[go: up one dir, main page]

JP2555423B2 - Method of hydrogenating edible fats and oils - Google Patents

Method of hydrogenating edible fats and oils

Info

Publication number
JP2555423B2
JP2555423B2 JP63228343A JP22834388A JP2555423B2 JP 2555423 B2 JP2555423 B2 JP 2555423B2 JP 63228343 A JP63228343 A JP 63228343A JP 22834388 A JP22834388 A JP 22834388A JP 2555423 B2 JP2555423 B2 JP 2555423B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage alloy
oils
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63228343A
Other languages
Japanese (ja)
Other versions
JPH0277496A (en
Inventor
真美 川成
寛昭 小西
宏二 武谷
均 佐藤
栄 日向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKIJIRUSHI NYUGYO KK
Mitsubishi Steel KK
Original Assignee
YUKIJIRUSHI NYUGYO KK
Mitsubishi Steel KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKIJIRUSHI NYUGYO KK, Mitsubishi Steel KK filed Critical YUKIJIRUSHI NYUGYO KK
Priority to JP63228343A priority Critical patent/JP2555423B2/en
Publication of JPH0277496A publication Critical patent/JPH0277496A/en
Application granted granted Critical
Publication of JP2555423B2 publication Critical patent/JP2555423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マーガリン、ショートニング等の油脂食品
の原材料として利用される食品油脂の水素添加方法に関
する。
TECHNICAL FIELD The present invention relates to a method for hydrogenating food fats and oils used as a raw material for fat and oil foods such as margarine and shortening.

技術的背景 液状の油脂をマーガリン、ショートニング等の原料油
脂として用いる場合、そのまま使用すると最終製品の保
型性を維持し得ないため、一般的には油脂を構成する脂
肪酸の二重結合部分に水素添加(以下水添という)し、
硬化油として使用している。従来、上記水添方法は反応
槽に油脂と触媒を入れ、120〜200℃程度の温度に保ち、
それに適当な圧力の水素ガスを供給して行つていた。
Technical background When liquid fats and oils are used as raw fats and oils for margarine, shortening, etc., the shape retention of the final product cannot be maintained if they are used as they are. Added (hereinafter referred to as hydrogenation),
Used as hardened oil. Conventionally, the above hydrogenation method puts oil and fat and a catalyst in a reaction tank and keeps the temperature at about 120 to 200 ° C.
It was supplied with hydrogen gas at an appropriate pressure.

近年、水素貯蔵合金が開発され、形状記憶合金と共に
その応用が注目されてきている。水素貯蔵合金は、現
在、自動車、ヒートポンプ及び室内の冷暖房等の分野で
利用されているが、水素貯蔵合金には例えばLaNi5、Mg2
Ni等多くの種類があつて、合金の水素ガス貯蔵量、排出
圧力および排出温度等の機能は、その構成金属によつて
異なるため、その利用に当つては合金の選択が重要とな
る。
In recent years, hydrogen storage alloys have been developed, and their applications have attracted attention together with shape memory alloys. Hydrogen storage alloys are currently used in the fields of automobiles, heat pumps, indoor air conditioning, etc., but hydrogen storage alloys such as LaNi 5 and Mg 2 are used.
Since there are many kinds such as Ni and the functions of the alloy such as hydrogen gas storage amount, discharge pressure and discharge temperature are different depending on the constituent metals, selection of the alloy is important for its use.

ところで、最近の水素貯蔵合金を用いた水添反応の例
としてオレフィンの水素化、一酸化炭素の水素化及びア
ムモニア合成法〔水素貯蔵合金データブツク、(1987)
与野書房〕並びにオレイン酸メチルの常圧水素化分解に
よるC18アルコールの製造法〔日本化学会(第54回春季
年会1987)〕が報告されている。
By the way, as examples of recent hydrogenation reactions using hydrogen storage alloys, hydrogenation of olefins, hydrogenation of carbon monoxide, and the ammonia synthesis method [Hydrogen storage alloy databook, (1987)
Yono Shobo] and a method for producing C 18 alcohol by atmospheric hydrogenolysis of methyl oleate [Chemical Society of Japan (54th Spring Annual Meeting 1987)] have been reported.

しかし、油脂の水添に水素貯蔵合金を利用する技術に
ついては、従来全くおこなわれておらず、報告もみられ
ない。
However, the technology of utilizing hydrogen storage alloys for hydrogenation of fats and oils has not been performed so far, and no report has been found.

発明が解決しようとする課題 本発明は、食用油脂の水添反応に特定の水素貯蔵合金
を利用して従来の水添触媒を全く用いる必要がないか、
もしくは極めて少量の使用量で済み、また大量の水素を
低圧で利用して高い水添率で、かつ安全に油脂の水添を
行なう方法を提供することを課題とする。
Problems to be Solved by the Invention The present invention does not need to use a conventional hydrogenation catalyst at all by utilizing a specific hydrogen storage alloy in the hydrogenation reaction of edible fats or oils,
Alternatively, it is an object to provide a method for safely hydrogenating fats and oils by using a very small amount of hydrogen and utilizing a large amount of hydrogen at low pressure with a high hydrogenation rate.

以下本発明を詳しく説明する。 The present invention will be described in detail below.

課題を解決するための手段 本発明で用いられる水素貯蔵合金は、カルシウム及び
ニッケルを必須元素とした六方晶のCaCu5型の結晶構造
を有する化合物を主相とする。詳しくは、水素貯蔵合金
の中に含まれる前記CaCu5型の結晶相が、50重量%以上
含まれ、残部は主相以外の金属間化合物、不純物、添加
元素などが第2相もしくは混合相として存在する。
Means for Solving the Problems The hydrogen storage alloy used in the present invention has, as a main phase, a compound having a hexagonal CaCu 5 type crystal structure in which calcium and nickel are essential elements. Specifically, the CaCu 5 type crystal phase contained in the hydrogen storage alloy is contained in an amount of 50% by weight or more, and the balance is an intermetallic compound other than the main phase, impurities, additive elements, etc. as the second phase or mixed phase. Exists.

さらに、具体的には、本発明で用いられる水素貯蔵合
金は、大気圧を示す分解平衡圧力の温度が100℃以上200
℃以下の範囲で水素を放出する合金であり、該合金の金
属水素化物を使用し水添反応温度120〜200℃に保持され
た食用油脂の水添を行なうものである。一方、大気圧を
示す分解平衡圧力の温度が200℃以上の水素貯蔵合金
は、水添反応温度120〜200℃の範囲での水素放出量が極
めて少ないため、反応に要する時間が著しく長くなる
か、あるいは水添率が小さいなどの欠点を有する。
Furthermore, specifically, the hydrogen storage alloy used in the present invention has a decomposition equilibrium pressure temperature of 100 ° C. or higher, which is atmospheric pressure, of 200 ° C. or higher.
It is an alloy that releases hydrogen in the range of 0 ° C. or lower, and uses a metal hydride of the alloy to hydrogenate edible fats and oils kept at a hydrogenation reaction temperature of 120 to 200 ° C. On the other hand, a hydrogen storage alloy with a decomposition equilibrium pressure of 200 ° C or higher, which indicates atmospheric pressure, has an extremely small amount of hydrogen released in the hydrogenation reaction temperature range of 120 to 200 ° C. Or, it has a defect that the hydrogenation rate is small.

しかし、大気圧を示す分解平衡圧力の温度が100℃以
下の水素貯蔵合金は、室温もしくは多少の加熱により容
易に吸蔵した水素をガスとして放出するし、真空排気の
操作により多量の水素がガスとして放出してしまう。し
たがつて、100℃以下の温度で、大気圧の水素平衡圧力
を示す合金の金属水素化合物は、実際の水添反応で消費
される有効水素量が少なくなる傾向を示す。また、粉末
の取扱中に容易に水素が放出されるため、多量の金属水
素化物を使用する際には、危険であり注意を要する。ま
た、油脂の酸化防止の目的で実施される反応槽内の排
気、脱水操作は、油脂と水素貯蔵合金が同系内に存在す
る場合に不可能であり、油脂および合金の充填槽を別に
して実施する必要があるなど、取扱い、操業面での欠点
を有し、好ましくは、大気圧を示す分解平衡圧力の温度
が100〜200℃であるような合金が望ましい。
However, a hydrogen storage alloy with a decomposition equilibrium pressure of 100 ° C or less, which indicates atmospheric pressure, releases hydrogen that has been occluded easily as a gas when heated at room temperature or with some heating, and a large amount of hydrogen becomes a gas when evacuated. I will release it. Therefore, at a temperature of 100 ° C. or lower, the metal-hydrogen compound of the alloy exhibiting an atmospheric hydrogen equilibrium pressure tends to reduce the amount of effective hydrogen consumed in the actual hydrogenation reaction. Further, hydrogen is easily released during handling of the powder, and therefore, it is dangerous and requires caution when using a large amount of metal hydride. Also, the exhaust and dehydration operations in the reaction tank, which are carried out for the purpose of preventing the oxidation of fats and oils, are impossible when the fats and oils and the hydrogen storage alloy are present in the same system. It is desirable to use an alloy which has drawbacks in handling and operation such as need to be carried out, and preferably has a decomposition equilibrium pressure temperature of 100 to 200 ° C., which indicates atmospheric pressure.

また、本発明で用いられる水素貯蔵合金は、平均粉末
粒径が0.5〜100μm、該粉末から放出される水素で水添
を実施する。平均粉末粒径が0.5μm以下のものは、工
業的に生産するのが困難であり、またコスト高になる欠
点を有するほかに、操業上で油脂と粉末を分離する工程
が複雑となる問題もある。粉末粒径が100μm以上の場
合は、油脂と粉末の均一なる混合攪拌が困難であり、そ
の結果粉末の触媒能が低くなるため水添反応時間が長く
なる欠点を有する。
Further, the hydrogen storage alloy used in the present invention has an average powder particle size of 0.5 to 100 μm and is hydrogenated with hydrogen released from the powder. If the average powder particle size is 0.5 μm or less, it is difficult to produce industrially, and in addition to the drawbacks of high cost, there is also a problem that the process of separating the oil and fat and the powder during operation becomes complicated. is there. When the particle size of the powder is 100 μm or more, it is difficult to uniformly mix and stir the oil and fat, and as a result, the catalytic ability of the powder becomes low, and the hydrogenation reaction time becomes long.

本発明においては、油脂(一般には食用油脂)と上記
水素貯蔵合金を反応槽に入れ、脱気後撹拌をしながら該
油脂を120〜200℃程度の温度に10〜360分保持するか、
ジャケット式により水素貯蔵合金を冷却し得るようにし
た棚段式カラムに水素貯蔵合金を封入し、120〜200℃程
度に保持された油脂を10〜360分循環させることにより
水添反応を行う。
In the present invention, the oil and fat (generally edible oil and fat) and the hydrogen storage alloy are put into a reaction tank, and the oil and fat are held at a temperature of about 120 to 200 ° C. for 10 to 360 minutes while stirring after deaeration, or
The hydrogen storage alloy is enclosed in a tray-type column that can cool the hydrogen storage alloy by a jacket method, and a hydrogenation reaction is carried out by circulating oils and fats held at about 120 to 200 ° C for 10 to 360 minutes.

反応終了後、水素ガス及び硬化油を回収し、水素貯蔵
合金を冷却した後、これに水素を再循環して、次回の水
添反応に繰り返し使用する。なお、上記水添加反応に際
し必要に応じて水添触媒を少量(〜0.5重量%)を添加
しても良い。
After completion of the reaction, hydrogen gas and hardened oil are recovered, the hydrogen storage alloy is cooled, and then hydrogen is recirculated to the hydrogen storage alloy to be repeatedly used for the next hydrogenation reaction. In addition, a small amount (up to 0.5% by weight) of the hydrogenation catalyst may be added in the water addition reaction, if necessary.

また、本発明は油脂に対する水素貯蔵合金の割合を5
〜70重量%で水素添加を実施する。水素貯蔵合金の割合
が5%以下の場合は、水添反応に寄与する有効水素量が
不足し、均一な効率的な反応が進まない欠点を有する。
割合が70%以上の場合は、1回の水添加反応操作に対し
て得られる硬化油の量が少なく、操業上の効率が低いこ
と、油脂と粉末の混合液の濃度が高くかつ比重が大とな
るため、混合液の撹拌および輸送などの装置面が複雑と
なる欠点を有する。
Further, the present invention sets the ratio of the hydrogen storage alloy to the fats and oils to 5
Hydrogenation is carried out at ˜70% by weight. When the proportion of the hydrogen storage alloy is 5% or less, the amount of effective hydrogen that contributes to the hydrogenation reaction is insufficient, and there is a drawback that a uniform and efficient reaction does not proceed.
When the ratio is 70% or more, the amount of hardened oil obtained in one water addition reaction operation is small, the operation efficiency is low, the concentration of the mixed liquid of fats and oils is high, and the specific gravity is high. Therefore, there is a drawback that the apparatus surface such as stirring and transportation of the mixed solution becomes complicated.

なお、本発明は実験装置の耐圧の関係上比較的低圧の
操業を考慮し検討を加えたものだが、水素圧が10kg/cm2
以上の圧力下でも適用可能であることは、この業界でも
認められている。また、水素貯蔵合金は、耐食性、熱伝
導性等の向上を意図し表面改質されたメッキ粉末、表面
処理粉末なども本発明に使用可能である。
Although the present invention has been studied in consideration of the operation at a relatively low pressure in relation to the pressure resistance of the experimental apparatus, the hydrogen pressure is 10 kg / cm 2
It is recognized in this industry that it can be applied under the above pressure. Further, as the hydrogen storage alloy, a plating powder, a surface-treated powder, etc. which are surface-modified for the purpose of improving corrosion resistance, thermal conductivity, etc. can be used in the present invention.

これら水素貯蔵合金は合金100g当り水素(H2)を1〜
4g吸蔵でき、その排出水素も圧力が低く純度の非常に高
い発生期水素であるので、原料油脂に対して水素(H2
が0.001〜1.0重量%添加される程度の水素貯蔵合金を用
いると良い。
These hydrogen storage alloys contain 1 to 100% of hydrogen (H 2 ) per 100 g of alloy.
4g can occluded, because the discharge of hydrogen even pressure is very high nascent hydrogen purity low hydrogen the starting fat or oil (H 2)
It is preferable to use a hydrogen storage alloy in which 0.001 to 1.0% by weight is added.

発明の効果 以上述べたように、本発明により特定の水素貯蔵合金
を用いて油脂の水添を行うと、従来のニツケル等の触媒
は全く用いる必要がないか、もしくは極めて少量で効率
的にマーガリンやショートニング等の原料油脂に適した
硬化油を、得ることができる。また、水素貯蔵合金は従
来の工業用の水素貯蔵装置に比べて大量の水素ガスを貯
蔵でき、しかも上述のように低圧で使用できるので作業
上の安全性に優れている。さらに、さきに述べたような
上昇流棚段式カラムを用いる場合には、油脂と水素貯蔵
合金の濾過に対する負荷を大幅に軽減できるという操作
上の利点もある。
As described above, when hydrogenation of fats and oils is performed by using the specific hydrogen storage alloy according to the present invention, there is no need to use a conventional catalyst such as nickel, or margarine can be efficiently used with a very small amount. It is possible to obtain a hardened oil that is suitable as a raw material oil such as oil and shortening. Further, the hydrogen storage alloy can store a large amount of hydrogen gas as compared with a conventional industrial hydrogen storage device, and can be used at a low pressure as described above, and therefore has excellent work safety. Further, when the upflow tray type column as described above is used, there is an operational advantage that the load on the filtration of the fat and oil and the hydrogen storage alloy can be significantly reduced.

以下に実施例を示して本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.

実施例1 容量が1デッドエンド式の反応槽に大豆白紋油300g
を入れ、105℃に加熱後、約5分間排気、脱水処理を行
い、その後室温まで冷却した。該油に、予め水素を貯蔵
させた水素貯蔵合金(表1本発明1〜3)もしくは、水
素を吸蔵していない粉末(表1の対照1及び2)100gを
混入して120rpmで撹拌して混合液とした。対照1及び2
は、40℃以下の液温で通常の高純度水素ガス(純度99.9
988%)をボンベから水素圧力9kg/cm2で約3時間放置し
混合液中の粉末に水素を吸蔵させ金属水素化物の粉末と
した後使用した。
Example 1 300 g of soybean white oil in a dead-end type reaction tank
Was heated to 105 ° C., exhausted and dehydrated for about 5 minutes, and then cooled to room temperature. The oil was mixed with 100 g of a hydrogen storage alloy (Table 1 of the present invention 1 to 3) in which hydrogen was stored in advance or a powder (Controls 1 and 2 of Table 1) which did not store hydrogen, and the mixture was stirred at 120 rpm. A mixed solution was prepared. Controls 1 and 2
Is a normal high-purity hydrogen gas (purity 99.9
(988%) was allowed to stand from a cylinder at a hydrogen pressure of 9 kg / cm 2 for about 3 hours to absorb hydrogen in the powder in the mixed solution to obtain a metal hydride powder, which was used.

混合液の合金割合は、すべて26.5%である。なお、水
添反応条件は反応時間が120分、水素雰囲気圧力が3kg/c
m2で一定とし、反応温度のみ変化させている。
The alloy ratios of the mixed liquids are all 26.5%. The hydrogenation reaction conditions were a reaction time of 120 minutes and a hydrogen atmosphere pressure of 3 kg / c.
Only the reaction temperature is changed, with m 2 being constant.

その後、速やかに混合液中の水素貯蔵合金粉末と大豆
白紋油を濾過、分離した。水添された大豆白紋油を常法
に従い脱気後、活性白土を添加、フィルタープレスによ
り精製油とした。この方法により水添度11.0〜17.5%の
大豆硬化油が約282gが得られた。
Then, the hydrogen storage alloy powder and soybean white crab oil in the mixed solution were immediately filtered and separated. The hydrogenated soybean white crab oil was degassed by a conventional method, activated clay was added, and a refined oil was obtained by a filter press. By this method, about 282 g of hydrogenated soybean oil having a hydrogenation degree of 11.0 to 17.5% was obtained.

なお、表1中の水添度は次の式から算出された。 The degree of hydrogenation in Table 1 was calculated from the following formula.

また、実施例の水素貯蔵合金は、全て六方晶のCaCu5
型の金属水素化物を50%以上含んだ合金である。この合
金種類と水添度の結果を表1に示す。
Further, the hydrogen storage alloys of the examples are all hexagonal CaCu 5
It is an alloy containing 50% or more of metal hydride of the type. The results of this alloy type and hydrogenation degree are shown in Table 1.

表1より、本発明の方法によりいずれの場合もカルシ
ウム及びニッケルを含む六方晶のCaCu5型合金を用いれ
ば水添硬化油の製造が容易であることが判る。
It can be seen from Table 1 that the hydrogenated hydrogenated oil can be easily produced by the method of the present invention in any case by using a hexagonal CaCu 5 type alloy containing calcium and nickel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 均 東京都江東区東雲1丁目9番31号 三菱 製鋼株式会社技術開発センター内 (72)発明者 日向野 栄 東京都江東区東雲1丁目9番31号 三菱 製鋼株式会社技術開発センター内 (56)参考文献 特開 昭63−65952(JP,A) 特開 昭50−113484(JP,A) 特開 平2−47197(JP,A) 特開 昭63−268799(JP,A) 特公 昭26−3319(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Sato 1-931 Shinonome, Koto-ku, Tokyo Inside Mitsubishi Steel Mfg. Co., Ltd. (72) Inventor Sakae Hinata 1-931 Shinonome, Koto-ku, Tokyo No. Mitsubishi Steel Mfg. Co., Ltd. Technology Development Center (56) Reference JP-A 63-65952 (JP, A) JP-A 50-113484 (JP, A) JP-A 2-47197 (JP, A) JP-A 63-268799 (JP, A) JP-B 26-3319 (JP, B1)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】食品油脂に水素を添加するに際し、カルシ
ウム及びニッケルを必須元素とした六方晶のCaCu5型の
結晶構造を有する化合物を主相とする水素貯蔵合金から
放出される水素で水素添加することを特徴とする食品油
脂に水素添加する方法。
1. When hydrogen is added to food fats and oils, hydrogen is added by hydrogen released from a hydrogen storage alloy whose main phase is a compound having a hexagonal CaCu 5 type crystal structure in which calcium and nickel are essential elements. A method for hydrogenating food fats and oils, which comprises:
【請求項2】食品油脂の温度を120〜200℃の温度範囲に
保ち、水素貯蔵合金の大気圧を示す分解平衡圧の温度が
100℃以上200℃以下である水素貯蔵合金から放出される
水素で、水素添加を行なう請求項(1)に記載の水素添
加方法。
2. The temperature of food fats and oils is kept in the temperature range of 120 to 200 ° C., and the temperature of the decomposition equilibrium pressure showing the atmospheric pressure of the hydrogen storage alloy is
The hydrogenation method according to claim 1, wherein hydrogen is added with hydrogen released from the hydrogen storage alloy having a temperature of 100 ° C. or higher and 200 ° C. or lower.
【請求項3】平均粉末粒径が0.5〜100μmである水素貯
蔵合金から放出される水素で水素添加を行なう請求項
(1)または(2)に記載の水素添加方法。
3. A hydrogenation method according to claim 1, wherein hydrogen is released from hydrogen storage alloy having an average powder particle size of 0.5 to 100 μm.
【請求項4】油脂に対する水素貯蔵合金の割合を5〜70
重量%の範囲とする請求項(1)〜(3)のいずれかに
記載の水素添加方法。
4. The ratio of hydrogen storage alloy to oil is 5 to 70.
The hydrogenation method according to any one of claims (1) to (3), wherein the hydrogen content is in the range of% by weight.
JP63228343A 1988-09-14 1988-09-14 Method of hydrogenating edible fats and oils Expired - Fee Related JP2555423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228343A JP2555423B2 (en) 1988-09-14 1988-09-14 Method of hydrogenating edible fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228343A JP2555423B2 (en) 1988-09-14 1988-09-14 Method of hydrogenating edible fats and oils

Publications (2)

Publication Number Publication Date
JPH0277496A JPH0277496A (en) 1990-03-16
JP2555423B2 true JP2555423B2 (en) 1996-11-20

Family

ID=16874976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228343A Expired - Fee Related JP2555423B2 (en) 1988-09-14 1988-09-14 Method of hydrogenating edible fats and oils

Country Status (1)

Country Link
JP (1) JP2555423B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598696B2 (en) * 1989-03-31 1997-04-09 雪印乳業株式会社 Low temperature hydrogenation of fats and oils
JP2005221216A (en) * 2004-02-09 2005-08-18 Ogata:Kk Refrigerator with hydrogen reduction sterilization and antisepsis, moisture retention, and deodorization function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148479B2 (en) * 1974-02-18 1976-12-21
CA1304069C (en) * 1986-08-25 1992-06-23 Johannes C. Oudejans Hydrogenation catalyst
JPS63268799A (en) * 1987-04-27 1988-11-07 Snow Brand Milk Prod Co Ltd Method for hydrogenating fat or oil
JP2603111B2 (en) * 1988-08-10 1997-04-23 雪印乳業株式会社 Method for producing hydrogenated edible oil with low elaidic acid content

Also Published As

Publication number Publication date
JPH0277496A (en) 1990-03-16

Similar Documents

Publication Publication Date Title
JP3375628B2 (en) Production of hydrogen peroxide
JP2504651B2 (en) Manufacturing method of active magnesium hydride-magnesium-hydrogen storage system that reversibly absorbs hydrogen
US4584139A (en) Hydrogenation of long chain olefinic oils with Raney catalyst
EP0021528B1 (en) Process for the selective hydrogenation of triglyceride oils and products so obtained
JP2555423B2 (en) Method of hydrogenating edible fats and oils
US5472926A (en) Process for preparing a supported metal catalyst and catalyst thereof
US4307026A (en) Process for the selective hydrogenation of triglyceride oils with a metallic catalyst in the presence of a diamine
US4385001A (en) Selective reduction of edible oils
CN112973697A (en) Catalyst for hydrogenation reaction and synthesis method for catalyzing fatty acid methyl ester by using catalyst
US5606099A (en) Process for the preparation of succinic acid dialkyl esters
JP2598696B2 (en) Low temperature hydrogenation of fats and oils
US1275405A (en) Hydrogenation of fats and oils.
US3123574A (en) Hydrogenation of cottonseed and soybean oils foe shortening stock
JPS63268799A (en) Method for hydrogenating fat or oil
JP2640263B2 (en) Edible fats and oils partially dehydrogenated and their production
US5861521A (en) Process for the hydrogenation of esters of unsaturated fatty acids
JP2603111B2 (en) Method for producing hydrogenated edible oil with low elaidic acid content
EP0159101A1 (en) Improved nickel-boride polymer catalyst
JPH0596169A (en) Catalyst for hydrogenation and its production
JPH0656702A (en) Method for hydrogenating and reducing cyclic organic compound
JP3035753B2 (en) Desulfurization method for sulfur-containing compounds
JP3194051B2 (en) Method for dehydrogenation of hydroxyl group
WO2019122511A1 (en) Method for producing ketones for fuel and oil applications
JPH0672923A (en) Hydrogenation reduction of carbonyl compound
JPH02263900A (en) Preparation of hydrogen-added edible oil containing small amount of elaidic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees