JP2556408B2 - Organic electrolyte battery - Google Patents
Organic electrolyte batteryInfo
- Publication number
- JP2556408B2 JP2556408B2 JP3348443A JP34844391A JP2556408B2 JP 2556408 B2 JP2556408 B2 JP 2556408B2 JP 3348443 A JP3348443 A JP 3348443A JP 34844391 A JP34844391 A JP 34844391A JP 2556408 B2 JP2556408 B2 JP 2556408B2
- Authority
- JP
- Japan
- Prior art keywords
- pas
- positive electrode
- battery
- negative electrode
- insoluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000005486 organic electrolyte Substances 0.000 title claims description 7
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 58
- 239000002245 particle Substances 0.000 claims description 58
- 239000011148 porous material Substances 0.000 claims description 31
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 29
- 229910052744 lithium Inorganic materials 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 29
- 239000002131 composite material Substances 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 22
- 229920003026 Acene Polymers 0.000 claims description 18
- 229920000642 polymer Polymers 0.000 claims description 17
- 125000003118 aryl group Chemical group 0.000 claims description 15
- 239000004020 conductor Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 12
- 239000011149 active material Substances 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- 239000008151 electrolyte solution Substances 0.000 claims description 8
- 229920001187 thermosetting polymer Polymers 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 238000010298 pulverizing process Methods 0.000 claims description 6
- 238000004438 BET method Methods 0.000 claims description 5
- 150000001721 carbon Chemical group 0.000 claims description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 5
- 229910052753 mercury Inorganic materials 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- 239000000243 solution Substances 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 238000002459 porosimetry Methods 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 229910003002 lithium salt Inorganic materials 0.000 claims description 2
- 159000000002 lithium salts Chemical class 0.000 claims description 2
- 238000007600 charging Methods 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000009833 condensation Methods 0.000 description 10
- 230000005494 condensation Effects 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000005011 phenolic resin Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- -1 plate Substances 0.000 description 8
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000011592 zinc chloride Substances 0.000 description 4
- 235000005074 zinc chloride Nutrition 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229910013684 LiClO 4 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910003307 Ni-Cd Inorganic materials 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010280 constant potential charging Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 229920003987 resole Polymers 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000007849 furan resin Substances 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical class C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical class OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical group NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000004202 carbamide Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000005352 hydroxybiphenyls Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910000103 lithium hydride Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical group NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
- IPCXNCATNBAPKW-UHFFFAOYSA-N zinc;hydrate Chemical compound O.[Zn] IPCXNCATNBAPKW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は二次電池に関し、更に詳
しくは、半導体の性能を有する不溶不融性物質を正極お
よび負極に用いた二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, and more particularly to a secondary battery using an insoluble and infusible substance having semiconductor properties for a positive electrode and a negative electrode.
【0002】[0002]
【従来の技術】近年、家電製品および電子機器のポータ
ブル化、コードレス化は急速に進展している。これに伴
い、小型軽量で高性能な電池が電源として求められるよ
うになった。現在上記機器の電源としては乾電池等のい
わゆる一次電池とNi-Cd 電池や鉛電池等の二次電池が使
用されている。しかし最近では、寿命が短く交換の必要
がある一次電池に対して繰り返し充電が可能な二次電池
が多用されるようになった。中でも小型機器用電源とし
て、Ni-Cd 電池が現在主流になっているが、高容量化と
いったニーズに対し、その性能改善の限界が近付いてい
る。加えて、ここ数年来地球環境問題についての議論が
盛んになっており、活物質であるCdの有害性に対する世
論が高まっている。そこで、Ni-Cd 電池以上の性能を持
ち、かつ信頼性、安全性を持った二次電池の開発に対す
る期待が大きい。2. Description of the Related Art In recent years, portable and cordless home appliances and electronic devices have been rapidly advancing. Along with this, compact and lightweight batteries with high performance have been demanded as power sources. Currently, so-called primary batteries such as dry batteries and secondary batteries such as Ni-Cd batteries and lead batteries are used as power sources for the above devices. However, recently, a secondary battery which has a short life and needs to be replaced and which can be repeatedly charged has been widely used. Among them, Ni-Cd batteries are currently the mainstream as a power source for small devices, but the performance improvement is approaching the limit due to the need for higher capacity. In addition, discussions on global environmental issues have been active in the last few years, and public opinion about the harmfulness of Cd, which is an active material, is increasing. Therefore, there is great expectation for the development of secondary batteries that have higher performance than Ni-Cd batteries, and that are more reliable and safer.
【0003】本出願人は先に、有機半導体の一種である
ポリアセン系骨格構造を含有する不溶不融性基体に電子
供与性物質または電子受容性物質をドーピングしたもの
を電極活物質として用いる二次電池を提案している(特
開昭60-170163 号公報)。この電池は高性能で薄形化、
軽量化の可能性も有しており、電極活物質の酸化安定性
も高く、さらにその成形も容易であるなど将来有望な二
次電池である。The applicant of the present invention has previously used, as an electrode active material, a material obtained by doping an insoluble and infusible substrate containing a polyacene skeleton structure, which is a kind of organic semiconductor, with an electron donating substance or an electron accepting substance as an electrode active material. A battery has been proposed (JP-A-60-170163). This battery is high performance and thin,
It is a promising secondary battery because it has the potential for weight reduction, has high oxidation stability of the electrode active material, and is easy to mold.
【0004】さらに本出願人は、上記ポリアセン系有機
半導体と金属酸化物の複合物を活物質として用い、負極
にポリアセン系有機半導体を含む成形体にリチウムをド
ーピングし担持させた、高電圧でかつ長期に亘って充放
電が可能な二次電池を提案した(特願平3-204769号)。
この二次電池は、リチウム系電池の特徴である高電圧と
いう特性を持ちながらも、デンドライト(Liの樹状結
晶)の発生のない安全性の高い電池である。しかし電池
の容量はなお不十分であった。Further, the applicant of the present invention has used a composite of a polyacene-based organic semiconductor and a metal oxide as an active material, and a lithium-doped molded article containing the polyacene-based organic semiconductor on a negative electrode, which is supported at a high voltage. We have proposed a secondary battery that can be charged and discharged for a long time (Japanese Patent Application No. 3-204769).
This secondary battery is a highly safe battery that does not generate dendrite (a dendrite of Li) while having the characteristic of high voltage, which is a characteristic of lithium-based batteries. However, the battery capacity was still insufficient.
【0005】またさらに本出願人は、ポリアセン系有機
半導体と平均粒径が1μm以下の五酸化バナジウムとを
活物質とし、かつ0.1μm以下の細孔の割合が70%
以上を占める正極と、ポリアセン系有機半導体を用いた
負極を有する二次電池についても提案している(平成3
年12月2日特許出願済)。この電池は単位体積当たり
の容量が大きいことを特徴とするが、急速充電性は未だ
満足のいくものとはいえない。Further, the applicant of the present invention discloses that a polyacene-based organic semiconductor and vanadium pentoxide having an average particle size of 1 μm or less are used as active materials, and a ratio of pores of 0.1 μm or less is 70%.
A secondary battery having a positive electrode occupying the above and a negative electrode using a polyacene-based organic semiconductor has also been proposed (Heisei 3
Patent application filed on December 2, 2012). Although this battery is characterized by a large capacity per unit volume, its rapid chargeability is not yet satisfactory.
【0006】[0006]
【発明が解決しようとする課題】そこで本発明は、容量
が大きく、かつ急速充電特性に優れた二次電池を提供す
ることを目的とする。SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a secondary battery having a large capacity and excellent quick charging characteristics.
【0007】本発明の他の目的は、長期に亘って充放電
可能で安全性に優れた、しかも製造が容易でかつ経済的
な二次電池を提供することにある。Another object of the present invention is to provide a secondary battery which can be charged and discharged for a long period of time, is excellent in safety, is easy to manufacture, and is economical.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上述の問
題に鑑み鋭意研究を進めた結果、正極における五酸化バ
ナジウムの平均粒径、および正極の細孔体積を特定の範
囲に制御した上で、さらに正極を活物質および導電材を
同時粉砕した複合体の成形体とし、かつポリアセン系有
機半導体を含む成形体にリチウムを担持させた負極と組
合せると、この電池は急速充電特性が向上することを見
出し、本発明に到達した。Means for Solving the Problems As a result of intensive studies in view of the above problems, the present inventors have controlled the average particle size of vanadium pentoxide in the positive electrode and the pore volume of the positive electrode within a specific range. When the positive electrode is formed into a composite body obtained by simultaneously pulverizing the active material and the conductive material, and is combined with the negative electrode in which lithium is supported on the body containing the polyacene-based organic semiconductor, the battery has a rapid charging characteristic. The inventors have found that it is improved and have reached the present invention.
【0009】すなわち本発明は、正極、負極および、リ
チウム塩を非プロトン性有機溶媒に溶解した溶液を含む
電解液を備えた有機電解質電池において、該正極が、
(1)(a) 炭素、水素及び酸素からなる芳香族系縮合ポ
リマ―の熱処理物であって、水素原子/炭素原子の原子
数比が0.05〜0.5 であるポリアセン系骨格構造を有し、
かつBET法による比表面積が 600m2 /g以上である
不溶不融性基体と、(b) 平均粒径が1μm以下である五
酸化バナジウム粒子との複合物である活物質、および
(c) 導電材を少なくとも含み、(2)0.1μm以下の
細孔直径を有する細孔体積が全細孔体積に対して70%
以上を占め(水銀圧入法により測定)、かつ(3)(a)
、(b) および(c) を同時に粉砕混合して得られる複合
粉体の成形体であり、該負極が、(a) 炭素、水素及び酸
素からなる芳香族系縮合ポリマ―の熱処理物であって、
水素原子/炭素原子の原子数比が0.05〜0.5 であるポリ
アセン系骨格構造を有する不溶不融性基体と(b) 熱硬化
性樹脂とを含む成形体に、リチウムを不溶不融性基体の
炭素原子に対して原子百分率で3%以上担持させたもの
であることを特徴とする。That is, the present invention provides an organic electrolyte battery comprising a positive electrode, a negative electrode, and an electrolytic solution containing a solution of a lithium salt dissolved in an aprotic organic solvent, wherein the positive electrode is
(1) (a) A heat-treated product of an aromatic condensed polymer composed of carbon, hydrogen and oxygen, which has a polyacene skeleton structure having a hydrogen atom / carbon atom number ratio of 0.05 to 0.5,
And an active material which is a composite of (b) vanadium pentoxide particles having an average particle size of 1 μm or less and (b) an insoluble infusible substrate having a specific surface area of 600 m 2 / g or more as measured by the BET method, and
(c) At least a conductive material is included, and (2) the pore volume having a pore diameter of 0.1 μm or less is 70% of the total pore volume.
Occupies the above (measured by mercury porosimetry), and (3) (a)
, (B) and (c) are simultaneously pulverized and mixed, and the negative electrode is a heat-treated product of (a) an aromatic condensation polymer composed of carbon, hydrogen and oxygen. hand,
The carbon of the insoluble infusible substrate containing lithium is added to a molded product containing an insoluble infusible substrate having a polyacene skeleton structure having a hydrogen atom / carbon atom atomic ratio of 0.05 to 0.5 and (b) a thermosetting resin. It is characterized in that it is supported by 3% or more in terms of atomic percentage with respect to atoms.
【0010】本発明において正極で使用する前記のポリ
アセン系骨格構造を有する不溶不融性基体(以下で、P
ASと称することがある)は、本願出願人による特開昭
60-152554 号公報、特開昭60-170163 号公報他に記載
されているものである。ここで芳香族系縮合ポリマーと
は、フェノ―ル性水酸基を有する芳香族炭化水素化合物
とアルデヒド類との縮合物である。芳香族炭化水素化合
物としては、例えばフェノ―ル、クレゾ―ル、キシレノ
―ルの如きいわゆるフェノ―ル類が好適であるが、これ
らに限られない。In the present invention, the insoluble and infusible substrate having a polyacene-based skeleton structure (hereinafter referred to as P
AS).
No. 60-152554, JP-A No. 60-170163, and the like. Here, the aromatic condensation polymer is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol and xylenol are preferable, but not limited to these.
【0011】例えば次式(化1):For example, the following formula (Formula 1):
【0012】[0012]
【化1】 (ここで、x及びyは夫々独立に0、1又は2である)
で示されるメチレンビスフェノ―ル類であることがで
き、あるいはヒドロキシ‐ビフェニル類、ヒドロキシナ
フタレン類であることもできる。これらのうち、実用的
にはフェノ―ル類、特にフェノ―ルが好適である。Embedded image (Where x and y are independently 0, 1 or 2)
Can be methylene bisphenols, or hydroxy-biphenyls and hydroxynaphthalenes. Of these, phenols are practically preferable, and phenol is particularly preferable.
【0013】本発明における芳香族系縮合ポリマーとし
ては、上記のフェノ―ル性水酸基を有する芳香族炭化水
素化合物の1部をフェノ―ル性水酸基を有さない芳香族
炭化水素化合物例えばキシレン、トルエン、アニリン等
で置換した変性芳香族系ポリマ―、例えばフェノ―ルと
キシレンとホルムアルデヒドとの縮合物である変性芳香
族系ポリマ―を用いることもでき、またメラミン、尿素
で置換した変性芳香族系ポリマ―を用いることもでき
る。さらにフラン樹脂も好適である。As the aromatic condensation polymer in the present invention, a part of the above-mentioned aromatic hydrocarbon compound having a phenolic hydroxyl group is an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene and toluene. It is also possible to use a modified aromatic polymer substituted with aniline or the like, for example, a modified aromatic polymer which is a condensate of phenol, xylene and formaldehyde, and a modified aromatic polymer substituted with melamine or urea. Polymers can also be used. Furan resins are also suitable.
【0014】アルデヒドとしてはホルムアルデヒド、ア
セトアルデヒド、フルフラ―ル等を使用することがで
き、ホルムアルデヒドが好適である。フェノ―ル・アル
デヒド縮合物としては、ノボラック型またはレゾ―ル型
あるいはそれらの複合物のいずれであってもよい。ベル
パールR(商標:鐘紡株式会社製)として市販されてい
る球状フェノ―ル系樹脂(球径100μm以下程度)を
用いることもできる。本発明におけるPASは、上記の
ごとき芳香族系化合物の熱処理物であり、例えば次のよ
うにして製造することができる。As the aldehyde, formaldehyde, acetaldehyde, furfural and the like can be used, and formaldehyde is preferred. The phenol / aldehyde condensate may be a novolac type, a resole type, or a composite thereof. It is also possible to use a spherical phenolic resin (sphere diameter of about 100 μm or less) commercially available as Bellpearl R (trademark: manufactured by Kanebo Co., Ltd.). The PAS in the present invention is a heat-treated product of the aromatic compound as described above, and can be produced, for example, as follows.
【0015】前記した芳香族系縮合ポリマーに塩化亜
鉛、リン酸ナトリウム、水酸化ナトリウム、水酸化カリ
ウムあるいは硫化カリウム等の無機物を混入する。混入
方法としては、芳香族系縮合ポリマーをメタノール、ア
セトンあるいは水等の溶媒に溶解させた後、上記した無
機物を添加し、十分に混合すれば良い。また、芳香族系
縮合ポリマーがノボラックのように溶融性のものであれ
ば加熱状態下で混合しても良い。芳香族系縮合ポリマー
と前記した無機物の混合比は、混ぜ合わせるポリマーと
無機物の種類および形状によって異なるが、重量比で1
0/1〜1/7が好ましい。An inorganic substance such as zinc chloride, sodium phosphate, sodium hydroxide, potassium hydroxide or potassium sulfide is mixed with the aromatic condensation polymer. As a mixing method, the aromatic condensation polymer may be dissolved in a solvent such as methanol, acetone, or water, and then the above-mentioned inorganic substance may be added and sufficiently mixed. Further, if the aromatic condensation polymer is a meltable one such as novolac, it may be mixed under heating. The mixing ratio of the aromatic condensation polymer and the above-mentioned inorganic substance varies depending on the type and shape of the polymer and the inorganic substance to be mixed, but the weight ratio is 1
0/1 to 1/7 is preferable.
【0016】次に、上記混合物をフィルム状、板状、繊
維状、布状、粒状またはそれらの混合の形に硬化する。Next, the above mixture is cured into a film, plate, fiber, cloth, granule or a mixture thereof.
【0017】かくして得られた硬化体は、次いで非酸性
雰囲気中で350〜800℃、好ましくは350〜70
0℃、特に好ましくは400〜600℃の温度まで加熱
される。芳香族系縮合ポリマーのかかる熱処理が行われ
る非酸化性雰囲気とは、例えば窒素、アルゴン、ヘリウ
ム、ネオン、二酸化炭素雰囲気、あるいは真空であり、
窒素が好ましく用いられる。かかる非酸化性雰囲気は静
止していても流動していてもさしつかえない。The cured product thus obtained is then in a non-acidic atmosphere at 350 to 800 ° C., preferably 350 to 70.
It is heated to a temperature of 0 ° C, particularly preferably 400-600 ° C. The non-oxidizing atmosphere in which the heat treatment of the aromatic condensation polymer is performed is, for example, nitrogen, argon, helium, neon, carbon dioxide atmosphere, or vacuum,
Nitrogen is preferably used. The non-oxidizing atmosphere may be stationary or flowing.
【0018】得られた熱処理体を水あるいは希塩酸等に
よって充分に洗浄することによって、熱処理体中に含ま
れる無機塩を除去することができ、その後これを乾燥す
ると比表面積の大きなPASを得ることができる。By thoroughly washing the obtained heat-treated body with water, dilute hydrochloric acid or the like, the inorganic salt contained in the heat-treated body can be removed, and then, when this is dried, PAS having a large specific surface area can be obtained. it can.
【0019】本発明において正極で使用するこのような
PASは、水素原子/炭素原子の原子数比(以下H/C
比という)が0.05〜0.5 、好ましくは0.1 〜0.35のポリ
アセン系骨格構造を有している。X線回析(CuKα)
によれば、メイン・ピ―クの位置は2θで表わして20.5
〜23.5°の間に存在し、またこのメイン・ピ―クの他に
41〜46°の間にブロ―ドな他のピ―クが存在する。Such a PAS used in the positive electrode in the present invention has a hydrogen atom / carbon atom atomic ratio (hereinafter referred to as H / C).
The ratio) is 0.05 to 0.5, preferably 0.1 to 0.35. X-ray diffraction (CuKα)
According to, the position of the main peak is 20.5
It exists between ~ 23.5 °, and besides this main peak
There are other peaks between 41 and 46 degrees.
【0020】すなわち上記PASは、ポリアセン系のベ
ンゼンの多環構造がポリアセン系分子間に均一かつ適度
に発達したものであると理解される。H/C比が0.5 を
超える場合には、PASと五酸化バナジウムとの複合物
を正極として用いた二次電池の充放電の電荷効率が悪く
なる。一方、この値が0.05未満の場合には、電池の容量
が低下してしまう。That is, it is understood that the PAS is a polyacene-based benzene polycyclic structure uniformly and moderately developed between polyacene-based molecules. When the H / C ratio exceeds 0.5, the charge efficiency of charging and discharging of a secondary battery using a composite of PAS and vanadium pentoxide as a positive electrode is deteriorated. On the other hand, if this value is less than 0.05, the capacity of the battery will decrease.
【0021】本発明において正極で使用するPASのB
ET法による比表面積値は600m2 /g以上である。
600m2 /g未満の場合、これを正極に用いた電池に
おいては、例えばClO4 - 、BF4 - 等の比較的イオ
ン半径の大きなイオンのドーピングを円滑に行うことが
難しくなって充電電圧を高くする必要が生じるため、エ
ネルギー効率が低下し、また電解液の劣化を招く。B of PAS used for the positive electrode in the present invention
The specific surface area value by the ET method is 600 m 2 / g or more.
If it is less than 600 m 2 / g, in a battery using this as a positive electrode, it is difficult to smoothly dope ions having a relatively large ionic radius, such as ClO 4 − and BF 4 − , so that the charging voltage is increased. Therefore, the energy efficiency is lowered and the electrolyte is deteriorated.
【0022】本発明においては、正極のPASは上記の
ように600m2/g以上という高い比表面積を有する
ので、その粒径にあまり関係なく活物質として十分な性
能、すなわち用いるPASの有する容量を十分引き出す
ことができる。しかしながら、PASの粒径が大きすぎ
ると、PASマトリックス中、つまりPAS粒子間に、
二次凝集しやすい五酸化バナジウムを分散させにくくな
るので、最終的に1μm以下の粒径であるのが好まし
い。In the present invention, since the PAS of the positive electrode has a high specific surface area of 600 m 2 / g or more as described above, sufficient performance as an active material, that is, the capacity of the PAS to be used has no relation to the particle size. Can be pulled out enough. However, if the particle size of the PAS is too large, in the PAS matrix, that is, between the PAS particles,
Since it becomes difficult to disperse vanadium pentoxide, which is liable to secondary aggregation, the particle size is preferably 1 μm or less.
【0023】本発明の二次電池における正極は、上記し
たPASと五酸化バナジウムとの複合物を活物質とす
る。五酸化バナジウムとは、一般的にはV2 O5 の式で
表されるが、実際はV2 Ox (4.5 ≦x<5.5 )の式で
表されるような、幅を持ったものである。五酸化バナジ
ウムは、リチウムイオンのインターカレーション、また
はデインターカレーション可能な金属酸化物の一種であ
り、リチウムイオンのインターカレーションにより、L
iV2 O5 、Li2 V2 O5 と表される化合物になる。
本発明における五酸化バナジウムには、このようなリチ
ウムイオンのインターカレーションによる複合酸化物を
も包含する。また、五酸化バナジウムは、結晶状態であ
っても、あるいは加熱処理等により非晶質状態にしたも
のであっても、あるいは両者が混在したものであっても
よい。しかし、高電圧の二次電池を得るためには、結晶
性の五酸化バナジウムが特に好ましい。The positive electrode in the secondary battery of the present invention uses the above-mentioned composite of PAS and vanadium pentoxide as an active material. Vanadium pentoxide is generally represented by the formula of V 2 O 5 , but actually has a width as represented by the formula of V 2 O x (4.5 ≦ x <5.5). . Vanadium pentoxide is a kind of metal oxide capable of intercalating or deintercalating lithium ions.
It becomes a compound represented by iV 2 O 5 and Li 2 V 2 O 5 .
Vanadium pentoxide in the present invention also includes such a composite oxide obtained by intercalation of lithium ions. Further, vanadium pentoxide may be in a crystalline state, in an amorphous state by heat treatment or the like, or in a mixture of both. However, crystalline vanadium pentoxide is particularly preferable for obtaining a high-voltage secondary battery.
【0024】本発明の電池の正極においては、上記の五
酸化バナジウムの平均粒径は最終的に、すなわち正極と
なったときに、1μm以下であることが必要である。こ
れは、先に述べた表面積の大きいPASが粒径に関係な
くその持ち得る容量を十分引き出し得るのに対して、五
酸化バナジウムの場合、粒径が大きすぎるとその持ち得
る容量を十分引き出すことが難しくなるためである。さ
らに、五酸化バナジウムは電導度が低いため、粒径が大
きいと急速充電に関しても不利になる。すなわち、粒径
が1μmより大きい五酸化バナジウムを用いた場合、後
に述べる正極中の細孔分布条件を満たしていたとして
も、その容量は十分なものとならず、また急速充電性に
も劣る。In the positive electrode of the battery of the present invention, the average particle size of vanadium pentoxide must be 1 μm or less finally, that is, when it becomes a positive electrode. This is because the above-mentioned PAS having a large surface area can sufficiently draw out its available capacity irrespective of the particle size, whereas in the case of vanadium pentoxide, if the particle size is too large, the available capacity can be sufficiently drawn out. Because it becomes difficult. Further, vanadium pentoxide has a low electric conductivity, and therefore a large particle size is disadvantageous for rapid charging. That is, when vanadium pentoxide having a particle size of more than 1 μm is used, even if the pore distribution condition in the positive electrode, which will be described later, is satisfied, the capacity is not sufficient and the rapid chargeability is poor.
【0025】本発明の電池の正極は、高い比表面積を有
するPASと五酸化バナジウムの複合物であり、PAS
の特徴である安定性、急速充電特性を生かしながら、特
定の電圧、例えば2.5V(Li/Li+ に対して)以
上で高容量を出せるという五酸化バナジウムの特徴を生
かすことを考えて提案されたものである。したがって、
PAS/五酸化バナジウムの比率は重要であり、90/
10〜30/70(重量比)、特に70/30〜30/
70であることが好ましい。特に五酸化バナジウムが増
え過ぎると、五酸化バナジウムの特性のみが強調され、
PASとの複合の利点が失われてしまう。The positive electrode of the battery of the present invention is a composite of PAS and vanadium pentoxide having a high specific surface area.
Proposed in consideration of utilizing the characteristic of vanadium pentoxide that it can produce a high capacity at a specific voltage, for example, 2.5 V (relative to Li / Li + ) while taking advantage of the stability and rapid charging characteristics that are the characteristics of It was done. Therefore,
The ratio of PAS / vanadium pentoxide is important, 90 /
10-30 / 70 (weight ratio), especially 70 / 30-30 /
It is preferably 70. Especially when vanadium pentoxide increases too much, only the characteristics of vanadium pentoxide are emphasized,
The advantages of combining with PAS are lost.
【0026】次に、本発明に使用される導電材として
は、例えばアセチレンブラック、ケッチェンブラック等
のカーボンブラックが挙げられ、なるべく粒径の小さい
ものが好ましい。電極における導電材の量は電極の用途
によって変わり得るが、活物質の2重量%〜40重量%
であることが好ましい。導電材が多すぎると活物質量が
相対的に少なくなるので電池の容量が低くなり、また少
なすぎると導電材の効果を発揮し難くなり、急速充電特
性に影響する。Next, examples of the conductive material used in the present invention include carbon black such as acetylene black and Ketjen black, and those having a particle diameter as small as possible are preferable. The amount of the conductive material in the electrode may vary depending on the use of the electrode, but 2% to 40% by weight of the active material
It is preferred that If the amount of the conductive material is too large, the amount of the active material is relatively small, so that the capacity of the battery is low.
【0027】本発明の電池用電極は、上記した(a) PA
S、(b) 五酸化バナジウムおよび(c) 導電材の3者を同
時に粉砕混合した複合物を成形して得られる。3者を同
時に粉砕混合することが肝要であり、PASおよび五酸
化バナジウムの2者を粉砕混合しただけでは本発明の効
果は得られない。例えば(a) および(b) を同時に粉砕混
合した後に(c) を単に混合し、電極を作成した場合に
は、PAS中に五酸化バナジウムが均質に分散するの
で、容量の大きな電池は得られるが、急速充電特性にお
いては満足のいくものではない。The battery electrode of the present invention has the above-mentioned (a) PA.
It is obtained by molding a composite in which S, (b) vanadium pentoxide and (c) a conductive material are simultaneously pulverized and mixed. It is important to grind and mix the three members at the same time, and the effects of the present invention cannot be obtained only by grinding and mixing the two members, PAS and vanadium pentoxide. For example, when (a) and (b) are crushed and mixed at the same time and then (c) is simply mixed to form an electrode, vanadium pentoxide is homogeneously dispersed in PAS, so that a battery having a large capacity can be obtained. However, it is not satisfactory in terms of rapid charging characteristics.
【0028】粉砕する際の3者の形態は塊状、顆粒状、
板状、粉体状、短繊維状等の混合しやすい形態であれば
よい。PASおよび五酸化バナジウムの粉体を用いる場
合には、その粉砕前の粒径が小さすぎると、同時粉砕の
効果が小さく、したがって本発明の利点が得難くなる。The three forms of crushing are massive, granular,
Any form that allows easy mixing, such as plate, powder, and short fiber, may be used. When using powder of PAS and vanadium pentoxide, if the particle size before pulverization is too small, the effect of simultaneous pulverization is small, and thus the advantages of the present invention are difficult to obtain.
【0029】粉砕混合方法は、特に限定されるものでは
ないが、ポットミル、振動ミル等のボールミルに代表さ
れる微粉砕機を用いることが好ましい。The pulverizing and mixing method is not particularly limited, but it is preferable to use a fine pulverizer represented by a ball mill such as a pot mill or a vibration mill.
【0030】粉砕時間は粉砕方法、粉砕量、粉砕される
物質の種類によって決定されるべきものであるが、1時
間以上が好ましく、粉砕力の弱い方法を用いる場合には
より長時間行うことが好ましい。The crushing time should be determined according to the crushing method, the crushing amount, and the kind of the substance to be crushed, but it is preferably 1 hour or longer, and when the method having a weak crushing power is used, the crushing time may be longer. preferable.
【0031】本発明にかかる正極は、上記の3成分の他
に、必要に応じて結着剤等を添加した複合物を成形して
得られる。結着剤等は、本発明において特定されるもの
ではなく、一般に電池用電極に用いられるものが好適で
ある。The positive electrode according to the present invention can be obtained by molding a composite to which a binder and the like are added, if necessary, in addition to the above three components. The binder and the like are not specified in the present invention, and those generally used for battery electrodes are suitable.
【0032】成形方法は特に限定されず、粉体に用いる
慣用の成形方法、例えば加圧成形法等を用いることがで
きる。The molding method is not particularly limited, and a conventional molding method used for powders, for example, a pressure molding method can be used.
【0033】かくして得られた正極は、0.1μm以下
の細孔直径を有する細孔体積が全細孔体積に対して70
%以上、好ましくは75%以上を占めることが必要であ
る。細孔体積の測定法としては主に水銀圧入法、毛管凝
縮法等が挙げられるが、本発明においては、測定幅の広
い(0.006μm〜100μmの細孔分布)水銀圧入
法を使用した。したがって、本発明における全細孔体積
とは、電極単位重量当たりの0.006μm以上100
μm以下の細孔直径を有する細孔の体積の総和を意味す
る。また、0.1μm以下の細孔直径を有する細孔体積
とは、0.006μm以上0.1μm以下の細孔体積を
有する細孔の体積の総和を意味する。The positive electrode thus obtained has a pore volume having a pore diameter of 0.1 μm or less of 70 with respect to the total pore volume.
%, Preferably 75% or more. The method of measuring the pore volume mainly includes the mercury porosimetry method and the capillary condensation method. In the present invention, the mercury porosimetry method having a wide measurement range (pore distribution of 0.006 μm to 100 μm) was used. Therefore, the total pore volume in the present invention is 0.006 μm or more per unit weight of the electrode.
It means the sum of the volumes of pores having a pore diameter of not more than μm. The pore volume having a pore diameter of 0.1 μm or less means the total volume of pores having a pore volume of 0.006 μm or more and 0.1 μm or less.
【0034】本発明の電池の正極においては、1μm以
下の微細な五酸化バナジウム粒子がPAS粒子間に均一
に分布しているので、0.1μm以下の細孔の割合が大
きい。特に0.1μm程度以下の五酸化バナジウムが
0.2〜0.6μm程度のPAS粒子間に均一に分散し
たものが好ましい。In the positive electrode of the battery of the present invention, since fine vanadium pentoxide particles of 1 μm or less are uniformly distributed among the PAS particles, the proportion of pores of 0.1 μm or less is large. In particular, it is preferable that vanadium pentoxide of about 0.1 μm or less is uniformly dispersed between PAS particles of about 0.2 to 0.6 μm.
【0035】正極の形状は特に限定されず、板状、フィ
ルム状、円筒状等種々の形状をとることができる。The shape of the positive electrode is not particularly limited, and may take various shapes such as a plate, a film, and a cylinder.
【0036】次に、本発明の電池の負極は、ポリアセン
系骨格構造を有する不溶不融性基体と熱硬化性樹脂とを
含む成形体に、リチウムをドーピングし、担持させたも
のである。負極において使用するポリアセン系骨格構造
を有する不溶不融性基体を以下ではPAS′と称する。
PAS′は、H/C比0.05〜0.5 、好ましくは0.1 〜0.
35のポリアセン系骨格構造を有していて、正極における
のと同様のPASを使用することができる。負極におい
ても、PAS′のH/C比が0.05未満であると、リチウ
ムを担持するときあるいはリチウムを出し入れするとき
(充放電時)に、基体構造に変化を生じやすくなり、サ
イクル特性が劣化する。一方、H/C比が0.5 を超える
と、リチウムを安定に担持させることができず、このよ
うなPAS′にリチウムを担持させた負極を用いて製造
した電池は自己放電が大きくなってしまう。Next, the negative electrode of the battery of the present invention is obtained by doping and supporting lithium on a molded body containing an insoluble and infusible substrate having a polyacene skeleton structure and a thermosetting resin. The insoluble and infusible substrate having a polyacene-based skeleton structure used in the negative electrode is hereinafter referred to as PAS '.
PAS 'has an H / C ratio of 0.05 to 0.5, preferably 0.1 to 0.
With 35 polyacene skeleton structures, the same PAS as in the positive electrode can be used. Also in the negative electrode, when the H / C ratio of PAS 'is less than 0.05, the structure of the base body is apt to change when lithium is carried or when lithium is taken in and out (during charge and discharge), and the cycle characteristics are deteriorated. . On the other hand, when the H / C ratio exceeds 0.5, lithium cannot be stably supported, and a battery manufactured using such a negative electrode in which lithium is supported on PAS 'has large self-discharge.
【0037】負極においてはさらに、正極においては適
さなかった、BET法による比表面積が600m2 /g
未満であるPAS′を用いることもできる。そのような
低比表面積のPAS′は、上記した正極におけるPAS
の製造過程において、芳香族系縮合ポリマーに、塩化亜
鉛等の無機物を加えることなく硬化させ、次いで非酸化
性雰囲気(真空状態も含む)中で、400〜1000℃
の温度、好ましくは600〜800℃の温度で加熱処理
して、H/C比が上記の値である熱処理物とすることに
よって製造できる。The negative electrode further had a specific surface area of 600 m 2 / g, which was not suitable for the positive electrode.
It is also possible to use PAS 'which is less than. Such a low specific surface area PAS 'is the PAS in the positive electrode described above.
In the production process of, the aromatic condensation polymer is cured without adding an inorganic substance such as zinc chloride, and then 400 to 1000 ° C. in a non-oxidizing atmosphere (including a vacuum state).
Can be produced by heat-treating at a temperature of, preferably 600 to 800 ° C. to obtain a heat-treated product having an H / C ratio of the above value.
【0038】また負極においては、PAS′の平均粒径
は0.1〜5μmであるのが好ましい。特にBET法に
よる比表面積値は600m2 /g未満で、かつ平均粒径
0.1〜5μmのPAS′を負極に使用すると、本発明
の効果が顕著となる。ここで、PAS′の平均粒径は、
遠心沈降法等により得られるストークス径(試料粒子と
等速度で同じ媒質中を沈降する同じ密度の球形粒子の
径)において、積算ふるい百分率が50%を示す粒子径
として定義した。In the negative electrode, the average particle size of PAS 'is preferably 0.1 to 5 μm. In particular, when PAS 'having a specific surface area value by BET method of less than 600 m 2 / g and an average particle diameter of 0.1 to 5 μm is used for the negative electrode, the effect of the present invention becomes remarkable. Here, the average particle size of PAS 'is
The Stokes diameter obtained by the centrifugal sedimentation method or the like (the diameter of spherical particles of the same density that sediment in the same medium at the same velocity as the sample particles) was defined as the particle diameter at which the cumulative sieving percentage is 50%.
【0039】負極においてPAS′と共に成形に用いら
れる熱硬化性樹脂としては、電極のゆるみを抑止し得る
もの、例えばフェノール樹脂、メラミン樹脂、フラン樹
脂等が挙げられる。成形体中の熱硬化性樹脂の割合はP
AS′の形状、PAS′の比表面積、結着剤量、担持さ
せるリチウム量等によって決定されるが、好ましくは負
極中に占める割合が重量比で1〜70%、さらに好まし
くは5〜50%である。熱硬化性樹脂が少なすぎると負
極のゆるみを抑止する効果が小さく、多すぎると当然の
ことながらPAS′の量が少なくなり、十分なリチウム
を担持することができず、電池容量が低下してしまう。Examples of the thermosetting resin used in the negative electrode together with the PAS 'for molding include those capable of suppressing loosening of the electrode, for example, phenol resin, melamine resin, furan resin and the like. The ratio of thermosetting resin in the molded product is P
It is determined by the shape of AS ', the specific surface area of PAS', the amount of binder, the amount of lithium supported, etc., but the proportion in the negative electrode is preferably 1 to 70% by weight, more preferably 5 to 50%. Is. If the amount of the thermosetting resin is too small, the effect of suppressing the loosening of the negative electrode is small, and if the amount is too large, the amount of PAS ′ is naturally small, and sufficient lithium cannot be supported, resulting in a decrease in battery capacity. I will end up.
【0040】PAS′と熱硬化性樹脂を含む成形体は、
大きく分けて2つの方法で製造することができる。第1
の方法は、粉末状、短繊維状の等の混合しやすい形態の
PAS′と熱硬化性樹脂の初期縮合物とを、必要ならば
メタノール、トルエン、水等の溶媒を加えて混練後、5
0〜200℃の加熱下硬化と同時に加圧成形する方法で
ある。また第2の方法は、先に上記形態にあるPAS′
を、例えばポリ四フッ化エチレン、ポリエチレン、ポリ
プロピレン等の電池用電極に一般的に用いられる結着材
と混合、あるいは必要に応じて混練、成形しておき、続
いてこの成形体に熱硬化性樹脂の初期縮合物を含浸後、
加熱等により乾燥、硬化を行う方法である。A molded article containing PAS 'and a thermosetting resin is
It can be roughly classified into two methods. First
Is to knead PAS 'in the form of powder, short fiber or the like which is easy to mix with an initial condensate of a thermosetting resin, if necessary, by adding a solvent such as methanol, toluene or water, and kneading the mixture.
This is a method of performing pressure molding simultaneously with curing under heating at 0 to 200 ° C. The second method is the PAS 'in the above embodiment.
Is mixed with a binder generally used for battery electrodes, such as polytetrafluoroethylene, polyethylene, or polypropylene, or if necessary, kneaded and molded, and then this molded body is thermosettable. After impregnating the initial condensate of the resin,
This is a method of drying and curing by heating or the like.
【0041】このようにして得られた成形体へのリチウ
ムの担持は、電解法、気相法、液相法、イオン注入法等
公知のドーピング方法から適宜選択して行えばよい。例
えば電解法でリチウムを担持する場合には、リチウムイ
オンを含む電解液中に、PAS′成形体を作用電極とし
て浸漬し、同一電解液中の対極との間で、電流を流す
か、または電圧を印加する。The loading of lithium on the thus obtained molded body may be appropriately selected from known doping methods such as an electrolytic method, a gas phase method, a liquid phase method, and an ion implantation method. For example, when lithium is supported by an electrolytic method, the PAS ′ molded body is immersed in an electrolytic solution containing lithium ions as a working electrode, and a current is applied to the counter electrode in the same electrolytic solution, or a voltage is applied. Is applied.
【0042】また上記成形体に、適量のリチウム箔を直
接接触させることによっても担持させることができる。The above-mentioned molded product can also be supported by directly contacting an appropriate amount of lithium foil.
【0043】気相法を用いる場合には、例えばリチウム
の蒸気に、PAS′成形体をさらす。液相法を用いる場
合には、例えばリチウムイオンを含む錯体とPAS′と
接触せしめる。この反応に用いる錯体としては、例えば
アルカリ金属のナフタレン錯体、アルコキシドなどが挙
げられるが、これらに限定されるものではない。When the gas phase method is used, the PAS 'compact is exposed to, for example, lithium vapor. When the liquid phase method is used, for example, a complex containing lithium ions is brought into contact with PAS '. Examples of the complex used in this reaction include, but are not limited to, an alkali metal naphthalene complex and an alkoxide.
【0044】上記方法によってPAS′に担持せしめる
リチウムの量は、原子百分率(PAS′の炭素原子1個
に対するリチウム原子の数の百分率)で3%以上、好ま
しくは10%以上である。リチウムの量はPAS′の比
表面積、組合せる正極の容量等によっても異なり、リチ
ウムを担持せしめたPAS′成形体の電位がLi/Li
+ に対して1.0〜0Vになるようにリチウムを担持さ
せるのが望ましい。リチウムの量が少ない場合、本発明
の電池の容量が低下し、多い場合には過剰のリチウムが
PAS′成形体表面に析出してしまう。The amount of lithium supported on the PAS 'by the above method is at least 3%, preferably at least 10%, in atomic percentage (percentage of the number of lithium atoms to one carbon atom of PAS'). The amount of lithium varies depending on the specific surface area of the PAS ', the capacity of the positive electrode to be combined, and the like. The potential of the PAS' molded article supporting lithium is Li / Li
It is desirable to carry lithium so as to be 1.0 to 0 V with respect to + . When the amount of lithium is small, the capacity of the battery of the present invention decreases, and when it is large, excess lithium is deposited on the surface of the PAS 'molded body.
【0045】本発明に用いる電解液を構成する溶媒とし
ては非プロトン性有機溶媒が用いられる。非プロトン性
有機溶媒としては、例えばエチレンカーボネート、プロ
ピレンカーボネート、γ‐ブチロラクトン、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルホキ
シド、アセトニトリル、ジメトキシエタン、テトラヒド
ロフラン、ジオキソラン、塩化メチレン、スルホラン等
が挙げられる。これら非プロトン性有機溶媒を単独でま
たは二種以上の混合液として使用できる。As a solvent constituting the electrolytic solution used in the present invention, an aprotic organic solvent is used. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolan, methylene chloride, sulfolane and the like. These aprotic organic solvents can be used alone or as a mixed solution of two or more kinds.
【0046】また、上記の混合または単一の溶媒に溶解
させる電解質は、リチウムイオンを生成し得る電解質の
いずれでもよい。このような電解質は、例えばLiI、
LiClO4 、LiAsF6 、LiBF4 またはLiH
F2 である。The electrolyte mixed or dissolved in a single solvent may be any electrolyte capable of generating lithium ions. Such electrolytes include, for example, LiI,
LiClO 4 , LiAsF 6 , LiBF 4 or LiH
It is F 2 .
【0047】上記の電解質および溶媒は十分に脱水され
た状態で混合され、電解液とするのであるが、電解液中
の前記電解質の濃度は、電解液による内部抵抗を小さく
するため、少なくとも0.1モル/リットル以上とする
のが望ましく、通常0.2〜1.5モル/リットルとす
るのがより好ましい。The above-mentioned electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte. The concentration of the electrolyte in the electrolyte is at least 0.1% in order to reduce the internal resistance due to the electrolyte. It is preferably at least 1 mol / l, more preferably 0.2 to 1.5 mol / l.
【0048】本発明の有機電解質電池は上記した正極、
負極および電解液を備えており、一般に正極と負極はセ
パレーターを介して配置される。The organic electrolyte battery of the present invention comprises the above positive electrode,
It is provided with a negative electrode and an electrolytic solution, and in general, the positive electrode and the negative electrode are arranged via a separator.
【0049】本発明において、正極にPASと五酸化バ
ナジウムの複合物を使用すると、五酸化バナジウム自身
の持つ高い容量および平均電位が、PAS′を用いた負
極との組合せによって生かされるものと考えられる。In the present invention, when a composite of PAS and vanadium pentoxide is used for the positive electrode, it is considered that the high capacity and average potential of the vanadium pentoxide itself are exploited by the combination with the negative electrode using PAS '. .
【0050】以下、実施例により本発明をさらに詳しく
説明する。Hereinafter, the present invention will be described in more detail with reference to examples.
【0051】[0051]
【実施例】なお、実施例では以下のポリアセン系物質を
使用した。I(正極用および負極用) 水溶性レゾ―ル型フェノ―ル樹脂(約60%濃度)/塩
化亜鉛/水を重量比で10/25/5の割合で混合した
スラリ―を、10cm×10cm×1cmの型に流し込み、そ
の上にガラス板を被せ、水分の蒸発を抑止しながら10
0℃で1時間加熱して硬化した。この硬化体をシリコニ
ット電気炉中に入れ、窒素気流中で、40℃/時間の速
度で昇温して500℃まで加熱し、熱処理を行った。次
に、この熱処理物を希塩酸で洗浄して塩化亜鉛を除去し
た後、水洗し、次いで乾燥することによって、板状のP
ASを得た。このPASのBET法による比表面積は2
000m2 /gと極めて大きな値であった。また元素分
析を行ったところ、水素原子/炭素原子の原子数比は
0.23であった。X線回折からのピークの形状はポリ
アセン系骨格構造に基因するパターンであり、2θで2
0〜22°付近にブロードなメインピークが存在し、ま
た41〜46°付近に小さなピークが確認された。EXAMPLES The following polyacene materials were used in the examples. I (for positive electrode and negative electrode) Water-soluble resole type phenol resin (about 60% concentration) / zinc chloride / water at a ratio of 10/25/5 by weight, a slurry 10 cm x 10 cm Pour into a mold of × 1 cm and cover it with a glass plate to prevent evaporation of water.
It was cured by heating at 0 ° C. for 1 hour. This cured product was placed in a silicon knit electric furnace and heated in a nitrogen stream at a rate of 40 ° C./hour to 500 ° C. for heat treatment. Next, this heat-treated product is washed with dilute hydrochloric acid to remove zinc chloride, then washed with water, and then dried to obtain a plate-shaped P
I got AS. The specific surface area of this PAS by the BET method is 2
It was an extremely large value of 000 m 2 / g. In addition, elemental analysis revealed that the atomic ratio of hydrogen atoms / carbon atoms was 0.23. The shape of the peak from X-ray diffraction is a pattern based on the polyacene-based skeleton structure and is 2 at 2θ.
A broad main peak was present in the vicinity of 0 to 22 °, and a small peak was confirmed in the vicinity of 41 to 46 °.
【0052】かくして得られたPASを1〜5cm角程度
の塊状に分割し、これを塊状PAS(PAS−A)とし
て以下の実施例に供した。また、ナイロン製のボールミ
ルで、24時間粉砕して、平均粒径が0.7μmのPA
S粉末を得た。これをPAS粉末Bと称す。なお、PA
S粉末の平均粒径は、電子顕微鏡法(「粉体」、久保輝
一郎ら編、昭和54年、改訂2版、丸善株式会社)により
求めた。II(負極用) ノボラック型フェノール樹脂をシリコニット電気炉に入
れ、窒素雰囲気下で、10℃/時間の昇温速度で750
℃まで加熱し、熱処理を行った。The PAS thus obtained was divided into lumps of about 1 to 5 cm square, and this was used as lump PAS (PAS-A) in the following examples. Also, PA with an average particle size of 0.7 μm was crushed for 24 hours with a nylon ball mill.
S powder was obtained. This is referred to as PAS powder B. In addition, PA
The average particle diameter of the S powder was determined by electron microscopy ("Powder", edited by Teruichiro Kubo et al., 1979, revised 2nd edition, Maruzen Co., Ltd.). II (for negative electrode) novolac type phenol resin was placed in a silicon knit electric furnace and heated at 750 at a temperature rising rate of 10 ° C./hour under a nitrogen atmosphere.
It heats up to (degreeC) and heat-processes.
【0053】得られたPAS′のH/C比は0.12で
あった。The H / C ratio of the obtained PAS 'was 0.12.
【0054】このPAS′をナイロン製のボールミル
で、10分間および24時間と粉砕時間を変えて粉砕し
て、平均粒径がそれぞれ3.4μm(PAS′粉末C)
および0.79μm(PAS′粉末D)のPAS′粉末
を得た。BET法による比表面積はそれぞれ230m2
/gおよび240m2 /gであった。なお、PAS′粉
末の平均粒径は、遠心沈降法により求めた。実施例1 (1) 正極の製造 塊状PAS(PAS−A) 60重量部、V2 O5 4
0重量部および導電材としてカーボンブラック(キャボ
ット社製、商標:ブラックパール、平均粒径0.02μ
m)25重量部をアルミナ製ボールミルに入れ、24時
間粉砕混合した。得られた複合物粉体を電子顕微鏡で観
察したところ、PASの平均粒径は0.5μmであっ
た。しかし、V2 O5 粒子は非常に小さく、かつPAS
粒子および導電材粒子と均質に混合されており、V2 O
5 粒子直径の正確な測定は困難であったが、V2 O5 粒
子に関しては、0.1μmを超えるものは全く見つから
なかった。This PAS 'was crushed with a nylon ball mill for 10 minutes and 24 hours while changing the crushing time to obtain an average particle size of 3.4 μm (PAS' powder C).
And a PAS ′ powder of 0.79 μm (PAS ′ powder D). Specific surface area by BET method is 230m 2 each
/ G and 240 m 2 / g. The average particle size of PAS 'powder was determined by the centrifugal sedimentation method. Example 1 (1) Production of Positive Electrode 60 parts by weight of bulk PAS (PAS-A), V 2 O 5 4
0 parts by weight and carbon black as a conductive material (trade name: Black Pearl, manufactured by Cabot Corporation, average particle size 0.02μ
m) 25 parts by weight were put into an alumina ball mill and pulverized and mixed for 24 hours. When the resulting composite powder was observed with an electron microscope, the average particle size of PAS was 0.5 μm. However, V 2 O 5 particles are very small, and PAS
Are homogeneously mixed with particles and a conductive material particles, V 2 O
Accurate measurement of the 5 particle diameter was difficult, but none of the V 2 O 5 particles above 0.1 μm was found.
【0055】得られた複合物粉体100重量部に対し、
結着剤としてポリ四フッ化エチレン5重量部を加え、乳
鉢により混合、混練後、ローラーによりシート成形を行
い、厚さ750μmの電極シートを得た。この電極シー
トの細孔分布を水銀ポロシメーター(島津製作所製、ポ
アサイザー)により測定し、(0.006μm以上0.
1μm以下の細孔直径を有する細孔体積)/(0.00
6μm以上100μm以下の細孔直径を有する細孔体
積)の比を求めたところ、81%であった。この電極シ
ートを15mmφに打ち抜いて正極No.1とした。 (2) 負極の製造 PAS′粉末D 100重量部に、結着剤としてポリ四
フッ化エチレン10重量部を添加し、乳鉢により混合、
混練後、ローラーによりシート成形を行い、厚さ400
μmのフィルムに成形し、負極の予備成形体を得た。次
いで、この予備成形体をレゾール型フェノール樹脂初期
縮合物のメタノール溶液(約25%濃度)に浸漬し、フ
ェノール樹脂を成形体に含浸させた。フェノール樹脂の
含浸量は、予備成形体に対して8.7重量%であった。
この含浸フィルムを窒素雰囲気下にて200℃で2時間
硬化させた。得られた負極成形体を15mmφに打ち抜い
て、これを成形体No.1とした。With respect to 100 parts by weight of the obtained composite powder,
5 parts by weight of polytetrafluoroethylene was added as a binder, mixed and kneaded in a mortar, and then formed into a sheet with a roller to obtain an electrode sheet having a thickness of 750 μm. The pore distribution of this electrode sheet was measured by a mercury porosimeter (Poresizer, manufactured by Shimadzu Corp.), and was (0.006 μm or more:
Pore volume having a pore diameter of 1 μm or less) / (0.00
The ratio of the volume of pores having a pore diameter of 6 μm or more and 100 μm or less) was 81%. This electrode sheet was punched into a 15 mmφ, It was set to 1. (2) Production of negative electrode To 100 parts by weight of PAS 'powder D, 10 parts by weight of polytetrafluoroethylene as a binder was added and mixed in a mortar,
After kneading, the sheet is formed with a roller to a thickness of 400
It was formed into a film having a thickness of μm to obtain a preform of the negative electrode. Next, this preform was immersed in a methanol solution (about 25% concentration) of a resol type phenol resin initial condensate to impregnate the preform with the phenol resin. The amount of the phenol resin impregnated was 8.7% by weight based on the preform.
This impregnated film was cured at 200 ° C. for 2 hours under a nitrogen atmosphere. The obtained negative electrode molded body was punched out to a diameter of 15 mm and this was molded body No. It was set to 1.
【0056】得られた負極成形体No.1を作用極と
し、リチウム金属を対極および参照極とし、十分に脱水
したプロピレンカーボネートにLiClO4 を溶解させ
た1モル/リットルの溶液を電解液とし、電気化学セル
を組み立てた。リチウムに対し、0.2Vの電圧を12
時間印加することにより、負極成形体にリチウムを担持
させた。回路に流れた電流値を積算して求められる、担
持させたリチウムの量は32原子%であった。これを負
極No.1とする。 (3) 電池の組み立て 正極No.1、負極No.1および電解液として1Mの
LiClO4 プロピレンカーボネート溶液、セパレータ
としてガラス不織布を用いて、図1に示すような電池を
組み立てた。この電池を3.6Vで6時間定電圧充電し
た後、2mAで2.0Vまで放電し、初期容量を測定し
た。続いて3.6Vで30分間定電圧充電を行い、次い
で前記と同様に放電して容量を測定し、この値と初期容
量との比を急速充電特性として評価した。結果を表1に
示す。実施例2 (1) 正極の製造 塊状PAS 60重量部、V2 O5 40重量部および
導電材としてカーボンブラック(キャボット社製、商
標:ブラックパール、平均粒径0.02μm)25重量
部をアルミナ製ボールミルに入れ、48時間粉砕混合し
た。得られた複合物粉体を電子顕微鏡で観察したとこ
ろ、PASの平均粒径は0.3μmであった。しかし、
V2 O5 粒子は非常に小さく、かつPAS粒子および導
電材粒子と均質に混合されており、V2 O5 粒子直径の
正確な測定は困難であったが、V2 O5 粒子に関しては
0.1μmを超えるものは全く見つからなかった。The obtained negative electrode molded body No. Electrochemical cell was assembled by using 1 as a working electrode, lithium metal as a counter electrode and a reference electrode, and a 1 mol / liter solution of LiClO 4 dissolved in sufficiently dehydrated propylene carbonate as an electrolyte. A voltage of 0.2 V is applied to lithium for 12
By applying for a time, the negative electrode molded body was made to carry lithium. The amount of lithium carried was 32 atom%, which was determined by integrating the values of the currents flowing in the circuit. This is the negative electrode No. Set to 1. (3) Battery assembly 1, negative electrode No. 1 and a 1M LiClO 4 propylene carbonate solution as an electrolytic solution, and a glass nonwoven fabric as a separator were assembled as shown in FIG. The battery was charged at a constant voltage of 3.6 V for 6 hours, then discharged at 2 mA to 2.0 V, and the initial capacity was measured. Subsequently, constant-voltage charging was performed at 3.6 V for 30 minutes, followed by discharging in the same manner as described above to measure the capacity, and the ratio of this value to the initial capacity was evaluated as a rapid charging characteristic. The results are shown in Table 1. Example 2 (1) Production of Positive Electrode 60 parts by weight of lump PAS, 40 parts by weight of V 2 O 5 and 25 parts by weight of carbon black (trade name: Black Pearl, average particle size 0.02 μm, manufactured by Cabot Corporation) as a conductive material were made of alumina. The mixture was put into a ball mill made for pulverization and mixed for 48 hours. When the resulting composite powder was observed with an electron microscope, the average particle size of PAS was 0.3 μm. But,
The V 2 O 5 particles were very small and were intimately mixed with the PAS particles and the conductive material particles, making accurate measurement of the V 2 O 5 particle diameter difficult, but for the V 2 O 5 particles 0 Nothing exceeding 1 μm was found.
【0057】得られた複合物粉体から実施例1と同様に
して電極シートを作成したところ、0.1μm以下の細
孔割合は86%であった。この電極シートを15mmφに
打ち抜いて正極No.2とした。 (2) 電池の組み立て 上記で製造した正極No.2を正極として用いたほかは
実施例1と同様にして電池を組み立てた。この電池を用
いて、実施例1と同様にして初期容量を測定し、また3
0分間定電圧充電した後の容量を測定して急速充電特性
の評価を行った。結果を表1に示す。実施例3 (1) 負極の製造 PAS′粉末Cを用いた他は実施例1と同様にして予備
成形体を製造し、これに実施例1と同様にしてフェノー
ル樹脂を含浸させ硬化させて、負極成形体を製造した。
なお、フェノール樹脂の含浸量は、予備成形体に対して
8.1重量%であった。次に、得られた成形体(これを
No.2とした)に、実施例1と同様にしてリチウムを
担持させた。担持させたリチウムの量は28原子%であ
った。これを負極No.2とする。 (2) 電池の組み立て 上記で製造した負極No.2を負極として用いたほかは
実施例1と同様にして電池を組み立てた。この電池を用
いて、実施例1と同様にして初期容量を測定し、また3
0分間定電圧充電した後の容量を測定して急速充電特性
の評価を行った。結果を表1に示す。実施例4 実施例2で製造した正極No.2および実施例3で製造
した負極No.2を用いた他は実施例1と同様にして電
池を組み立てた。この電池を用いて、実施例1と同様に
して初期容量を測定し、また30分間定電圧充電した後
の容量を測定して急速充電特性の評価を行った。結果を
表1に示す。実施例5 (1) 負極の製造 PAS粉末Bを用いた他は実施例1と同様にして予備成
形体を製造し、これに実施例1と同様にしてフェノール
樹脂を含浸させ硬化させて、負極成形体を製造した。な
お、フェノール樹脂の含浸量は、予備成形体に対して3
6重量%であった。次に、得られた成形体(これをN
o.3とした)に、実施例1と同様にしてリチウムを担
持させた。担持させたリチウムの量は78原子%であっ
た。これを負極No.3とする。 (2) 電池の組み立て 上記で製造した負極No.3を負極として用いたほかは
実施例1と同様にして電池を組み立てた。この電池を用
いて、実施例1と同様にして初期容量を測定し、また3
0分間定電圧充電した後の容量を測定して急速充電特性
の評価を行った。結果を表1に示す。実施例6 実施例2で製造した正極No.2および実施例5で製造
した負極No.3を用いた他は実施例1と同様にして電
池を組み立てた。この電池を用いて、実施例1と同様に
して初期容量を測定し、また30分間定電圧充電した後
の容量を測定して急速充電特性の評価を行った。結果を
表1に示す。実施例7 (1) 正極の製造 導電材としてアセチレンブラック(電気化学工業株式会
社製、商標:デンカブラック、平均粒径0.03μm)
30重量部を用いた以外は実施例2と同様にして、複合
物粉体を得た。PASの平均粒径は0.3μmであっ
た。しかし、V2 O5 粒子は非常に小さく、かつPAS
粒子および導電材粒子と均質に混合されており、0.1
μmを超えるものは全く見つからなかった。When an electrode sheet was prepared from the obtained composite powder in the same manner as in Example 1, the proportion of pores of 0.1 μm or less was 86%. This electrode sheet was punched into a 15 mmφ, And 2. (2) Assembling the battery A battery was assembled in the same manner as in Example 1 except that 2 was used as the positive electrode. Using this battery, the initial capacity was measured in the same manner as in Example 1, and 3
The capacity after charging at a constant voltage for 0 minutes was measured to evaluate the quick charging characteristics. The results are shown in Table 1. Example 3 (1) Production of Negative Electrode A preform was produced in the same manner as in Example 1 except that PAS ′ powder C was used, and a preform was impregnated and cured in the same manner as in Example 1, A negative electrode molded body was manufactured.
The amount of the phenol resin impregnated was 8.1% by weight based on the preform. Next, lithium was carried on the obtained molded body (this was designated as No. 2) in the same manner as in Example 1. The amount of supported lithium was 28 atomic%. This is the negative electrode No. Set to 2. (2) Battery assembly A battery was assembled in the same manner as in Example 1 except that 2 was used as the negative electrode. Using this battery, the initial capacity was measured in the same manner as in Example 1, and 3
The capacity after charging at a constant voltage for 0 minutes was measured to evaluate the quick charging characteristics. The results are shown in Table 1. Example 4 Positive electrode No. manufactured in Example 2 No. 2 and the negative electrode Nos. A battery was assembled in the same manner as in Example 1 except that Battery No. 2 was used. Using this battery, the initial capacity was measured in the same manner as in Example 1, and the capacity after constant-voltage charging for 30 minutes was measured to evaluate the rapid charging characteristics. The results are shown in Table 1. Example 5 (1) Production of Negative Electrode A preform was produced in the same manner as in Example 1 except that PAS powder B was used, and a preform was impregnated and cured in the same manner as in Example 1 to obtain a negative electrode. A molded body was manufactured. The amount of phenol resin impregnated was 3 for the preform.
It was 6% by weight. Next, the obtained molded body (this is
o. 3) was loaded with lithium in the same manner as in Example 1. The amount of supported lithium was 78 atomic%. This is the negative electrode No. Set to 3. (2) Battery assembly A battery was assembled in the same manner as in Example 1 except that No. 3 was used as the negative electrode. Using this battery, the initial capacity was measured in the same manner as in Example 1, and 3
The capacity after charging at a constant voltage for 0 minutes was measured to evaluate the quick charging characteristics. The results are shown in Table 1. Example 6 Positive electrode No. manufactured in Example 2 2 and the negative electrode No. manufactured in Example 5. A battery was assembled in the same manner as in Example 1 except that Battery No. 3 was used. Using this battery, the initial capacity was measured in the same manner as in Example 1, and the capacity after constant-voltage charging for 30 minutes was measured to evaluate the rapid charging characteristics. The results are shown in Table 1. Example 7 (1) Production of positive electrode Acetylene black as a conductive material (made by Denki Kagaku Kogyo Co., Ltd., trademark: Denka Black, average particle size 0.03 μm)
A composite powder was obtained in the same manner as in Example 2 except that 30 parts by weight was used. The average particle size of PAS was 0.3 μm. However, V 2 O 5 particles are very small, and PAS
The particles and the conductive material particles are homogeneously mixed,
Nothing exceeding μm was found.
【0058】得られた複合物粉体から実施例1と同様に
して電極シートを作成したところ、0.1μm以下の細
孔割合は75%であった。この電極シートを15mmφに
打ち抜いて正極No.3とした。 (2) 電池の組み立て 上記で製造した正極No.3を正極として用いたほかは
実施例1と同様にして電池を組み立てた。この電池を用
いて、実施例1と同様にして初期容量を測定し、また3
0分間定電圧充電した後の容量を測定して急速充電特性
の評価を行った。結果を表1に示す。比較例1 (1) 正極の製造 実施例1で用いたのと同じPASおよびV2 O5 を、P
AS/V2 O5 =60/40(重量比)で、アルミナ製
ボールミルに入れ、24時間粉砕した。得られたPAS
およびV2 O5 の複合物を電子顕微鏡で観察したとこ
ろ、PASの平均粒径は0.5μmであった。しかし、
V2 O5 粒子は非常に小さく、かつPAS粒子と均質に
混合されており、0.1μmを超えるものは見つからな
かった。When an electrode sheet was prepared from the obtained composite powder in the same manner as in Example 1, the proportion of pores of 0.1 μm or less was 75%. This electrode sheet was punched into a 15 mmφ, It was set to 3. (2) Assembling the battery A battery was assembled in the same manner as in Example 1 except that No. 3 was used as a positive electrode. Using this battery, the initial capacity was measured in the same manner as in Example 1, and 3
The capacity after charging at a constant voltage for 0 minutes was measured to evaluate the quick charging characteristics. The results are shown in Table 1. Comparative Example 1 (1) Production of Positive Electrode The same PAS and V 2 O 5 used in Example 1 were mixed with P
AS / V 2 O 5 = 60/40 (weight ratio) was put into an alumina ball mill and pulverized for 24 hours. The obtained PAS
When the composite of V 2 O 5 and V 2 O 5 was observed with an electron microscope, the average particle size of PAS was 0.5 μm. But,
The V 2 O 5 particles were very small and were intimately mixed with the PAS particles, none above 0.1 μm was found.
【0059】得られた複合物100重量部に対し、導電
剤としてカーボンブラック(キャボット社製、商標:ブ
ラックパール)25重量部、および結着剤としてポリ四
フッ化エチレン5重量部を添加し、乳鉢で混合した後、
実施例1と同様にして正極を製造し、これを正極No.
4とした。0.1μm以下の細孔割合は86%であっ
た。 (2) 電池の組み立て 上記で製造した正極No.4を正極として用いたほかは
実施例1と同様にして電池を組み立てた。この電池を用
いて、実施例1と同様にして初期容量を測定し、また3
0分間定電圧充電した後の容量を測定して急速充電特性
の評価を行った。結果を表1に示す。比較例2 (1) 正極の製造 実施例1で用いたのと同じPASおよびV2 O5 を、P
AS/V2 O5 =60/40(重量比)で、アルミナ製
ボールミルに入れ、48時間粉砕した。得られたPAS
およびV2 O5 の複合物を電子顕微鏡で観察したとこ
ろ、PASの平均粒径は0.4μmであった。しかし、
V2 O5 粒子は非常に小さく、かつPAS粒子と均質に
混合されており、0.1μmを超えるものは見つからな
かった。To 100 parts by weight of the obtained composite, 25 parts by weight of carbon black (trade name: Black Pearl, manufactured by Cabot Corporation) as a conductive agent and 5 parts by weight of polytetrafluoroethylene as a binder were added, After mixing in a mortar,
A positive electrode was manufactured in the same manner as in Example 1, and the positive electrode No.
It was set to 4. The proportion of pores having a diameter of 0.1 μm or less was 86%. (2) Assembling the battery A battery was assembled in the same manner as in Example 1 except that 4 was used as the positive electrode. Using this battery, the initial capacity was measured in the same manner as in Example 1, and 3
The capacity after charging at a constant voltage for 0 minutes was measured to evaluate the quick charging characteristics. The results are shown in Table 1. Comparative Example 2 (1) Production of Positive Electrode The same PAS and V 2 O 5 used in Example 1 were mixed with P
AS / V 2 O 5 = 60/40 (weight ratio) was put into an alumina ball mill and pulverized for 48 hours. The obtained PAS
When the composite of V 2 O 5 and V 2 O 5 was observed with an electron microscope, the average particle size of PAS was 0.4 μm. But,
The V 2 O 5 particles were very small and were intimately mixed with the PAS particles, none above 0.1 μm was found.
【0060】得られた複合物を用いて、以下実施例1と
同様にして正極を製造し、これを正極No.5とした。
0.1μm以下の細孔割合は84%であった。 (2) 電池の組み立て 上記で製造した正極No.5を正極として用いたほかは
比較例1と同様にして電池を組み立てた。この電池を用
いて、実施例1と同様にして初期容量を測定し、また3
0分間定電圧充電した後の容量を測定して急速充電特性
の評価を行った。結果を表1に示す。Using the obtained composite, a positive electrode was manufactured in the same manner as in Example 1 below. It was set to 5.
The proportion of pores having a diameter of 0.1 μm or less was 84%. (2) Assembling the battery A battery was assembled in the same manner as Comparative Example 1 except that 5 was used as the positive electrode. Using this battery, the initial capacity was measured in the same manner as in Example 1, and 3
The capacity after charging at a constant voltage for 0 minutes was measured to evaluate the quick charging characteristics. The results are shown in Table 1.
【0061】[0061]
【表1】 [Table 1]
【0062】[0062]
【発明の効果】本発明によれば、容量が大きく、かつ急
速充電特性に優れた二次電池を提供することができる。
本発明の二次電池はさらに、長期に亘って充放電が可能
で安全性に優れた、しかも製造が容易でかつ経済的であ
る。According to the present invention, it is possible to provide a secondary battery having a large capacity and excellent rapid charging characteristics.
Further, the secondary battery of the present invention can be charged and discharged for a long period of time, is excellent in safety, is easy to manufacture, and is economical.
【図面の簡単な説明】[Brief description of drawings]
【図1】図1は、本発明にかかる電池の基本構成を示し
たものである。FIG. 1 shows a basic configuration of a battery according to the present invention.
1は正極、2は負極、3、3′は集電体、4は電解液、
5はセパレーター、6は電池ケース、7、7′は外部端
子を表す。1 is a positive electrode, 2 is a negative electrode, 3 is a current collector, 4 is an electrolytic solution,
Reference numeral 5 is a separator, 6 is a battery case, and 7 and 7'are external terminals.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 姉川 彰博 大阪府大阪市都島区友渕町1丁目6番10 −503号 (72)発明者 矢田 静邦 兵庫県加古郡播磨町宮西2丁目6−13 (56)参考文献 特開 平2−230668(JP,A) 特開 平3−233860(JP,A) 特開 平5−28985(JP,A) 特開 平5−29023(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Akihiro Anekawa 1-6-10-503, Tomobuchi-cho, Miyakojima-ku, Osaka-shi, Osaka (72) Inventor Shizukuni Yada 2-6-13 Miyanishi, Harima-cho, Kako-gun, Hyogo (56) References JP-A-2-230668 (JP, A) JP-A-3-233860 (JP, A) JP-A-5-28985 (JP, A) JP-A-5-29023 (JP, A)
Claims (3)
トン性有機溶媒に溶解した溶液を含む電解液を備えた有
機電解質電池において、 該正極が、 (1)(a) 炭素、水素及び酸素からなる芳香族系縮合ポ
リマ―の熱処理物であって、水素原子/炭素原子の原子
数比が0.05〜0.5 であるポリアセン系骨格構造を有し、
かつBET法による比表面積が 600m2 /g以上である
不溶不融性基体と、(b) 平均粒径が1μm以下である五
酸化バナジウム粒子との複合物である活物質、および
(c) 導電材を少なくとも含み、 (2)0.1μm以下の細孔直径を有する細孔体積が全
細孔体積に対して70%以上を占め(水銀圧入法により
測定)、かつ (3)(a) 、(b) および(c) を同時に粉砕混合して得ら
れる複合粉体の成形体であり、 該負極が、 (a) 炭素、水素及び酸素からなる芳香族系縮合ポリマ―
の熱処理物であって、水素原子/炭素原子の原子数比が
0.05〜0.5 であるポリアセン系骨格構造を有する不溶不
融性基体と(b) 熱硬化性樹脂とを含む成形体に、リチウ
ムを不溶不融性基体の炭素原子に対して原子百分率で3
%以上担持させたものであることを特徴とする有機電解
質電池。1. An organic electrolyte battery comprising a positive electrode, a negative electrode, and an electrolytic solution containing a solution of a lithium salt dissolved in an aprotic organic solvent, wherein the positive electrode comprises (1) (a) carbon, hydrogen and oxygen. Which is a heat-treated product of an aromatic condensed polymer having a polyacene skeleton structure in which the number ratio of hydrogen atoms / carbon atoms is 0.05 to 0.5,
And an active material which is a composite of (b) vanadium pentoxide particles having an average particle size of 1 μm or less and (b) an insoluble infusible substrate having a specific surface area of 600 m 2 / g or more as measured by the BET method, and
(c) contains at least a conductive material, (2) the pore volume having a pore diameter of 0.1 μm or less accounts for 70% or more of the total pore volume (measured by mercury porosimetry), and (3) A composite powder compact obtained by simultaneously pulverizing and mixing (a), (b) and (c), wherein the negative electrode comprises (a) an aromatic condensed polymer composed of carbon, hydrogen and oxygen.
Which has a hydrogen atom / carbon atom atomic ratio of
In a molded body containing an insoluble and infusible substrate having a polyacene-based skeleton structure of 0.05 to 0.5 and (b) a thermosetting resin, lithium was added at an atomic percentage of 3 with respect to carbon atoms of the insoluble and infusible substrate.
% Or more of the supported organic electrolyte battery.
径1μm以下の粒子から成る請求項1記載の有機電解質
電池。2. The organic electrolyte battery according to claim 1, wherein the insoluble and infusible substrate in the positive electrode comprises particles having an average particle size of 1 μm or less.
法による比表面積600 m2 /g未満であり、かつ平均粒
径0.1〜5μmの粒子から成る請求項1または2のい
ずれか1項に記載の有機電解質電池。3. In the negative electrode, the insoluble and infusible substrate is BET.
3. The organic electrolyte battery according to claim 1, which has a specific surface area of less than 600 m 2 / g according to the method and is composed of particles having an average particle diameter of 0.1 to 5 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3348443A JP2556408B2 (en) | 1991-12-05 | 1991-12-05 | Organic electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3348443A JP2556408B2 (en) | 1991-12-05 | 1991-12-05 | Organic electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05159806A JPH05159806A (en) | 1993-06-25 |
JP2556408B2 true JP2556408B2 (en) | 1996-11-20 |
Family
ID=18397040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3348443A Expired - Fee Related JP2556408B2 (en) | 1991-12-05 | 1991-12-05 | Organic electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2556408B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4944472B2 (en) * | 2006-03-30 | 2012-05-30 | 株式会社Kri | Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same |
JP5192657B2 (en) * | 2006-04-26 | 2013-05-08 | 株式会社Kri | Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same |
-
1991
- 1991-12-05 JP JP3348443A patent/JP2556408B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05159806A (en) | 1993-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20150078068A (en) | Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery | |
JP2627033B2 (en) | Manufacturing method of organic electrolyte battery | |
JPS63314766A (en) | Organic electrolyte cell having activated carbon metal oxide composite as positive electrode | |
JP2556408B2 (en) | Organic electrolyte battery | |
WO1995008852A1 (en) | Organic electrolyte cell | |
JP2574730B2 (en) | Organic electrolyte battery | |
JP2703696B2 (en) | Organic electrolyte battery | |
JP2556407B2 (en) | Organic electrolyte battery | |
JP2920079B2 (en) | Organic electrolyte battery | |
JP2968097B2 (en) | Organic electrolyte battery | |
JPH08162161A (en) | Organic electrolytic battery | |
JP2649298B2 (en) | Manufacturing method of battery electrode | |
US20190088920A1 (en) | Method For Manufacturing An Electrode For A Lithium-Sulfur Battery Having A Large Active Surface Area | |
JP2744555B2 (en) | Battery electrode | |
JP2704688B2 (en) | Battery electrode | |
JPH08162159A (en) | Organic elctrolytic battery | |
JPH0864251A (en) | Organic electrolyte battery | |
JP2704689B2 (en) | Manufacturing method of battery electrode | |
JP2524184B2 (en) | Organic electrolyte battery containing composite electrodes | |
JP2646461B2 (en) | Organic electrolyte battery | |
JP2869191B2 (en) | Organic electrolyte battery | |
JP3403894B2 (en) | Organic electrolyte battery | |
JP2616774B2 (en) | Organic electrolyte battery using metal oxide composite as positive electrode | |
JP2614724B2 (en) | Organic electrolyte battery with metal sulfide composite as positive electrode | |
JP2619842B2 (en) | Organic electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |