JP2555770B2 - Copper thick film circuit substrate and method of manufacturing the same - Google Patents
Copper thick film circuit substrate and method of manufacturing the sameInfo
- Publication number
- JP2555770B2 JP2555770B2 JP2275042A JP27504290A JP2555770B2 JP 2555770 B2 JP2555770 B2 JP 2555770B2 JP 2275042 A JP2275042 A JP 2275042A JP 27504290 A JP27504290 A JP 27504290A JP 2555770 B2 JP2555770 B2 JP 2555770B2
- Authority
- JP
- Japan
- Prior art keywords
- thick film
- copper
- firing
- copper thick
- film circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は銅厚膜回路用基板及びその製造方法、より詳
しくは厚膜ハイブリッドICに用いられる基板のうち、ア
ルミナ等のセラミック基板上に、銅を導体とした配線パ
ターンが形成された銅厚膜回路用基板及びその製造方法
に関する。Description: TECHNICAL FIELD The present invention relates to a copper thick film circuit substrate and a method for manufacturing the same, and more specifically, a substrate used for a thick film hybrid IC, in which copper is deposited on a ceramic substrate such as alumina. The present invention relates to a copper thick film circuit substrate having a wiring pattern formed as a conductor, and a method for manufacturing the same.
従来の技術 一般に金属銅粉末を主成分とする銅ペーストを用いて
銅厚膜回路用基板を製造する場合、まずスクリーン印刷
等の方法によりセラミック基板上に銅ペーストの回路パ
ターンを印刷し、その後窒素雰囲気の焼成炉において脱
バインダ工程を経た後、850〜950℃の高温で焼成する。2. Description of the Related Art In general, when manufacturing a copper thick film circuit board using a copper paste whose main component is metallic copper powder, first, a circuit pattern of the copper paste is printed on the ceramic substrate by a method such as screen printing, and then nitrogen. After the binder removal step in a firing furnace in an atmosphere, firing is performed at a high temperature of 850 to 950 ° C.
セラミック基板上へ銅ペーストを用いて回路パターン
を印刷する際、その印刷膜厚条件は、銅厚膜導体の接着
強度を確保するために焼成後の膜厚が約17μm以上必要
とされていること、及び焼成時の体積収縮を考慮して決
定されている。When a circuit pattern is printed on a ceramic substrate using copper paste, the printed film thickness must be about 17 μm or more after firing in order to secure the adhesive strength of the copper thick film conductor. , And volume shrinkage during firing are taken into consideration.
また、前記脱バインダ工程は銅ペースト中にバインダ
成分として含まれる高分子樹脂等の有機物質を除去する
ために行なわれるものであり、焼成炉内の比較的低温
(約450〜700℃)に維持された脱バインダ工程部に10pp
m以下程度の極く微量の酸素を添加して行なわれてい
る。Further, the binder removal step is performed to remove organic substances such as polymer resin contained as a binder component in the copper paste, and is maintained at a relatively low temperature (about 450 to 700 ° C) in the firing furnace. 10pp in the removed binder process section
It is performed by adding a very small amount of oxygen of about m or less.
しかし、微量に酸素を添加するコントロールは難し
く、不確実な脱バインダ処理あるいは銅成分の酸化が発
生しやすい。不確実な脱バインダ処理は銅厚膜導体の接
着強度劣化の要因となる一方、銅成分の酸化は半田濡れ
性及び導電抵抗値を悪化させることとなる。However, it is difficult to control the addition of a small amount of oxygen, and uncertain binder removal processing or copper component oxidation is likely to occur. The uncertain binder removal process causes deterioration of the adhesive strength of the copper thick film conductor, while the oxidation of the copper component deteriorates the solder wettability and the conductive resistance value.
上記銅の酸化を防止する方法として、空気中あるいは
酸素を含む雰囲気中で銅ペーストを高温で焼成し、その
後水素雰囲気中、300〜500℃の温度範囲で1〜10分間還
元処理を行なう方法が開示されている(特開昭63−1174
90号公報)。As a method for preventing the oxidation of the copper, there is a method of firing the copper paste at a high temperature in air or an atmosphere containing oxygen, and then performing a reduction treatment in a hydrogen atmosphere at a temperature range of 300 to 500 ° C for 1 to 10 minutes. It has been disclosed (Japanese Patent Laid-Open No. 63-1174).
90 publication).
発明が解決しようとする課題 上記した従来の銅厚膜回路用基板を製造する方法にお
いて、焼成後の膜厚は銅厚膜導体の接着強度を確保する
ために約17μm以上が必要とされているが、約17μm以
上の膜厚では、配線パターンの線巾及び線間距離が最小
でも150μm程度に留まり、それ以上の高密度配線化は
現在の製造技術では困難であるという課題があった。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the above-described conventional method for manufacturing a copper thick film circuit substrate, the film thickness after firing is required to be about 17 μm or more in order to secure the adhesive strength of the copper thick film conductor. However, with a film thickness of about 17 μm or more, the line width and the distance between lines of the wiring pattern remain at a minimum of about 150 μm, and there is a problem that it is difficult to achieve higher density wiring with the current manufacturing technology.
また、印刷技術の改善により、17μm程度の膜厚で線
巾が150μm未満に低減できたとしても、基板との接触
面積の減少に比例して銅厚膜導体の接着強度が減少する
ため、現在実現されている程度の接着強度では細線部分
の接着強度不足が著しく、信頼性が低くなるという課題
があった。Even if the line width could be reduced to less than 150 μm with a film thickness of about 17 μm by improving printing technology, the adhesive strength of the copper thick film conductor will decrease in proportion to the decrease in the contact area with the substrate. With the bonding strength that has been realized, there is a problem that the bonding strength of the thin line portion is significantly insufficient, and the reliability becomes low.
さらに、脱バインダ工程において微量の酸素を添加す
る場合、微量酸素添加のコントロールが困難であり、そ
のため不完全な脱バインダ処理となりやすい。不完全な
脱バインダ処理は銅厚膜導体の接着強度の劣化を引き起
こすこととなる。また銅成分の酸化は半田濡れ性及び導
電抵抗値の劣化を生じさせる等、銅厚膜導体としての基
本特性の劣化を生じさせるという課題があった。Furthermore, when a small amount of oxygen is added in the binder removal step, it is difficult to control the addition of a small amount of oxygen, and thus the incomplete binder removal process is likely to occur. Incomplete debinding process causes deterioration of the adhesive strength of the copper thick film conductor. In addition, there is a problem that the oxidation of the copper component causes deterioration of the solder wettability and the conductive resistance value and the deterioration of the basic characteristics of the copper thick film conductor.
また、特開昭63−117490号公報に開示されているよう
に、空気中で銅ペーストの焼成を行ない、その後500℃
程度の水素雰囲気中で還元処理を施したとしても、一旦
形成された銅酸化物の還元は十分にはなされないので、
導電抵抗値が通常の銅導体のレベルまでは回復しない。
さらに、半田濡れ性についても、例えば5,000ppmの酸素
を含む雰囲気中で焼成を行なった場合、その後に500℃
程度における水素による還元処理を行なったとしても、
やはり十分には回復せず、満足できるものではなかった
という課題があった。Further, as disclosed in JP-A-63-117490, the copper paste is fired in air and then 500 ° C.
Even if the reduction treatment is performed in a hydrogen atmosphere of a certain degree, since the copper oxide once formed is not sufficiently reduced,
Conductive resistance does not recover to the level of normal copper conductors.
Furthermore, regarding solder wettability, for example, if firing is performed in an atmosphere containing 5,000 ppm oxygen, then 500 ° C
Even if reduction treatment with hydrogen is performed to a certain degree,
After all, there was a problem that it did not recover sufficiently and was not satisfactory.
本発明は上記した課題に鑑み発明されたものであっ
て、銅厚膜回路用基板としての基本特性である、接着強
度、導電抵抗値及び半田濡れ性のすべての特性において
満足のいく銅厚膜回路用基板及びその製造方法を提供す
ることを目的としている。The present invention has been invented in view of the above-mentioned problems, and is a basic characteristic as a copper thick film circuit substrate, that is, a copper thick film that is satisfactory in all properties of adhesive strength, conductive resistance and solder wettability. An object is to provide a circuit board and a method for manufacturing the same.
課題を解決するための手段 上記目的を達成するために本発明に係る銅厚膜回路用
基板は、セラミック基板上に銅厚膜導体が形成されてい
る銅厚膜回路用基板において、前記セラミック基板と前
記銅厚膜導体との界面にタングステン酸鉛が存在してい
ることを特徴としている(1)。Means for Solving the Problems In order to achieve the above object, a copper thick film circuit substrate according to the present invention is a copper thick film circuit substrate in which a copper thick film conductor is formed on a ceramic substrate. Lead tungstate is present at the interface between the copper thick film conductor and (1).
また、本発明に係る銅厚膜回路用基板は、上記(1)
記載の銅厚膜回路用基板において、タングステン酸鉛が
PbWO4であることを特徴としている(2)。Further, the copper thick film circuit substrate according to the present invention has the above (1).
In the copper thick film circuit substrate described, lead tungstate is
It is characterized by being PbWO 4 (2).
また、本発明に係る銅厚膜回路用基板の製造方法は、
上記(1)記載の銅厚膜回路用基板の製造方法におい
て、金属銅粉末を主成分とし、PbOとWあるいはWO3を含
有する銅ペーストを用い、下記の〜式の条件を満た
す雰囲気中での脱バインダー処理とその後に連続して行
われる高温焼成処理からなる焼成工程、及び下記の〜
式の条件を満たす水素雰囲気中あるいは一酸化炭素雰
囲気中での還元処理工程を含む処理を行うことを特徴と
している(3)。Further, the method for manufacturing a copper thick film circuit substrate according to the present invention,
In the method for producing a copper thick film circuit board according to (1) above, a copper paste containing metallic copper powder as a main component and containing PbO and W or WO 3 is used in an atmosphere satisfying the conditions of the following formulas. Of the binder removal process and a high-temperature baking process continuously performed thereafter, and the following ~
It is characterized in that a treatment including a reduction treatment step is carried out in a hydrogen atmosphere or a carbon monoxide atmosphere satisfying the condition of the formula (3).
5≦x≦5,000 … 100≦y≦550 … y≦192.1log10x+165.8 … y≧150.0log10x−4.845 … ただし x:焼成工程における酸素量(ppm) y:還元処理工程における温度(℃) をそれぞれ表す。5 ≤ x ≤ 5,000 ... 100 ≤ y ≤ 550 ... y ≤ 192.1 log 10 x + 165.8 ... y ≥ 150.0 log 10 x-4.845 ... where x: oxygen amount in the firing process (ppm) y: temperature in the reduction process (° C ), Respectively.
また、本発明に係る銅厚膜回路用基板の製造方法は、
上記(1)記載の銅厚膜回路用基板の製造方法におい
て、金属銅粉末を主成分とし、PbOとWあるいはWO3を含
有する銅ペーストを用い、下記の〜式の条件を満た
す雰囲気中での脱バインダー処理とその後に連続して行
われる高温焼成処理からなる焼成工程、及び下記の〜
式の条件を満たす水素雰囲気中あるいは一酸化炭素雰
囲気中での還元処理工程を含む処理を行うことを特徴と
している(4)。Further, the method for manufacturing a copper thick film circuit substrate according to the present invention,
In the method for producing a copper thick film circuit board according to (1) above, a copper paste containing metallic copper powder as a main component and containing PbO and W or WO 3 is used in an atmosphere satisfying the conditions of the following formulas. Of the binder removal process and a high-temperature baking process continuously performed thereafter, and the following ~
It is characterized in that a treatment including a reduction treatment step is performed in a hydrogen atmosphere or a carbon monoxide atmosphere satisfying the condition of the formula (4).
15≦x≦5,000 … 100≦y≦525 … y≦200log10x+150 … y≧286.1log10x−308.4 … y≧115.3log10x+84.7 … ただし x:焼成工程における酸素量(ppm) y:還元処理工程における温度(℃) をそれぞれ表す。15 ≤ x ≤ 5,000 ... 100 ≤ y ≤ 525 ... y ≤ 200 log 10 x + 150 ... y ≥ 286.1 log 10 x -308.4 ... y ≥ 115.3 log 10 x + 84.7 ... where x: amount of oxygen in the firing process (ppm) y: reduction Each represents the temperature (° C) in the treatment step.
また、本発明に係る銅厚膜回路用基板の製造方法は、
上記(3)又は(4)記載の銅厚膜回路用基板の製造方
法において、焼成工程及び還元処理工程を一つの焼成炉
内で行い、前記焼成工程を行う前記焼成炉部内に酸素を
供給し、前記還元処理工程を行う前記焼成炉部内に水素
を供給することを特徴としている(5)。Further, the method for manufacturing a copper thick film circuit substrate according to the present invention,
In the method for manufacturing a copper thick film circuit substrate according to (3) or (4) above, the firing step and the reduction treatment step are performed in one firing furnace, and oxygen is supplied to the firing furnace part for performing the firing step. It is characterized in that hydrogen is supplied into the firing furnace section for performing the reduction treatment step (5).
作用 銅厚膜回路用基板における基本特性の劣化を防止して
安定な特性を得るための製造方法を種々検討した結果、
以下の事実を突き止めた。Action As a result of various studies on manufacturing methods for obtaining stable characteristics by preventing deterioration of basic characteristics in copper thick film circuit boards,
The following facts were found.
銅ペーストを印刷済みの銅厚膜回路用基板は、トンネ
ル型の連続焼成炉内で焼成処理される。この焼成工程
は、連続焼成炉内の比較的低温度の領域(約450〜700
℃)(以下、脱バインダ領域と記す)で酸素を添加して
有機バインダ成分を除去する脱バインダ処理と、その後
に連続する連続焼成炉内の高温領域(約850〜950℃)
(以下、高温焼成領域と記す)で金属粉末等の焼結反応
を行う高温焼成処理とからなる。The copper thick film circuit substrate on which the copper paste is printed is fired in a tunnel type continuous firing furnace. This firing process is performed in a relatively low temperature region (about 450 to 700
C)) (hereinafter referred to as the binder removal region) to remove the organic binder component by adding oxygen, and a high temperature region (about 850 to 950 ° C) in the continuous firing furnace that follows.
(Hereinafter, referred to as a high temperature firing region), a high temperature firing process for performing a sintering reaction of a metal powder or the like.
脱バインダ領域における添加酸素量を従来一般に採用
されていた数ppm程度よりも増加させると、銅厚誘導体
の基板への接着強度は増大する。When the amount of added oxygen in the binder removal region is increased beyond the several ppm that has been generally adopted in the past, the adhesion strength of the copper thick derivative to the substrate increases.
連続焼成炉の脱バインダ領域で添加された酸素は、ペ
ースト中の有機物の除去に消費される他に、一部連続焼
成炉の高温焼成領域に移動もしくは拡散する。Oxygen added in the binder removal area of the continuous firing furnace is consumed for removing organic substances in the paste, and also partially moves or diffuses to the high temperature firing area of the continuous firing furnace.
連続焼成炉の高温焼成領域における酸素は、上記のご
とく脱バインダ領域で添加した酸素の一部が連続焼成炉
内を移動もしくは拡散したものである。従って、高温焼
成領域における酸素濃度は、脱バインダ領域における酸
素濃度以下となる。The oxygen in the high-temperature firing region of the continuous firing furnace is a part of the oxygen added in the binder removal region as described above moves or diffuses in the continuous firing furnace. Therefore, the oxygen concentration in the high temperature firing region is equal to or lower than the oxygen concentration in the binder removal region.
この高温焼成領域での高温焼成処理時の酸素濃度が増
大すると、導電抵抗値及び半田濡れ性は劣化するが、そ
の後水素雰囲気中での還元処理により前記両特性はある
程度改善され得る。When the oxygen concentration during the high temperature firing process in the high temperature firing region is increased, the conductive resistance value and the solder wettability are deteriorated. However, both properties can be improved to some extent by the subsequent reduction process in the hydrogen atmosphere.
また、高温焼成処理時における酸素濃度の増加に伴な
い、半田濡れ性の劣化を改善するのに必要とされる還元
処理温度も高くなる。In addition, the reduction treatment temperature required to improve the deterioration of the solder wettability also increases as the oxygen concentration increases during the high temperature firing treatment.
さらに、高温焼成処理時における酸素濃度の増加に伴
ない、銅厚膜導体内に生成される酸化銅の量が増加する
が、還元処理による酸化銅の還元により、ポロシティ
(空孔)が生成され、焼成時よりもポーラスな膜質に変
化する。Furthermore, the amount of copper oxide generated in the copper thick film conductor increases with the increase of oxygen concentration during the high temperature firing treatment, but porosity (pores) is generated by the reduction of copper oxide by the reduction treatment. , Changes to a more porous film quality than when fired.
高温焼成処理時における酸素濃度が5,000ppmを超える
と、その後たとえ600℃程度の高温で水素による還元処
理を行っても、導電抵抗値は劣化したままで回復しない
が、高温焼成処理時における酸素濃度が5,000ppm以内で
あれば、導電抵抗値は還元処理により改善される。If the oxygen concentration during high-temperature baking exceeds 5,000 ppm, the conductivity resistance will remain deteriorated and will not recover even if reduction treatment with hydrogen is performed at a high temperature of about 600 ° C. If less than 5,000 ppm, the conductive resistance value is improved by the reduction treatment.
水素による還元処理温度の高温化に伴ない接着強度は
低下するが、高温焼成処理時における添加酸素量を増加
させる程、接着強度の低下率を小さく抑えることがで
き、接着強度特性は安定する。Although the adhesive strength decreases as the temperature of the reduction treatment with hydrogen increases, the lower the rate of reduction of the adhesive strength as the amount of oxygen added during the high temperature firing treatment increases, the more stable the adhesive strength characteristics become.
また、焼成/還元処理を実施した銅厚膜導体の温度サ
イクルテスト後の接着強度も大きく、強度劣化率は小さ
い。In addition, the adhesive strength of the copper thick film conductor subjected to the firing / reduction treatment after the temperature cycle test is large, and the strength deterioration rate is small.
PbOとWあるいはWO3を含有する銅ペーストを焼成する
際、添加する酸素量を一般に採用されていた数ppm程度
よりも増加させると、銅厚膜導体/基板界面にPbWO4が
生成しており、添加酸素量に比例して生成量も増加す
る。When firing a copper paste containing PbO and W or WO 3 , if the amount of oxygen added is increased above the commonly used level of several ppm, PbWO 4 is generated at the copper thick film conductor / substrate interface. The production amount also increases in proportion to the added oxygen amount.
銅厚膜導体と基板との間に生成したPbWO4は、焼成後
水素還元を行なっても生成量の変化はなく安定して存在
する。The PbWO 4 formed between the copper thick film conductor and the substrate is stable and does not change even if hydrogen reduction is performed after firing.
これら事実に基づき、さらに種々の実験を行ない、銅
厚膜回路用基板及びその製造方法における最良の方法を
提案する。Based on these facts, various experiments will be further conducted to propose the best method for the copper thick film circuit substrate and its manufacturing method.
焼成時における脱バインダ領域の酸素濃度を5ppm未満
とすると、銅ペースト中のバインダ成分の完全な除去が
困難となり、接着強度の確保ができなくなる。第2図及
び第3図には焼成時における脱バインダ領域の酸素量を
3ppmあるいは500ppmとし、その後さらに500℃の水素雰
囲気中で還元を行なった試料のX線回折による分析結果
を示しており、この結果からも脱バインダ領域の酸素濃
度が5ppm未満であると、銅厚膜導体/基板界面にPbWO4
が生成しないことが確認された。If the oxygen concentration in the binder removal area during firing is less than 5 ppm, it becomes difficult to completely remove the binder component in the copper paste, and it becomes impossible to secure the adhesive strength. 2 and 3 show the amount of oxygen in the binder removal area during firing.
The result of analysis by X-ray diffraction of a sample that was reduced to 3 ppm or 500 ppm and then further reduced in a hydrogen atmosphere at 500 ° C shows that the oxygen concentration in the binder removal region is less than 5 ppm, copper thickness PbWO 4 at the membrane conductor / substrate interface
Was confirmed not to be generated.
また、上記より、焼成後の還元処理によって良好な
半田濡れ性及び導電抵抗値が確保される範囲として高温
焼成処理時における酸素濃度を5000ppm以下とした。Further, from the above, the oxygen concentration during the high temperature firing treatment was set to 5000 ppm or less as a range in which good solder wettability and a conductive resistance value are secured by the reduction treatment after firing.
また、還元処理工程における温度yを、酸素量xが5p
pm以上100ppm以下の範囲内で上記式を満たす範囲に設
定した場合、接着強度が劣化することはない。これは、
銅厚膜回路用基板内において接着強度を発現している酸
化物の生成量が、水素による還元処理を行っても必要量
確保されるためと考えられる。また、還元処理温度yが
550℃を超えると還元力が非常に大きく成る為、接着強
度は極端に低下してしまう。Also, the temperature y in the reduction process is set to be 5 p
When it is set within the range of pm or more and 100 ppm or less to satisfy the above formula, the adhesive strength does not deteriorate. this is,
It is considered that the production amount of the oxide exhibiting the adhesive strength in the copper thick film circuit substrate can be secured even when the reduction treatment with hydrogen is performed. In addition, the reduction treatment temperature y is
When the temperature exceeds 550 ° C, the reducing power becomes extremely large, and the adhesive strength is extremely reduced.
さらに、上記式で表される還元処理温度yより低い
温度範囲において還元処理を行なうと、半田濡れ性が実
用可能なレベルまで回復しない。これは銅厚膜導体表面
での還元反応、つまり Cu2O+H2→2Cu+H2O で表わされる反応が、上記式で表わされるyより低い
温度範囲では十分進まず、未還元のCu2Oが多く存在し、
これが半田濡れ性を阻害してしまうことによる。Furthermore, when the reduction treatment is performed in a temperature range lower than the reduction treatment temperature y represented by the above formula, the solder wettability does not recover to a practical level. This is because the reduction reaction on the copper thick film conductor surface, that is, the reaction represented by Cu 2 O + H 2 → 2Cu + H 2 O does not proceed sufficiently in the temperature range lower than y expressed by the above formula, and the amount of unreduced Cu 2 O is large. Exists,
This hinders solder wettability.
以上の考察に基づき、上記〜式(第1図)で表わ
した条件が設定された。Based on the above consideration, the conditions represented by the above formulas (Fig. 1) were set.
さらに、上記〜式(第1図)で表わされる範囲の
内、接着強度等が特に優れた範囲として上記〜式
(第1図)で表わされる範囲を提案した。この範囲にお
いては後記する実施例により実証されるように、特に優
れた銅厚膜回路用基板としての特性が得られる。Furthermore, within the range represented by the above formula (FIG. 1), the range represented by the above formula (FIG. 1) was proposed as a range in which the adhesive strength and the like are particularly excellent. In this range, particularly excellent characteristics as a copper thick film circuit substrate are obtained, as will be demonstrated by the examples described later.
また、上記した銅厚膜回路用基板の製造方法におい
て、焼成工程及び還元処理工程を一つの焼成炉内で行な
い、前記焼成工程を行なう前記焼成炉部内に酸素を供給
し、前記還元処理工程を行なう前記焼成炉部内に水素あ
るいは一酸化炭素を供給することにより、特性に優れた
銅厚膜回路用基板が連続的に効率よく製造される。Further, in the above-described method for manufacturing a copper thick film circuit substrate, the firing step and the reduction treatment step are performed in one firing furnace, and oxygen is supplied into the firing furnace portion for performing the firing step, and the reduction treatment step is performed. By supplying hydrogen or carbon monoxide into the firing furnace portion to be performed, a copper thick film circuit substrate having excellent characteristics can be continuously and efficiently manufactured.
また、セラミック基板上に銅厚膜導体が形成されてい
る銅厚膜回路用基板において、前記セラミック基板と前
記銅厚膜導体との界面にタングステン酸鉛が存在してい
ることにより、前記基板と前記銅厚膜導体との接着強度
が向上することとなる。Further, in a copper thick film circuit substrate in which a copper thick film conductor is formed on a ceramic substrate, the presence of lead tungstate at the interface between the ceramic substrate and the copper thick film conductor, The adhesive strength with the copper thick film conductor is improved.
また、上記タングステン酸鉛が例えばPbWO4の形態で
存在していることが確認された。It was also confirmed that the lead tungstate was present in the form of PbWO 4 , for example.
さらに、上記した銅厚膜回路用基板において、金属銅
粉末を主成分とし、PbOとWあるいはWO3を含有する銅ペ
ーストを用い、上記の〜式の条件を満たす雰囲気中
での焼成工程、及び上記の〜式の条件を満たす水素
雰囲気中あるいは一酸化炭素雰囲気中での還元処理工程
を含むことにより、前記基板と前記銅厚膜導体との接着
強度がさらに向上し、温度サイクル試験後においても安
定した接着強度を有するようになり、特に接着強度に優
れ、しかも導電抵抗値及び半田濡れ性の特性においても
優れた銅厚膜回路用基板が製造される。Furthermore, in the copper thick film circuit substrate described above, a copper paste containing metallic copper powder as a main component and containing PbO and W or WO 3 is used, and a firing step in an atmosphere satisfying the conditions of the above formulas, and By including a reduction treatment step in a hydrogen atmosphere or a carbon monoxide atmosphere satisfying the above conditions (1) to (3), the adhesive strength between the substrate and the copper thick film conductor is further improved, and even after a temperature cycle test. Thus, a copper thick film circuit substrate having stable adhesive strength, particularly excellent adhesive strength, and also excellent in conductive resistance value and solder wettability is manufactured.
実施例及び比較例 以下、本発明に係る銅厚膜回路用基板及びその製造方
法の実施例及び比較例を説明する。EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the copper thick film circuit substrate and the manufacturing method thereof according to the present invention will be described below.
先ず、所定形状のアルミナ基板を用意し、このアルミ
ナ基板の表面にスクリーン印刷法を用いて、金属銅粉末
を主成分とし、Pb、Wを含み、高分子樹脂からなるバイ
ンダ成分を含有した銅ペーストを塗布した。その後ベル
トコンベア方式の連続焼成炉内の脱バインダ領域(450
〜700℃)において、3〜8000ppmの酸素添加量に調節し
て脱バインダ処理を行なった。First, an alumina substrate having a predetermined shape is prepared, and a copper paste containing a metallic copper powder as a main component, Pb, W, and a binder component made of a polymer resin is used on the surface of the alumina substrate by screen printing. Was applied. After that, the binder removal area (450
(About 700 ° C.), the binder removal treatment was performed by adjusting the oxygen addition amount to 3 to 8000 ppm.
その後、ベルトコンベア方式の連続焼成炉内の高温焼
成領域において、焼成温度850〜950℃の範囲内で高温焼
成処理を行なった。After that, high temperature firing treatment was performed in a firing temperature range of 850 to 950 ° C. in a high temperature firing region in a belt conveyor type continuous firing furnace.
さらにその後、水素雰囲気中あるいは一酸化炭素雰囲
気中の還元処理部において、200〜600℃の還元温度でも
って還元処理を行なった。After that, reduction treatment was performed at a reduction temperature of 200 to 600 ° C. in a reduction treatment section in a hydrogen atmosphere or a carbon monoxide atmosphere.
セラミック基板上に形成された銅厚膜回路用基板の評
価試験は以下のごとくに行った。The evaluation test of the copper thick film circuit substrate formed on the ceramic substrate was performed as follows.
まず、接着強度試験は、96%アルミナ基板上に形成し
た2×2mmの銅厚膜導体のランド中央に、直径1.2mmの軟
銅線を半田付けにより接着し、その後プル引張法により
初期強度、150℃で1000時間エージング後の接着強度及
び温度サイクル試験後の接着強度を測定した。温度サイ
クル試験は−55℃から+150℃までの温度で500サイクル
実施した。初期強度では18kgf未満の強度となる場合
を、エージング後では12kgf未満の強度となる場合を強
度不良と判定した。First, the adhesive strength test is conducted by soldering an annealed copper wire with a diameter of 1.2 mm to the center of the land of a 2 × 2 mm thick copper conductor formed on a 96% alumina substrate, and then pulling it with an initial strength of 150 The adhesive strength after aging at 1000 ° C. for 1000 hours and the adhesive strength after the temperature cycle test were measured. The temperature cycle test was carried out for 500 cycles at a temperature from −55 ° C. to + 150 ° C. The case where the initial strength was less than 18 kgf and the case after aging was less than 12 kgf were judged as poor strength.
また、半田濡れ性の試験は、2×2mmのランド部を230
±10℃の溶融状態の共晶半田(63%Sn−37%Pb)中に約
5秒間浸漬し、その後引き上げ、前記ランド部における
良好に濡れている部分の面積率を測定することにより行
なった。ランド部の半田の濡れ率が90%以上の場合を半
田濡れ性良好と判定した。In addition, the solder wettability test was conducted with a 230 mm 2 × 2 mm land.
It was carried out by immersing it in eutectic solder (63% Sn-37% Pb) in a molten state at ± 10 ° C for about 5 seconds, then pulling it up, and measuring the area ratio of the well-wetted portion in the land portion. . The solder wettability was determined to be good when the solder wettability of the land portion was 90% or more.
また、導電抵抗値は、形成したL(長さ)/W(幅)=
150の比を持つ測定用導体パターンの導電抵抗値を測定
し、この後膜厚を測定して膜厚10μmでの値に換算処理
をした。導電抵抗値が2.8mΩを超える場合を導電抵抗値
不良と判定した。Further, the conductive resistance value is L (length) / W (width) formed =
The conductive resistance value of the measurement conductor pattern having a ratio of 150 was measured, and then the film thickness was measured and converted into a value at a film thickness of 10 μm. The case where the conductive resistance value exceeds 2.8 mΩ was determined to be defective.
実施例及び比較例の試験結果を第1表に示す。評価が
○のうち、接着強度が20kgf以上と特に接着強度に優
れ、半田濡れ性も良好なものを◎で示した。Table 1 shows the test results of Examples and Comparative Examples. Among the evaluations of ○, the adhesive strength is 20 kgf or more, which is particularly excellent, and the solder wettability is also excellent.
第1表で表わされたデータをグラフにプロットしたも
のが第1図であり、この第1図には上記〜式の範
囲、〜式の範囲も合わせて示している。評価が○の
ものはすべて上記〜式で示される範囲内におさまっ
ている。また、評価が◎のものはすべて上記〜式で
示される範囲内におさまっている。 FIG. 1 is a graph in which the data shown in Table 1 is plotted, and FIG. 1 also shows the range of the above formulas and the range of the formulas. All of the evaluations of ∘ are within the range shown by the above formulas. Moreover, all the evaluations of ⊚ are within the range shown by the above formulas.
半田濡れ性の良好な場合と不良の場合の一例を第4図
に示す。第4図(a)(試料NO.8)が良好な場合を示し
ており、ランド1のほとんどの部分が半田2により覆わ
れている。第4図(b)(試料NO.7)は半田濡れ性が不
良な場合を示しており、ランド1のかなりの部分が半田
2に覆われず露出している。An example of good solder wettability and bad solder wettability is shown in FIG. FIG. 4 (a) (Sample No. 8) shows a good case, and most of the land 1 is covered with the solder 2. FIG. 4B (Sample No. 7) shows a case where the solder wettability is poor, and a considerable portion of the land 1 is exposed without being covered with the solder 2.
また、本発明の範囲内の条件で処理した場合、試料N
O.14〜16のように膜厚が薄い場合でも接着強度は強く、
一方、本発明の範囲外の条件で処理した場合、膜厚が薄
い例(試料NO.17)では接着強度が著しく低下し、高密
度配線化用として用いるには信頼性が低く不適当であ
る。Further, when treated under the conditions within the scope of the present invention, sample N
Even if the film thickness is thin as in O.14 to 16, the adhesive strength is strong,
On the other hand, when treated under a condition outside the scope of the present invention, the adhesive strength is remarkably reduced in the case where the film thickness is thin (Sample No. 17), which is unreliable and unsuitable for use for high-density wiring. .
また、本発明の範囲内の条件で処理した場合の試料N
o.19及びNo.20ではいずれもサイクル試験後においても
接着強度は良好であるが、本発明の範囲外の条件で処理
した場合では、No.21及びNo.22のようにサイクル試験後
の接着強度低下が大きいことがわかる。In addition, the sample N when treated under the conditions within the scope of the present invention
In both o.19 and No.20, the adhesive strength is good even after the cycle test, but when treated under the conditions outside the scope of the present invention, after the cycle test like No.21 and No.22. It can be seen that the adhesive strength is greatly reduced.
また、本発明の範囲内の条件で処理した場合、すべて
良好な初期接着強度を示しており、特に◎印を付した上
記〜式で示される範囲内の条件で処理した場合、初
期接着強度、エージング後及びサイクル試験後の接着強
度においてもさらに良好な接着強度を示している。Further, when treated under the conditions within the range of the present invention, all show good initial adhesive strength, especially when treated under the conditions within the range shown by the above formulas marked with ⊚, the initial adhesive strength, The adhesive strength after aging and the cycle test shows even better adhesive strength.
さらに、試料No.11のように還元温度が高過ぎる場合
には十分な接着強度が得られず、反対に試験No.7やNo.2
3のように、還元温度が低過ぎる場合には実用的な半田
濡れ性能が不足するため、製造条件としては不適当であ
る。Furthermore, when the reduction temperature is too high as in sample No. 11, sufficient adhesive strength cannot be obtained, and conversely, in tests No. 7 and No. 2
When the reduction temperature is too low as in the case of 3, the practical solder wetting performance is insufficient, so that it is not suitable as a manufacturing condition.
このように、本実施例による銅厚膜回路用基板及びそ
の製造方法によれば、膜厚を薄くした際にも十分な接着
強度を確保することができ、150μm以下の線巾及び線
間を有した高密度配線パターンの形成に適したものを製
造することができる。しかも、温度サイクル試験後の銅
厚膜導体の接着強度の改善にも十分な効果を持ってお
り、銅厚膜回線用基板としての基本特性である、接着強
度、導電抵抗値及び半田濡れ性のすべての特性において
満足のいく銅厚膜回路用基板を製造することができる。As described above, according to the copper thick film circuit board and the method for manufacturing the same according to the present embodiment, it is possible to secure sufficient adhesive strength even when the film thickness is reduced, and to keep the line width and the line interval of 150 μm or less. It is possible to manufacture the one suitable for forming the high-density wiring pattern possessed. Moreover, it has a sufficient effect on the improvement of the adhesive strength of the copper thick film conductor after the temperature cycle test, and the basic characteristics of the copper thick film circuit board are the adhesive strength, the conductive resistance value and the solder wettability. It is possible to manufacture a copper thick film circuit board that is satisfactory in all characteristics.
発明の効果 以上の説明により明らかな如く、本発明に係る銅厚膜
回路用基板及びその製造方法によれば、焼成工程及び水
素雰囲気中あるいは一酸化炭素雰囲気中での還元処理工
程を含む、これら各工程を上記〜式の条件を満たし
て行なうことにより、銅厚膜回路用基板としての基本特
性である接着強度、導電抵抗値及び半田濡れ性のすべて
の特性において優れたものを得ることができる。EFFECTS OF THE INVENTION As is clear from the above description, according to the copper thick film circuit substrate and the method for manufacturing the same according to the present invention, these include a firing step and a reduction treatment step in a hydrogen atmosphere or a carbon monoxide atmosphere. By performing each step by satisfying the conditions of the above formula, it is possible to obtain excellent in all the characteristics of the adhesion strength, the conductive resistance value and the solder wettability, which are the basic characteristics of the copper thick film circuit board. .
また、上記〜式の条件を満たす処理工程となすこ
とにより、特に接着強度に優れしかも他の特性も十分に
満足のいく値が得られる銅厚膜回路用基板を製造するこ
とができる。Further, by adopting the treatment steps satisfying the above conditions (1) to (4), it is possible to manufacture a copper thick film circuit board which is particularly excellent in adhesive strength and has sufficiently satisfactory values for other characteristics.
さらには、焼成工程を行なう焼成炉部内に酸素を供給
し、還元処理工程を行なう焼成炉部内に水素あるいは一
酸化炭素を供給し、一つの焼成炉内において上記〜
式あるいは〜式の条件を満たして処理工程を行なう
ことにより、特性に優れた銅厚膜回路用基板を連続的に
効率よく製造することができる。Further, oxygen is supplied into the firing furnace section for performing the firing step, and hydrogen or carbon monoxide is supplied to the firing furnace section for performing the reduction treatment step.
By carrying out the treatment step satisfying the conditions of the formulas or to, it is possible to continuously and efficiently manufacture the copper thick film circuit substrate having excellent characteristics.
また、セラミック基板上に銅厚膜導体が形成されてい
る銅厚膜回路用基板において、前記セラミック基板と前
記銅厚膜導体との界面にタングステン酸鉛が存在してい
る場合には、前記基板と銅厚膜導体との接着強度を向上
させることが可能となり、上記タングステン酸鉛がPbWO
4であることにより、前記基板と銅厚膜導体との接着強
度をより一層向上させることができる。Further, in a copper thick film circuit substrate in which a copper thick film conductor is formed on a ceramic substrate, when lead tungstate is present at the interface between the ceramic substrate and the copper thick film conductor, the substrate It becomes possible to improve the adhesive strength between the copper thick film conductor and PbWO.
When it is 4 , the adhesive strength between the substrate and the copper thick film conductor can be further improved.
さらに、上記した銅厚膜回路用基板の製造方法におい
て、金属銅粉末を主成分とし、PbOとWあるいはWO3を含
有する銅ペーストを用い、上記の〜式の条件を満た
す雰囲気中での焼成工程、及び上記の〜式の条件を
満たす水素雰囲気中あるいは一酸化炭素雰囲気中での還
元処理工程を含む場合には、前記基板と銅厚膜導体との
接着強度が温度サイクル試験後においても安定したもの
となり、特に接着強度に優れ、しかも導電抵抗値及び半
田濡れ性等の基本特性においても優れた銅厚膜回路用基
板を製造することができる。従って、微細な線巾、線間
距離を有する高密度配線パターンの形成が可能となり、
しかも信頼性の高い銅厚膜回路用基板を提供することが
できる。Further, in the above-mentioned method for manufacturing a copper thick film circuit substrate, a copper paste containing metallic copper powder as a main component and containing PbO and W or WO 3 is used, and firing is performed in an atmosphere satisfying the conditions of the above expressions. In the case of including a step and a reduction treatment step in a hydrogen atmosphere or a carbon monoxide atmosphere satisfying the above conditions (1) to (4), the adhesive strength between the substrate and the copper thick film conductor is stable even after a temperature cycle test. In particular, it is possible to manufacture a copper thick film circuit board having excellent adhesive strength and excellent basic characteristics such as a conductive resistance value and solder wettability. Therefore, it becomes possible to form a high-density wiring pattern having a fine line width and a distance between lines.
Moreover, it is possible to provide a highly reliable copper thick film circuit substrate.
第1図は焼成工程における酸素添加量と還元処理工程に
おける還元温度をパラメータとして、本発明に係る方法
の範囲を示した図、また実施例及び比較例の実施条件を
併せてプロットした図、第2図(a)は焼成時酸素量を
3ppmとした際の焼成後の銅厚膜回路用基板のX線回折に
よる分析結果を示す図、第2図(b)は第2図(a)の
還元後の分析結果を示す図、第3図(a)は焼成時酸素
量を500ppmとした際の焼成後の銅厚膜回路用基板のX線
回折による分析結果を示す図、第3図(b)は第3図
(a)の還元後の分析結果を示す図、第4図(a)
(b)は半田濡れ性の試験結果の一例を示した図であ
る。FIG. 1 is a diagram showing the range of the method according to the present invention with the oxygen addition amount in the firing process and the reduction temperature in the reduction treatment process as parameters, and a diagram in which the execution conditions of Examples and Comparative Examples are also plotted. Figure 2 (a) shows the oxygen content during firing.
The figure which shows the analysis result by the X-ray diffraction of the board | substrate for copper thick film circuits after baking at 3 ppm, FIG.2 (b) is the figure which shows the analysis result after reduction of FIG.2 (a), Figure (a) is a diagram showing the analysis results by X-ray diffraction of the copper thick film circuit board after firing when the amount of oxygen during firing is 500 ppm, and Figure 3 (b) is the reduction of Figure 3 (a). Fig. 4 (a) showing the subsequent analysis results
(B) is a figure showing an example of a test result of solder wettability.
Claims (5)
ている銅厚膜回路用基板において、前記セラミック基板
と前記銅厚膜導体との界面にタングステン酸鉛が存在し
ていることを特徴とする銅厚膜回路用基板。1. A copper thick film circuit substrate having a copper thick film conductor formed on a ceramic substrate, wherein lead tungstate is present at an interface between the ceramic substrate and the copper thick film conductor. A copper thick film circuit board.
記載の銅厚膜回路用基板。2. The lead tungstate is PbWO 4.
The copper thick film circuit substrate described.
はWO3を含有する銅ペーストを用い、下記の〜式の
条件を満たす雰囲気中での脱バインダー処理とその後に
連続して行われる高温焼成処理からなる焼成処理、及び
下記の〜式の条件を満たす水素雰囲気中あるいは一
酸化炭素雰囲気中での還元処理工程を含む処理を行うこ
とを特徴とする請求項1記載の銅厚膜回路用基板の製造
方法。 5≦x≦5,000 … 100≦y≦550 … y≦192.1log10x+165.8 … y≧150.0log10x−4.845 … ただし x:焼成工程における酸素量(ppm) y:還元処理工程における温度(℃) をそれぞれ表す。3. A debindering treatment in an atmosphere satisfying the following expressions (1) to (4) is continuously performed using a copper paste containing metallic copper powder as a main component and containing PbO and W or WO 3. 2. The copper thick film circuit according to claim 1, wherein a baking treatment comprising a high temperature baking treatment and a treatment including a reduction treatment step in a hydrogen atmosphere or a carbon monoxide atmosphere satisfying the following expressions (1) to (4) are performed. Substrate manufacturing method. 5 ≤ x ≤ 5,000 ... 100 ≤ y ≤ 550 ... y ≤ 192.1 log 10 x + 165.8 ... y ≥ 150.0 log 10 x-4.845 ... where x: oxygen amount in the firing process (ppm) y: temperature in the reduction process (° C ), Respectively.
はWO3を含有する銅ペーストを用い、下記の〜式の
条件を満たす雰囲気中での脱バインダー処理とその後に
連続して行われる高温焼成処理からなる焼成工程、及び
下記の〜式の条件を満たす水素雰囲気中あるいは一
酸化炭素雰囲気中での還元処理工程を含む処理を行うこ
とを特徴とする請求項1記載の銅厚膜回路用基板の製造
方法。 15≦x≦5,000 … 100≦y≦525 … y≦200log10x+150 … y≧286.1log10x−308.4 … y≧115.3log10x+84.7 … ただし x:焼成工程における酸素量(ppm) y:還元処理工程における温度(℃) をそれぞれ表す。4. A binder paste containing metal copper powder as a main component and containing PbO and W or WO 3 in a atmosphere satisfying the conditions of the following expressions (1) to (4), followed by continuous debinding. The copper thick film circuit according to claim 1, wherein a treatment including a firing step consisting of a high temperature firing treatment and a reduction treatment step in a hydrogen atmosphere or a carbon monoxide atmosphere satisfying the following conditions (1) to (4) is performed. Substrate manufacturing method. 15 ≤ x ≤ 5,000 ... 100 ≤ y ≤ 525 ... y ≤ 200 log 10 x + 150 ... y ≥ 286.1 log 10 x -308.4 ... y ≥ 115.3 log 10 x + 84.7 ... where x: amount of oxygen in the firing process (ppm) y: reduction Each represents the temperature (° C) in the treatment step.
内で行い、前記焼成工程を行う前記焼成炉部内に酸素を
供給し、前記還元処理工程を行う前記焼成炉部内に水素
を供給する請求項3又は請求項4記載の銅厚膜回路用基
板の製造方法。5. A firing step and a reduction treatment step are performed in one firing furnace, oxygen is supplied into the firing furnace section for performing the firing step, and hydrogen is supplied to the firing furnace section for performing the reduction treatment step. A method for manufacturing a copper thick film circuit substrate according to claim 3 or 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34236189 | 1989-12-29 | ||
JP1-342361 | 1989-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03224288A JPH03224288A (en) | 1991-10-03 |
JP2555770B2 true JP2555770B2 (en) | 1996-11-20 |
Family
ID=18353134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2275042A Expired - Lifetime JP2555770B2 (en) | 1989-12-29 | 1990-10-12 | Copper thick film circuit substrate and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2555770B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2735151C (en) * | 2008-08-29 | 2017-09-05 | Ishihara Sangyo Kaisha, Ltd. | Metallic copper dispersion and application thereof, and process for producing the metallic copper dispersion |
JP5598739B2 (en) | 2012-05-18 | 2014-10-01 | 株式会社マテリアル・コンセプト | Conductive paste |
JP5671105B2 (en) * | 2012-05-18 | 2015-02-18 | 株式会社マテリアル・コンセプト | Wiring formation method |
JP6393243B2 (en) * | 2015-07-06 | 2018-09-19 | 株式会社マテリアル・コンセプト | Electronic component and manufacturing method thereof |
-
1990
- 1990-10-12 JP JP2275042A patent/JP2555770B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03224288A (en) | 1991-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007007677A1 (en) | Electronic component, electronic component mounted structure, and process for producing electronic component | |
JPH07302510A (en) | Conductive paste composition | |
JP2591205B2 (en) | Thermistor | |
JP2555770B2 (en) | Copper thick film circuit substrate and method of manufacturing the same | |
JP2006127939A (en) | Electrical conductor parts and manufacturing method thereof | |
US4303480A (en) | Electroplating of thick film circuitry | |
JP2001220607A (en) | Copper powder and copper powder manufacturing method | |
KR20240051233A (en) | Conductive carbon-based particles with excellent corrosion resistance | |
JPH0465011A (en) | Copper conductive paste | |
JP4427044B2 (en) | Conductor for flexible substrate, method for producing the same, and flexible substrate | |
JP2631010B2 (en) | Thick film copper paste | |
JP4264091B2 (en) | Wiring board manufacturing method | |
JP2001118424A (en) | Copper alloy powder for conductive paste | |
JPS62198191A (en) | Manufacture of microwave integrated circuit substrate | |
JP3398914B2 (en) | Wiring board | |
JPH03203391A (en) | Formation of thick-film conductor | |
JPH0465010A (en) | copper conductor paste | |
JP4761595B2 (en) | Metallized substrate | |
JP3792642B2 (en) | Wiring board and manufacturing method thereof | |
JP2649081B2 (en) | Thick film copper paste | |
JP3556377B2 (en) | Wiring board | |
JPH04150093A (en) | Substrate for copper thick-film circuit | |
JPH03203392A (en) | Method of forming thick film conductor | |
JPH0598493A (en) | Treatment of soldered layer | |
JP3857219B2 (en) | Wiring board and manufacturing method thereof |