[go: up one dir, main page]

JP2553644B2 - Ceiling embedded air conditioner - Google Patents

Ceiling embedded air conditioner

Info

Publication number
JP2553644B2
JP2553644B2 JP63172145A JP17214588A JP2553644B2 JP 2553644 B2 JP2553644 B2 JP 2553644B2 JP 63172145 A JP63172145 A JP 63172145A JP 17214588 A JP17214588 A JP 17214588A JP 2553644 B2 JP2553644 B2 JP 2553644B2
Authority
JP
Japan
Prior art keywords
temperature
detecting means
heat load
air
ceiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63172145A
Other languages
Japanese (ja)
Other versions
JPH0221152A (en
Inventor
俊典 野田
信博 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63172145A priority Critical patent/JP2553644B2/en
Publication of JPH0221152A publication Critical patent/JPH0221152A/en
Application granted granted Critical
Publication of JP2553644B2 publication Critical patent/JP2553644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機、特にその吹出し空気風向の制御
に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to an air conditioner, and more particularly to control of the direction of air blown from the air conditioner.

従来の技術 従来の技術について第7図から第9図を用いて説明す
る。1は天井埋込型の空気調和機の室内機であり、天壁
2に固定ボルト3により固定され、室内機1の下面は天
井4と略同一面上に開口している。室内機1は外殻5と
下面グリル6とから構成し、その内部には冷却システム
の室内側熱交換器7a,7bが、またその各々と熱交換可能
な様に送風機8を設置している。
Conventional Technology Conventional technology will be described with reference to FIGS. 7 to 9. Reference numeral 1 denotes an indoor unit of a ceiling-embedded air conditioner, which is fixed to a ceiling wall 2 by a fixing bolt 3, and a lower surface of the indoor unit 1 is opened substantially flush with a ceiling 4. The indoor unit 1 is composed of an outer shell 5 and a lower surface grill 6, inside which indoor heat exchangers 7a and 7b of a cooling system are installed, and a blower 8 is installed so that heat can be exchanged with each of them. .

そして下面グリル6の中央部に方形状の吸込口10を設
け、吸込口10の周囲には吹出しグリル11a,11bを設けて
いる。送風機8から吹出した空気の略半分は熱交換器7a
を通ったのち、吹出しグリル11aを通過し、斜め下前方
へと吹き出す。また送風機8から吹出した残りの空気は
熱交換器7bを通り、吹出しグリル11bを通過し斜め下前
方へと吹出す様な構造としている。
A rectangular inlet 10 is provided at the center of the lower grill 6, and blow grills 11a and 11b are provided around the inlet 10. Approximately half of the air blown out from the blower 8 is
After passing through, it passes through the outlet grill 11a and blows obliquely downward and forward. The remaining air blown from the blower 8 passes through the heat exchanger 7b, passes through the blow grill 11b, and blows obliquely downward and forward.

また各々の吹出し風向をコントロールするため可動式
のルーバ12a,12bを設置している。そして、使用者が任
意の室温に設定可能な様なリモコンタイプの温度設定手
段100を設けている。吸込口10の内部には、吸込温度検
出手段13を固定設置しており、吸込温度を測定するとと
もに温度設定手段100による設定温度との温度差を検出
し、冷却システムをON−OFFさせ室内を略一様に保って
いる。
In addition, movable louvers 12a and 12b are installed to control the direction of each blown air. Further, a remote control type temperature setting means 100 is provided so that the user can set an arbitrary room temperature. Inside the suction port 10, a suction temperature detecting means 13 is fixedly installed, and while measuring the suction temperature, a temperature difference from the set temperature by the temperature setting means 100 is detected, and the cooling system is turned on and off in the room. It keeps almost uniform.

この様に構成する従来の天井埋込型の空気調和機の動
作について説明する。
The operation of the conventional ceiling-embedded air conditioner thus configured will be described.

一般的に本発明の天井埋込型の空気調和機は事務所や
店舗あるいは居室の天井部に設置されることが多く、室
14の温度調節を行なう。
Generally, the ceiling-embedded air conditioner of the present invention is often installed in the ceiling of an office, a store, or a living room.
14. Adjust the temperature.

室14は、天井4、側壁15,16、及び床17より構成して
いる。又、第8図の二点鎖線に囲まれた空間が居住域で
あり、ASHRAEのSTANDARDでは、高さ1800mm以下でかつ側
壁から600mm以上離れた空間を居住域と定義している。
つまり人間はおおむねこの居住域で活動すると定義して
いる。
The chamber 14 is composed of a ceiling 4, side walls 15 and 16, and a floor 17. The space enclosed by the two-dot chain line in FIG. 8 is the living area, and ASHRAE's STANDARD defines a space that is 1800 mm or less in height and 600 mm or more from the side wall as the living area.
In other words, humans are generally defined as living in this residential area.

このときの吹出空気の流線は、第8図の様に、熱交換
器7a,7bにより暖められた(冷房時は冷やされた)空気
が、吹出しグリル11a,11bから斜め下方に吹出し、居住
域内で大きな弧を描く様に、室14内を暖め(冷やし)た
のち室内機1の中央の吸込口10より吸込まれる。このと
き、各吹出し気流a、及びbは略同一の吹出し風量,吹
出し方向であり、気流a,bの流線はいずれも略同様の弧
を描く。
At this time, as shown in FIG. 8, the stream of the blown air blows the air warmed by the heat exchangers 7a and 7b (cooled at the time of cooling) from the blow grills 11a and 11b downward. After the interior of the room 14 is heated (cooled) so as to draw a large arc in the area, the air is sucked from the central suction port 10 of the indoor unit 1. At this time, the blown airflows a and b have substantially the same blown air volume and blowout direction, and the streamlines of the airflows a and b draw substantially the same arc.

この様にして吸込まれた空気の温度を吸込温度検出手
段13により検知することにより、吹出し空気温度を調節
し、室14の居住域内の平均温度をほぼ設定温度に維持す
るものであった。
By detecting the temperature of the sucked air by the suction temperature detecting means 13 in this way, the blown air temperature is adjusted and the average temperature in the living area of the room 14 is maintained at a substantially set temperature.

発明が解決しようとする課題 店舗や事務所、あるいは居室の天井は床から2.5〜3mm
の高さであり、この位置に室内機が設置されたとき、室
内機から吹出す温調された空気を、居住域内に送り込み
良好な温度分布を維持するには、吹出し風速を非常に大
きくしなければならない。このため吹出し口の真下付近
にいる人は、その吹出し風が頭部や顔面に当り不快感が
発生したり、体感的に寒く感ずる現像が発生するので、
レベルの高い快適空間を提供できないという問題点があ
った。
Problems to be Solved by the Invention The ceiling of a store, office, or living room is 2.5 to 3 mm from the floor
When the indoor unit is installed at this position, the temperature of the air blown from the indoor unit is sent into the living area to maintain a good temperature distribution. There must be. For this reason, for a person in the vicinity of the outlet, the blowing air may hit the head or face and cause discomfort, or the development may be perceived to be cold.
There was a problem that a high-level comfortable space could not be provided.

また、特に暖房時は空気の比重量の影響で、高温の空
気が天井付近によどみ、人間の活動範囲である居住域よ
りも上方の天井付近を無駄に暖房してしまうので、非常
に効率の悪い暖房となり、ランニングコストが高くなる
という問題があった。
In addition, especially during heating, due to the effect of the specific weight of air, high-temperature air stagnates near the ceiling, which wastes heat near the ceiling above the living area, which is the range of human activity. There was a problem that the heating was bad and the running cost was high.

本発明は、設定温度と吸込み空気温度とから室内熱負
荷量を演算し、かつ居住域内の床等の輻射温度と輻射温
度検出手段近傍の周囲温度から居住域内の温度アンバラ
ンスを検出し、これらのいずれもが、あらかじめ設定さ
れた値よりも小さいときつまり、定常運転状態に近づけ
ば、空調機の空気の吹出し角度を天井面に略水平に吹出
し、それ以外の時には空気の吹出し角度を斜め下方に吹
き出す様に制御する空気調和機を提供することを目的と
する。
The present invention calculates the indoor heat load from the set temperature and the intake air temperature, and detects the temperature imbalance in the living area from the radiant temperature of the floor in the living area and the ambient temperature in the vicinity of the radiant temperature detecting means. When both are smaller than the preset value, that is, when approaching a steady operation state, the air outlet angle of the air conditioner is blown out substantially horizontally to the ceiling surface, and at other times, the air outlet angle is set diagonally downward. An object is to provide an air conditioner that controls so that it blows out to the air.

課題を解決するための手段 上記目的を達成するために、本発明の空気調和機は、
輻射温度検出手段からの床等の輻射温度出力と輻射温度
検出手段近傍に設けた周囲温度検出手段からの周囲温度
出力の両者からの温度アンバランスを演算し、又吸込空
気温度と設定温度出力から室内の熱負荷量を演算する。
前記温度アンバランスと室内の熱負荷量のいずれもがあ
らかじめ設定された値よりも小さいときのみ、空調機の
吹出し空気の吹出し角度を天井面に略水平とし、それ以
外は斜め下方吹出しとする様制御する。つまり運転開始
時の様に室内温度と設定温度の差が大きいときや、室内
温度が設定温度に近づいても床面等が非常に低温の場合
では斜め下方吹出しにし居住域内を素遠く温調する様に
制御する。そして、室温及び床面等の温度がほぼ設定温
度近くになれば、天井面に略水平な吹出しとなる様に設
定する吹出し角度切替手段を有している。
Means for Solving the Problems In order to achieve the above object, the air conditioner of the present invention,
Calculates the temperature imbalance from both the radiation temperature output of the floor from the radiation temperature detection means and the ambient temperature output from the ambient temperature detection means provided near the radiation temperature detection means, and also from the intake air temperature and the set temperature output. Calculate the heat load in the room.
Only when both the temperature imbalance and the heat load in the room are smaller than a preset value, the blowing angle of the air blown from the air conditioner is set to be substantially horizontal to the ceiling surface, and the other directions are set to obliquely downward blow. Control. That is, when there is a large difference between the room temperature and the set temperature, such as at the start of operation, or when the floor temperature is extremely low even when the room temperature approaches the set temperature, the air is blown obliquely downward to control the temperature far inside the living area. To control. Further, it has a blowout angle switching means for setting the blowout to be substantially horizontal to the ceiling surface when the temperatures of the room temperature, the floor surface and the like are almost set temperature.

作用 本発明は、上記の様な構成により、吸込み空気温度
と、設定温度を検出演算し室内の熱負荷量を判定すると
ともに、温度アンバランス検出手段により、居住域の温
度と床面等の温度のアンバランス量を検出し、熱負荷量
及び温度アンバランスのいずれかが大きい場合には吹出
し角度切替手段により斜め下方に吹出す様に、また熱負
荷量及び温度アンバランスのいずれもが小さい場合には
吹出し角度切替手段により、天井面と略水平に吹き出す
様に制御することにより、運転開始初期の様に熱負荷量
と居住域空気温度と床面等の温度差が大きく、すばやく
居住領域を冷暖房したいときには斜め前下方に吹き出
し、短時間による温調を行なう。そして室温が安定して
くれば室内温度と設定温度の差が小さくなるとともに温
度アンバランスも小さくなり、吹出し角度を天井面に略
水平にするので居住域内の人間に強い風が当り不快感が
発生するのを防ぐ。又、このとき吹出風は天井面に沿っ
て吹出すので、風速は減速しにくく、天井→側壁→床→
空気調和機吹込口という室全体の大きなサーキュレーシ
ョンを発生させ、室全体を均一に温調する。また、特に
暖房運転の場合には、居住域の上方の天井付近に溜りや
すい高温空気を略水平吹出し流で居住域内へと運び込む
ことが可能となる。
Action The present invention has the above-mentioned configuration to detect the temperature of the intake air and the set temperature to determine the amount of heat load in the room, and the temperature imbalance detection means to detect the temperature of the living area and the temperature of the floor surface. When the heat load amount or the temperature unbalance is large, the blowing angle switching unit blows out diagonally downward, and when the heat load amount or the temperature unbalance is small. By controlling so that it blows out almost horizontally with the ceiling surface by the blowing angle switching means, there is a large difference between the heat load amount, the living area air temperature, and the temperature of the floor surface, etc., as in the initial stage of operation, and the living area is quickly opened. When you want to cool or heat the air, blow it diagonally downward and control the temperature for a short time. If the room temperature becomes stable, the difference between the room temperature and the set temperature will decrease, and the temperature imbalance will also decrease, and the blowing angle will be approximately horizontal to the ceiling surface, so strong winds will hit people in the living area and cause discomfort. Prevent from doing. Also, at this time, the blowing air blows along the ceiling surface, so the wind speed is difficult to slow down, and the ceiling → side walls → floor →
A large circulation of the entire room called the air conditioner blow-in port is generated to uniformly control the temperature of the entire room. Further, particularly in the heating operation, it becomes possible to carry hot air, which tends to accumulate near the ceiling above the living area, into the living area by a substantially horizontal blowing flow.

また、側壁や天井面に対流に障害となる遮へい物(た
とえば書庫・けい光灯等)があある場合、床付近までサ
ーキュレーションされず、床部の温度と設定温度との温
度差が大きくなる様なときでも輻射温度検出手段によ
り、居住域空気温度と床部温度のアンバランスが大きい
ことを検出するため、斜め下方吹出しとなり、居住域の
温度を設定温度近辺に維持できる。
In addition, if there is a shield (such as a library or fluorescent lamp) on the side wall or ceiling that obstructs convection, it will not be circulated near the floor and the temperature difference between the floor temperature and the set temperature will be large. Even in such a case, the radiant temperature detecting means detects that there is a large imbalance between the air temperature in the living area and the temperature in the floor, so that the air blows out obliquely downward and the temperature in the living area can be maintained near the set temperature.

実 施 例 以下本発明の一実施例を第1図から第6図により説明
する。尚、従来と同一のものについては説明を省略し、
異なる点のみについて述べる。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 to 6. The description of the same components as the conventional one is omitted,
Only the differences will be described.

第1図は本発明の一実施例を示す構成図であり18は室
内温度設定手段で、19は吹込グリル10内部に設けられた
吸込み空気温度検出手段で、室14上部の吸込み空気の温
度を検出する。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which 18 is an indoor temperature setting means, 19 is an intake air temperature detecting means provided inside the blowing grille 10, and the temperature of the intake air above the chamber 14 is shown. To detect.

また20は輻射温度検出手段であり、断熱性の外殻21、
下向きに開口したアルミニウム製の凹面鏡22とその焦点
付近に設けた輻射温度サーミスタ23とより構成する。ま
た周囲温度検出手段24は前記輻射温度検出手段20と一体
に凹状に設けた穴内に設置しており前記周囲温度検出手
段24は凹面鏡22内には設置してはならない。前記輻射温
度検出手段20と周囲温度検出手段24は、下面グリル6の
吸込グリル10の横付近に床17部の温度を検出可能な様に
下向きに設置し、輻射温度検出手段20により床温や、居
住域内に配置した机等の表面温度の影響を受けた温度を
検出するとともに、周囲温度検出手段24により輻射温度
検出手段20周辺の温度を検出する。
Further, 20 is a radiation temperature detecting means, which is a heat insulating outer shell 21,
It is composed of a concave mirror 22 made of aluminum that opens downward and a radiation temperature thermistor 23 provided near the focal point of the concave mirror 22. Further, the ambient temperature detecting means 24 is installed in a hole provided integrally with the radiation temperature detecting means 20 in a concave shape, and the ambient temperature detecting means 24 should not be installed in the concave mirror 22. The radiant temperature detecting means 20 and the ambient temperature detecting means 24 are installed downward so as to detect the temperature of the floor 17 in the vicinity of the side of the suction grill 10 of the lower surface grill 6, and the radiant temperature detecting means 20 controls the floor temperature and The temperature affected by the surface temperature of a desk or the like placed in the living area is detected, and the ambient temperature detecting means (24) detects the temperature around the radiation temperature detecting means (20).

この様にして検出された温度信号を制御装置25に送
る。前記制御装置は熱負荷量演算手段26、温度アンバラ
ンス検出手段27、吹出し角度判定手段28、吹出し角度切
替手段29a,29bとから構成している。前記熱負荷量演算
手段26は吸込み空気温度検出手段19と室内温度設定手段
18からの温度信号に基づき熱負荷量を演算し、前記温度
アンバランス検出手段27は、輻射温度検出手段20からの
温度信号と周囲温度検出手段24からの温度信号に基づ
き、床部と居住域の温度のアンバランスを検出するもの
である。そして吹出し角度判定手段28は前記熱負荷量演
算手段26及び前記温度アンバランス検出手段27の出力信
号に基づき、吹出し角度を天井4に平行な吹出し角度
か、床面17への下方吹出し角度かを判定するものであ
る。
The temperature signal thus detected is sent to the control device 25. The control device comprises a heat load amount calculation means 26, a temperature imbalance detection means 27, a blowout angle determination means 28, and blowout angle switching means 29a, 29b. The heat load amount calculating means 26 is an intake air temperature detecting means 19 and an indoor temperature setting means.
The heat load amount is calculated based on the temperature signal from 18, and the temperature imbalance detection means 27 is based on the temperature signal from the radiation temperature detection means 20 and the temperature signal from the ambient temperature detection means 24. It is to detect the temperature imbalance. Then, the blowing angle determining means 28 determines whether the blowing angle is the blowing angle parallel to the ceiling 4 or the downward blowing angle to the floor surface 17 based on the output signals of the heat load calculating means 26 and the temperature imbalance detecting means 27. It is a judgment.

そして吹出し角度切替手段29a,29bは前記吹出し角度
判定手段28から送られてきた吹出し角度設定信号に基づ
いてルーバ12a,12bの角度を変更するものである。
The blowing angle switching means 29a, 29b change the angles of the louvers 12a, 12b based on the blowing angle setting signal sent from the blowing angle determining means 28.

前記吹出し角度切替手段29aは第3図の如く先端部に
メネジを切ったモータシャフト30a付のパルスモータ31a
と、一端をルーバ12aの先端部に枢支し、他端はオネジ
を切ったルーバ駆動シャフト32aとより成り、モータシ
ャフト30aのメネジに、ルーバの駆動シャフト32aのオネ
ジを螺嵌する構成である。
The blow-out angle switching means 29a is a pulse motor 31a with a motor shaft 30a having a female thread at the tip as shown in FIG.
A louver drive shaft 32a having one end pivotally supported on the tip of the louver 12a and the other end having an external thread cut off.The female screw of the louver is screwed into the female screw of the motor shaft 30a. .

次に上記の様に構成した空気調和機の動作を第4図の
フローチャートを用いて説明する。
Next, the operation of the air conditioner configured as above will be described with reference to the flowchart of FIG.

室14を使用する人が、空気調和機1の電源を投入した
のち、ステップ33で所望の室温Tsetに温度設定し、空調
機の運転を開始する。
After the person using the room 14 turns on the power of the air conditioner 1, the temperature is set to a desired room temperature Tset in step 33, and the operation of the air conditioner is started.

またステップ34では吸込みグリル10の略中央部内側に
設けた吸込み空気温度検出手段13により吸込み空気温度
T0を検出する。そしてステップ35では輻射温度検出手段
20により、室内機本体1下方の床や机等の輻射温度Trを
検出する。又、同時に輻射温度検出手段20の周辺の温度
Taを周囲温度検出手段24により検出する。
Further, in step 34, the intake air temperature is detected by the intake air temperature detecting means 13 provided substantially inside the central portion of the intake grill 10.
Detect T 0 . Then, in step 35, the radiation temperature detecting means
The radiant temperature Tr of the floor or the desk below the indoor unit body 1 is detected by the 20. At the same time, the temperature around the radiation temperature detection means 20
The ambient temperature detecting means 24 detects Ta.

ステップ36では、まず、前記吸込空気温度T0と設定温
度Tsetの両者から次式にて熱負荷量ΔTlを計算する。
In step 36, first, the heat load amount ΔTl is calculated by the following equation from both the intake air temperature T 0 and the set temperature Tset.

ΔTl=|T0−Tset| そしてあらかじめ設定された基準熱負荷量ΔTl(ここ
では仮にΔtl=5℃とする)と演算した熱負荷量ΔTlと
を比較する(ステップ37)。ここで熱負荷量ΔTlが基準
熱負荷量Δtl=5℃よりも大きいとき、つまり吸込空気
温度T0と設定温度Tsetとの差の絶対値が5℃以上ある場
合、つまり室内が設定温度からかけはなれているときに
はNoの側に進み、ルーバ12a,12bの天井面からの角度を
大きくとる様に判定され(ステップ38)斜め下方の吹出
し状態となる。一方吸込み空気温度T0と設定温度Tsetと
の差ΔTlが基準熱負荷量ΔTl=5℃よりも小さいときは
YESの側のステップ39へと進む。ステップ39では、ステ
ップ35で検出した輻射温度Trと周囲温度Taにより温度ア
ンバランスΔTaを次式 ΔTa=|Tr−Ta| にて演算する。そしてステップ40では、あらかじめ設定
された基準温度アンバランスΔta(ここでは履にΔta=
8℃とする)と前記温度アンバランスΔTaとを比較す
る。ここで温度アンバランスΔTaが、基準温度アンバラ
ンスΔtaよりも大きい場合、つまり、立上り運転時の様
に床面の温度が居住域の温度に比べ大きく異なる場合に
は、Noの側に進み、ルーバ12a,12bの天井面からの角度
を大きくとり斜め下方吹出しとなる様に判定される(ス
テップ38)。この結果、運転開始初期の様な立上り運転
時あるいは、障害物等により床面の温度と居住域の温度
との差が非常に大きい様な高負荷がかかる運転時にはル
ーバ12a,12bの角度をより大きくとるため、第5図の様
に温調された空気を直接居住域内に吹き出すことが可能
であり、居住域をすばやく設定温度に近づけることがで
きる。そして室14の温度がほぼ設定温度に近づくと熱負
荷量ΔTl及び温度アンバランスΔTaはだんだんと小さく
なり、熱負荷量ΔTlは基準熱負荷量Δtlよりも小さく床
面も温調された結果温度アンバランスΔTaは基準温度ア
ンバランスΔtaよりも小さくなる。この結果、ステップ
40でYESの側に進みルーバ12a,12bの角度を小さくとる様
に判定される(ステップ41)。そしてステップ42に進
み、吹出し角度切替手段29a,29bにより各ルーバ12a,12b
を駆動させ、吹出し方向を天井面に略水平になる様に設
定する。このため吹出した空気は第6図の様に天井4に
沿って流れ、対向する側壁15,16の上部にぶつかる。そ
してぶつかった流れは、下方の流れに変化し、側壁15,1
6に沿って下方に流れていく。そして床17に到達したの
ち床面17を広がりながら、室内機1の吸込口10から吸込
まれていき、室14内全体に大きなサーキュレーションを
発生させる。このため居住域には強風が発生せず、室14
の壁に近い外殻からソフトに温調が可能となる。
ΔTl = | T 0 −Tset | Then, a reference heat load amount ΔTl set in advance (here, Δtl = 5 ° C. is assumed) is compared with the calculated heat load amount ΔTl (step 37). Here, when the heat load amount ΔTl is larger than the reference heat load amount Δtl = 5 ° C., that is, when the absolute value of the difference between the intake air temperature T 0 and the set temperature Tset is 5 ° C. or more, that is, when the temperature inside the room exceeds the set temperature. When it is out of the way, it proceeds to No side, and it is determined that the angles of the louvers 12a and 12b from the ceiling surface are set to be large (step 38), and the blowout state is obliquely downward. On the other hand, when the difference ΔTl between the intake air temperature T 0 and the set temperature Tset is smaller than the reference heat load ΔTl = 5 ° C,
Proceed to step 39 on the YES side. In step 39, the temperature imbalance ΔTa is calculated by the following equation ΔTa = | Tr−Ta | from the radiation temperature Tr detected in step 35 and the ambient temperature Ta. Then, in step 40, the preset reference temperature unbalance Δta (here, Δta =
8 ° C.) and the temperature imbalance ΔTa. If the temperature unbalance ΔTa is larger than the reference temperature unbalance Δta, that is, if the floor temperature is significantly different from the temperature in the living area, such as during start-up operation, proceed to the No side and move the louver. It is determined that the angles of 12a and 12b from the ceiling surface are set to be large and the air flows downward obliquely (step 38). As a result, the angles of the louvers 12a and 12b should be adjusted more during the start-up operation such as in the initial stage of operation, or during operation with a high load such that the difference between the floor temperature and the living area temperature is very large due to obstacles. Since it is large, the temperature-controlled air can be blown directly into the living area as shown in FIG. 5, and the living area can be brought close to the set temperature quickly. When the temperature of the chamber 14 approaches the set temperature, the heat load amount ΔTl and the temperature imbalance ΔTa gradually decrease, and the heat load amount ΔTl is smaller than the reference heat load amount Δtl. The balance ΔTa is smaller than the reference temperature imbalance Δta. As a result, step
At 40, it is determined that the louvers 12a, 12b are to be set at a small angle by moving to the YES side (step 41). Then, in step 42, the louvers 12a and 12b are blown by the blowing angle switching means 29a and 29b.
Drive and set the blowing direction so that it is substantially horizontal to the ceiling surface. Therefore, the blown air flows along the ceiling 4 as shown in FIG. 6 and hits the upper portions of the opposite side walls 15 and 16. Then, the colliding flow changes to a downward flow, and the side walls 15,1
It flows down along 6. Then, after reaching the floor 17, the floor 17 is expanded and is sucked through the suction port 10 of the indoor unit 1 to generate a large circulation in the entire room 14. As a result, strong wind did not occur in the living area,
It is possible to softly control the temperature from the outer shell close to the wall.

上記実施例によれば、熱負荷量が大きい場合、あるい
は温度アンバランスが大きい場合、つまり運転開始初期
の様な場合には、吹出方向を前方床面に向けてやり居住
域内に温調された空気をどんどんと送りこんでやり早く
所望の温度に到達する様に制御する。一方、室14の温度
が設定温度に近づき、熱負荷量ΔTl及び温度アンバラン
スΔTaのいずれもが基準値よりも小さくなれば、吹出す
方向を、天井に水平な吹出しとし、天井面に沿った流れ
を発生させる。吹出し空気は、天井面に沿って流れるの
で、風速は減少しにくく、天井面を沿いながら、側壁1
5,16上端に到達したのち側壁15,16に沿って下方に流れ
ていき床面17をへて、室内機1の吸込口10に吸込まれて
いく。この結果室14には壁面に沿った大きなサーキュレ
ーションが発生する。つまり室14がほぼ安定した温度に
到達すれば、吹出しを居住域外の天井付近とし、居住域
を外殻から温調することになる。このため、居住域に強
い風が到達することがなくなり、風が当ることによる不
快感をなくする。又、壁に沿った流れであり、気流は減
速しにくく、確実にサーキュレーションするので室内は
より均一な温度分布にすることが可能である。
According to the above-described embodiment, when the heat load is large or the temperature imbalance is large, that is, when the operation is started, the temperature is controlled within the living area by directing the blowing direction toward the front floor surface. Control the air so that it reaches the desired temperature quickly. On the other hand, when the temperature of the room 14 approaches the set temperature and both the heat load amount ΔTl and the temperature unbalance ΔTa become smaller than the reference value, the blowing direction is a horizontal blowing to the ceiling, and the blowing direction is along the ceiling surface. Generate a flow. The blown air flows along the ceiling surface, so the wind speed does not decrease easily.
After reaching the upper ends of the floors 5,16, they flow downward along the side walls 15,16, pass through the floor surface 17, and are sucked into the suction port 10 of the indoor unit 1. As a result, a large circulation is generated in the chamber 14 along the wall surface. That is, when the temperature of the room 14 reaches a substantially stable temperature, the blowout is set near the ceiling outside the living area, and the living area is temperature-controlled from the outer shell. Therefore, strong wind does not reach the living area, and discomfort caused by the wind is eliminated. In addition, since the flow is along the wall, the air flow is hard to be decelerated and the circulation is reliably performed, so that a more uniform temperature distribution in the room can be achieved.

特に暖房時には天井4付近に高温空気が滞留しやすい
が頭よりずっと上方を無駄に温めていた。この様な高温
空気を、水平吹出し流により吹きとばし、居住域内への
選ぶので、効率の良い暖房を可能とする。
Especially during heating, high temperature air tends to stay near the ceiling 4, but the space above the head was wasted. Such high-temperature air is blown out by a horizontal blowout flow and selected into the living area, which enables efficient heating.

また万一側壁15付近に書庫等の障害物を設置した際に
は前記サーキュレーションが発生しにくくなり、床17付
近の温度は設定温度Tsetと大きくかけはなれた温度とな
る。つまり床17面の温度を輻射温度検出手段により検出
し温度アンバランスが大きくなったことを判定し(ステ
ップ39)斜め下方吹出しに切替えるため、居住域を所望
の温度に維持できる。
Further, when an obstacle such as a library is installed near the side wall 15, the above-mentioned circulation is less likely to occur, and the temperature near the floor 17 becomes a temperature largely different from the set temperature Tset. That is, the temperature of the floor 17 is detected by the radiant temperature detecting means and it is determined that the temperature imbalance has become large (step 39), and the air flow is switched to the oblique downward direction, so that the living area can be maintained at a desired temperature.

尚、本実施例では、ルーバ12a,12bの駆動をモータ31
a,31bを用いて行なっているが、形状記憶合金等を用い
て、ルーバ12a,12bを駆端させることも充分に可能であ
る。
In this embodiment, the louvers 12a and 12b are driven by the motor 31.
Although a and 31b are used, it is also possible to drive the louvers 12a and 12b by using a shape memory alloy or the like.

発明の効果 以上実施例から明らかな様に本発明は、吸込み空気温
度検出手段と設定温度検出手段により室内の熱負荷量を
演算する熱負荷量演算手段と、床面付近の輻射温度を検
出する輻射温度検出手段により、床面や机等の表面温度
とともに輻射温度検出手段近傍の周囲温度を検出し、こ
の両者から温度アンバランスを検出する。そしてこれら
熱負荷量及び温度アンバランスのいずれもがあらかじめ
設定された値よりも小さい値のときには吹出し角度切替
手段により、天井面に略水平に吹き出す様に制御し、又
いずれも、あるいはいずれかが大きいときは斜め下方吹
出しに制御するので、室内温度と設定温度との差が大き
いか、床面と室内のアンバランスが大きい様な運転開始
初期の様な場合には、温調された空気を居住域内にどん
どん送りこんでやり、早く所望の温度に到達させる。そ
して、運転が安定し設定温度に近づき、かつ吹出し空気
温度変化率が小さくなれば、非居住域に水平吹出し流を
発生させ、天井面に沿った室内全体の大きな対流を発生
させる。
EFFECTS OF THE INVENTION As is apparent from the above-described embodiments, the present invention detects the radiant temperature near the floor surface and the heat load amount calculating means for calculating the heat load amount in the room by the intake air temperature detecting means and the set temperature detecting means. The radiation temperature detecting means detects the ambient temperature in the vicinity of the radiation temperature detecting means together with the surface temperature of the floor surface or the desk, and detects the temperature imbalance from both of them. When both of the heat load amount and the temperature imbalance are smaller than the preset values, the blowing angle switching means controls the blowing to be substantially horizontal to the ceiling surface. When it is large, the air is controlled to blow out diagonally.Therefore, if the difference between the room temperature and the set temperature is large, or if there is a large imbalance between the floor surface and the room, such as in the initial stage of operation start, the temperature-controlled air is Send it to the living area and let it reach the desired temperature quickly. When the operation is stable, the temperature approaches the set temperature, and the rate of change in the blown air temperature becomes small, a horizontal blowout flow is generated in the non-residential area, and a large convection in the entire room along the ceiling surface is generated.

このため居住域内に居る人間には吹出し気流が直接当
らないので気流による不快感は発生しない。また、天井
面に沿って気流が流れるので、風速の低下がおこりにく
く、室全枠のサーキュレーションはより確実なものとな
り、室内温度分布も大幅に向上する。
For this reason, since the blowout airflow does not directly hit the person in the living area, the discomfort caused by the airflow does not occur. In addition, since the airflow flows along the ceiling surface, the wind speed is less likely to decrease, the circulation of the entire frame of the room becomes more reliable, and the indoor temperature distribution is significantly improved.

また天井面,側壁も同時に温調されるので、これらの
面からの冷輻射,暖輻射による不快感は減少する。
Further, since the temperature of the ceiling surface and the side wall is controlled at the same time, discomfort caused by cold and warm radiation from these surfaces is reduced.

特に暖房時には高温の空気が天井付近にたまりやすい
が、水平吹出しによって、上部の高温空気を居住域内に
運ぶ込ことが可能であり、より効率の高い暖房が可能で
ある。
In particular, when heating, high-temperature air tends to collect near the ceiling, but horizontal blowing allows the high-temperature air in the upper part to be carried into the living area, enabling more efficient heating.

また万一側壁付近,天井付近に書庫やけい光灯などの
障害物がある場合サーキュレーションがおこりにくく、
居住域の下部の床付近まで温調しにくくなり床面の温度
が設定値よりもかけはなれた温度となるが、この場合に
は、温度アンバランスが大きくなるので、水平吹出し状
態を下吹出し状態に変更し、居住域を所望の温度になる
様制御する。
Also, if there are obstacles such as a library or a fluorescent lamp near the side walls or the ceiling, it is difficult to circulate.
It becomes difficult to control the temperature near the floor at the bottom of the residential area, and the temperature of the floor becomes a temperature that is far from the set value, but in this case, the temperature imbalance becomes large, so the horizontal blowing state should be changed to the lower blowing state. To control the living area to the desired temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す構成図、第2図及び第
3図は本実施例の要部拡大図、第4図は吹出し角度判定
のためのプログラムの一例を示すフローチャート図、第
5図は立上り運転時の室内気流を示す図、第6図は安定
運転時(水平吹出し時)の室内気流を示す図、第7図は
従来の空気調和機の底面図、第8図は上記空気調和機の
中央断面図、第9図は従来例における室内気流を示す図
である。 18……室内温度設定手段、19……吹出し空気温度検出手
段、20……輻射温度検出手段、24……周囲温度検出手
段、25……制御装置、26……熱負荷量演算手段、27……
温度アンバランス検出手段、28……吹出し角度判定手
段、29a,29b……吹出し角度切替手段。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIGS. 2 and 3 are enlarged views of a main part of the present embodiment, and FIG. 4 is a flow chart diagram showing an example of a program for determining an outlet angle, FIG. 5 is a diagram showing the indoor air flow during the start-up operation, FIG. 6 is a diagram showing the indoor air flow during the stable operation (horizontal blowout), FIG. 7 is a bottom view of the conventional air conditioner, and FIG. FIG. 9 is a central sectional view of the air conditioner, and FIG. 9 is a view showing an indoor air flow in a conventional example. 18 ... Indoor temperature setting means, 19 ... Blow-out air temperature detecting means, 20 ... Radiation temperature detecting means, 24 ... Ambient temperature detecting means, 25 ... Control device, 26 ... Heat load amount calculating means, 27 ... …
Temperature imbalance detection means 28 ... Blowout angle determination means, 29a, 29b ... Blowout angle switching means.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】居住域内の床等の輻射温度を検出する輻射
温度検出手段からの輻射温度出力と、輻射温度検出手段
近傍に設けた周囲温度検出手段からの周囲温度出力によ
り室内と床面等の温度アンバランスを検出する温度アン
バランス検出手段と、設定温度検出手段と吸込空気温度
検出手段の両出力をもとに室内の熱負荷量を演算する室
内熱負荷量演算手段と、温度アンバランス検出手段及び
室内熱負荷量演算手段の両出力信号の基づき吹出し角度
を任意にかえる吹出し角度切替手段と、前記熱負荷量演
算手段からの出力である室内の熱負荷量が小さく、かつ
温度アンバランス検出手段からの出力信号であるアンバ
ランス量が小さいときのみ吹出し角度を天井面に略水平
になる様制御し、それ以外のときは斜め下方に吹出す様
制御する吹出し角度制御手段とを備えたことを特徴とす
る天井埋込型の空気調和機。
1. A room, a floor surface, etc. by the radiation temperature output from the radiation temperature detecting means for detecting the radiation temperature of the floor in the living area and the ambient temperature output from the ambient temperature detecting means provided in the vicinity of the radiation temperature detecting means. Temperature unbalance detecting means for detecting the temperature unbalance, indoor heat load calculating means for calculating the indoor heat load based on both outputs of the set temperature detecting means and the intake air temperature detecting means, and the temperature unbalance A blowing angle switching means for arbitrarily changing the blowing angle based on the output signals of both the detecting means and the indoor heat load calculating means, and a small heat load quantity in the room, which is the output from the heat load calculating means, and a temperature imbalance. The blow-out angle is controlled so that the blow-out angle is substantially horizontal to the ceiling surface only when the unbalance amount, which is the output signal from the detection means, is small, and the blow-off angle is controlled to be blown diagonally downward otherwise Ceiling embedded air conditioner which is characterized in that a control means.
JP63172145A 1988-07-11 1988-07-11 Ceiling embedded air conditioner Expired - Lifetime JP2553644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172145A JP2553644B2 (en) 1988-07-11 1988-07-11 Ceiling embedded air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172145A JP2553644B2 (en) 1988-07-11 1988-07-11 Ceiling embedded air conditioner

Publications (2)

Publication Number Publication Date
JPH0221152A JPH0221152A (en) 1990-01-24
JP2553644B2 true JP2553644B2 (en) 1996-11-13

Family

ID=15936396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172145A Expired - Lifetime JP2553644B2 (en) 1988-07-11 1988-07-11 Ceiling embedded air conditioner

Country Status (1)

Country Link
JP (1) JP2553644B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159045A (en) * 1984-12-27 1986-07-18 Toshiba Corp Air-conditioning equipment
JPS62194158A (en) * 1986-02-18 1987-08-26 Matsushita Electric Ind Co Ltd Control of operation of air-conditioning machine
JPS62297654A (en) * 1986-06-17 1987-12-24 Daikin Ind Ltd air conditioner

Also Published As

Publication number Publication date
JPH0221152A (en) 1990-01-24

Similar Documents

Publication Publication Date Title
WO2019137376A1 (en) Wall-mounted air conditioner and self-cleaning control method therefor
KR900001994B1 (en) Air conditioner
JP6808999B2 (en) Air conditioner
JP3432022B2 (en) Air conditioner
JP6361718B2 (en) Air conditioning indoor unit
JP3446478B2 (en) Air conditioner
JP2000283535A (en) Radiation air conditioner
JPH1151445A (en) Radiant air conditioning system
JP2553644B2 (en) Ceiling embedded air conditioner
JP3548627B2 (en) Air conditioner
JP2594318B2 (en) Ceiling-mounted air conditioner
JP2558783B2 (en) Ceiling embedded air conditioner
JP2883929B2 (en) Radiation air conditioning chamber and air conditioning system including the chamber
JPH02166338A (en) Air conditioner
JPH05296548A (en) Air conditioner
JPH01302055A (en) Ceiling-embedded type air conditioner
JPH0781725B2 (en) Ventilation air conditioner
JPH01169256A (en) Air-conditioner
JPH02103331A (en) Ceiling embodies type air conditioner
JP2690140B2 (en) Air conditioner
JPH04217733A (en) Air conditioner
JPH0363431A (en) Air conditioner
JPH0586537B2 (en)
JP2608967B2 (en) Air conditioner
JPH02166337A (en) Air conditioner