while only the low-frequency component of 4 MHz or less is attenuated by an appropriate amount, or one input terminal of the adder 24. Is supplied to. On the other hand, the signal component appearing at the input terminal I 2 as shown by the alternate long and short dash line in FIG. 3 passes through the low pass filter 22 while only the low band component of 4 MHz or less is extracted, and the band pass filter in the coefficient unit 23. It is supplied to the other input terminal of the adder 24 while being multiplied by a coefficient having a value corresponding to the attenuation amount of 21. The adder 24 synthesizes the filtered signals of both input terminals to generate a luminance signal subjected to low-frequency substitution at an appropriate ratio as shown by the solid line in FIG. 4, and supplies it to the output terminal O.

第1図の入力端子12に、静止表示動作の指令信号が出
現すると、動き検出回路5aの動作が停止されると共に、
スイッチ8cを構成するスイッチS1が図中の下側に切替え
られる。これに伴い、動き検出部5のフレームメモリ5b
への前処理済み映像信号の取込みが開始される。この取
込みが終了すると、フレームメモリ5bに取込まれた1フ
レーム分の前処理済み映像信号がフレーム周期で繰り返
し読出され、スイッチS2と遅延回路8bを経て低域置換器
8aに供給される。
When a command signal for still display operation appears at the input terminal 12 in FIG. 1, the operation of the motion detection circuit 5a is stopped and
The switch S 1 forming the switch 8c is switched to the lower side in the figure. Along with this, the frame memory 5b of the motion detector 5
The acquisition of the pre-processed video signal into is started. When this acquisition is completed, the pre-processed video signal for one frame, which has been taken into the frame memory 5b, is repeatedly read out at the frame period, and passes through the switch S 2 and the delay circuit 8b and the low-pass replacer.
Supplied to 8a.

一方、入力端子12上に出現した停止表示動作の指令信
号に基づき、フレーム間内挿部4のフレームメモリ4bの
入出力間にループが形成されて新たなフレームの映像信
号の取り込みが禁止されると共に静止表示動作の指令発
生直後に取り込まれたフレームの映像信号が繰り返し読
出される。この結果、低域置換による垂直解像度の改善
が施された静止画面の表示が行われる。
On the other hand, a loop is formed between the input and output of the frame memory 4b of the interframe interpolating unit 4 based on the command signal of the stop display operation appearing on the input terminal 12, and the capture of the video signal of the new frame is prohibited. At the same time, the video signal of the frame taken in immediately after the generation of the still display operation command is repeatedly read. As a result, a still screen with improved vertical resolution by low-frequency replacement is displayed.

(発明の効果) 以上詳細に説明したように、本発明の低域置換回路
は、MUSEデコーダ中に必ず含まれると共に静止表示動作
中に必ず不要となる動き検出用のフレームメモリを静止
表示画面の未処理信号を蓄積しておくフレームメモリに
転用する構成であるから、高価な専用のフレームメモリ
を追加することなく静止表示画面の画質の改善を実現で
きるという効果が奏される。
(Effects of the Invention) As described in detail above, the low-frequency replacement circuit of the present invention includes a frame memory for motion detection, which is always included in the MUSE decoder and is not necessary during the still display operation, of the still display screen. Since the structure is diverted to a frame memory for storing unprocessed signals, it is possible to improve the image quality of a still display screen without adding an expensive dedicated frame memory.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の低域置換回路を含むMUSEデ
コーダの一構成例を示すブロック図、第2図は第1図の
低域置換器8aの構成を示すブロック図、第3図と第4図
は低域置換の概念を説明するための信号成分図である。 IN……受信映像信号の入力端子、1……A/D変換回路、
2……前処理回路、4……フレーム間内挿部、5……動
き検出部、6……輝度信号処理部、7……色信号処理
部、8……低域置換回路、8a……低域置換器、8b……遅
延器、8c……スイッチ、11……マトリクス回路。
FIG. 1 is a block diagram showing a configuration example of a MUSE decoder including a low-frequency replacing circuit according to an embodiment of the present invention, FIG. 2 is a block diagram showing a configuration of the low-frequency replacing device 8a of FIG. 1, and FIG. FIG. 4 and FIG. 4 are signal component diagrams for explaining the concept of low-frequency replacement. IN: Input terminal for received video signal, 1 ... A / D conversion circuit,
2 ... Preprocessing circuit, 4 ... Interframe interpolating section, 5 ... Motion detecting section, 6 ... Luminance signal processing section, 7 ... Chromatic signal processing section, 8 ... Low-frequency replacement circuit, 8a ... Low-pass replacer, 8b ... delay device, 8c ... switch, 11 ... matrix circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 俊郎 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiro Omura 1-10-11 Kinuta, Setagaya-ku, Tokyo Inside the broadcasting technology laboratory of Japan Broadcasting Corporation

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】静止表示動作中以外はフレーム間内挿処理
直前の映像信号の低域成分を用いて低域置換を行い、 静止表示動作の開始時には前記フレーム間内挿処理直前
の映像信号を動き検出用のフレームメモリに取り込み、
これを繰り返し読出しつつその低域成分を用いて低域置
換を行う手段を備えたことを特徴とするMUSEデコーダの
低域置換回路。
1. Except during the still display operation, low-frequency replacement is performed using the low-frequency component of the video signal immediately before the inter-frame interpolation processing, and at the start of the still display operation, the video signal immediately before the inter-frame interpolation processing is performed. Captured in the frame memory for motion detection,
A low-frequency replacement circuit for a MUSE decoder, which is provided with a means for performing low-frequency replacement using the low-frequency component while repeatedly reading this.
JP63116064A 1988-05-13 1988-05-13 Low-frequency replacement circuit for MUSE decoder Expired - Fee Related JP2557466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116064A JP2557466B2 (en) 1988-05-13 1988-05-13 Low-frequency replacement circuit for MUSE decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116064A JP2557466B2 (en) 1988-05-13 1988-05-13 Low-frequency replacement circuit for MUSE decoder

Publications (2)

Publication Number Publication Date
JPH01286688A JPH01286688A (en) 1989-11-17
JP2557466B2 true JP2557466B2 (en) 1996-11-27

Family

ID=14677814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116064A Expired - Fee Related JP2557466B2 (en) 1988-05-13 1988-05-13 Low-frequency replacement circuit for MUSE decoder

Country Status (1)

Country Link
JP (1) JP2557466B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210398293A1 (en) * 2018-11-28 2021-12-23 Nippon Telegraph And Telephone Corporation Motion vector generation apparatus, projection image generation apparatus, motion vector generation method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210398293A1 (en) * 2018-11-28 2021-12-23 Nippon Telegraph And Telephone Corporation Motion vector generation apparatus, projection image generation apparatus, motion vector generation method, and program
US11954867B2 (en) * 2018-11-28 2024-04-09 Nippon Telegraph And Telephone Corporation Motion vector generation apparatus, projection image generation apparatus, motion vector generation method, and program

Also Published As

Publication number Publication date
JPH01286688A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
JP2576612B2 (en) Signal converter
JP3039836B2 (en) Television integrated video tape recorder
JPH0372796A (en) Television signal processing unit
US5365274A (en) Video signal converting apparatus with reduced processing for aliasing interference
JPH02141184A (en) Image signal processing device
JP2557466B2 (en) Low-frequency replacement circuit for MUSE decoder
JP2713973B2 (en) Television signal transmission method and reproduction method
JP3022713B2 (en) Image signal processing method
US4965661A (en) Method and apparatus for increasing the definiton of an NTSC video signal using an augmentation channel
JP2708848B2 (en) Television converter
JP2907494B2 (en) Method converter
JP2820479B2 (en) High-definition / standard television shared receiver
JP3017240U (en) Television signal processor
JP2557474B2 (en) Static display control circuit of MUSE decoder
JP2989362B2 (en) Motion detection circuit and motion detection method
JP3097140B2 (en) Television signal receiving and processing device
JP2623335B2 (en) Television signal receiving device
EP0762748A2 (en) Low-memory line interpolation for a PAL-plus television receiver
JPH04196787A (en) System converter
JPH07255041A (en) Television signal processing method and apparatus
JPH0440785A (en) System converting device
JPH048083A (en) Band compression television signal converter
JPH0246071A (en) Television receiver
JPH0522706A (en) Image signal transmission processing and reception processing device
JPH06165130A (en) Signal processing circuit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees