JP2553365B2 - Multi-layer polarization beam splitter - Google Patents
Multi-layer polarization beam splitterInfo
- Publication number
- JP2553365B2 JP2553365B2 JP62290898A JP29089887A JP2553365B2 JP 2553365 B2 JP2553365 B2 JP 2553365B2 JP 62290898 A JP62290898 A JP 62290898A JP 29089887 A JP29089887 A JP 29089887A JP 2553365 B2 JP2553365 B2 JP 2553365B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric substrate
- light
- polarization
- saw
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光の特定の偏光成分を分離する偏光分離
装置に係り、特に、固体表面上を伝搬する表面弾性波
(SAW:Surface Acoustic Wave)が偏光選択性を有する
光回折格子を形成し、入射光の偏光分離ができる機能を
利用した偏光回折素子(多層型偏光ビームスプリッタ
ー)に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization separation device for separating a specific polarization component of light, and more particularly to a surface acoustic wave (SAW: Surface Acoustic Wave) propagating on a solid surface. 2) relates to a polarization diffractive element (multilayer polarization beam splitter) utilizing the function of forming an optical diffraction grating having polarization selectivity and capable of polarization-splitting incident light.
従来の偏光分離用光学部品としては、誘電体多層膜を
備えた偏光ビームスプリッターがあり、これは誘電体多
層膜の設計値、つまり膜の厚さと屈折率を変えること
で、使用できる光の波長と特定の偏光状態の光を分離す
る比率(0次光の光量と±1次回折光の光量の比に相当
するもの。以後、偏光分離比という。)が自由に選べる
長所をもっている。As a conventional polarization separation optical component, there is a polarization beam splitter equipped with a dielectric multilayer film. This is the wavelength of light that can be used by changing the design value of the dielectric multilayer film, that is, the film thickness and refractive index. And a ratio for separating light of a specific polarization state (corresponding to the ratio of the amount of 0th-order light and the amount of ± 1st-order diffracted light; hereinafter referred to as polarization separation ratio) has the advantage of being freely selectable.
ところが、別の波長の光に対しては新たに設計し直す
必要があり、波長帯域の広い光源に対しては利用価値が
小さく、さらに偏光分離比は設計値で決定されてしまい
変更できないという短所をもっている。However, it has to be redesigned for light of another wavelength, its utility value is low for light sources with a wide wavelength band, and the polarization splitting ratio is determined by the design value and cannot be changed. I have
本発明の目的は、波長依存性がなく、かつ、偏光分離
比が可変な偏光回折素子を実現することである。An object of the present invention is to realize a polarization diffraction element having no wavelength dependence and a variable polarization separation ratio.
固体表面上を伝搬するSAWを利用し、提案・実用化さ
れている光関連の装置として、SAWが形成する表面の正
弦波状凹凸と周期的屈折率変化を回折格子として用いた
光偏向装置(例えば、表面弾性波を利用した光の回折装
置「特開昭第62−94831号」)や光の周波数シフターな
どがあり、これらはいずれもラマンナース回折による±
1次回折光に着目し応用されたものである。しかしなが
ら、SAWによる回折作用が、入射光の偏光状態により、
いかなる影響を受けるかについて論じられたものはな
く、また利用された装置等もない。As an optical-related device that has been proposed and put into practical use by utilizing SAW propagating on a solid surface, an optical deflection device that uses a sinusoidal unevenness of the surface formed by SAW and a periodic refractive index change as a diffraction grating (for example, , A light diffracting device utilizing surface acoustic waves (Japanese Patent Laid-Open No. 62-94831)) and a frequency shifter for light, all of which are based on Raman-Nurse diffraction.
It was applied by focusing on the first-order diffracted light. However, due to the diffraction state of SAW, the polarization state of the incident light causes
Nothing has been discussed about what kind of effect it will have, nor has any equipment been used.
この発明は、その点、すなわち、入射光の偏光状態と
SAWによる回折作用との関係に着目し、後述する実験に
よってSAW素子の偏光選択性を確認し、それを利用する
こととした。This invention is based on that point, namely, the polarization state of incident light and
Focusing on the relationship with the diffraction effect of SAW, the polarization selectivity of the SAW element was confirmed by experiments described below, and it was decided to utilize it.
手段を具体的に述べれば、本発明の装置は光透過性を
有する第1の圧電性基板と、該第1の圧電性基板に入射
される光のうち所定の偏りをもつ偏光面を有する光のみ
を一部、選択的に回折するような表面弾性波を、前記第
1の圧電性基板上に発生するように、前記第1の圧電性
基板の表面に設けられた第1の交差指形電極と、前記第
1の圧電性基板を透過した光が入射するように配置され
た光透過性を有する第2の圧電性基板と、該第2の圧電
性基板に入射される光のうち所定の偏りをもつ偏光面を
有する光のみを一部、選択的に回折するような表面弾性
波を、前記第2の圧電性基板上に発生するように、前記
第2の圧電性基板の表面に設けられた第2の交差指形電
極とを備えている。More specifically, the device of the present invention includes a light-transmissive first piezoelectric substrate and light having a polarization plane having a predetermined polarization among lights incident on the first piezoelectric substrate. A first cross finger shape provided on the surface of the first piezoelectric substrate so as to generate a surface acoustic wave on the first piezoelectric substrate that selectively diffracts only a part thereof. An electrode, a second light-transmitting piezoelectric substrate arranged so that light transmitted through the first piezoelectric substrate is incident, and a predetermined amount of light incident on the second piezoelectric substrate On the surface of the second piezoelectric substrate so as to generate a surface acoustic wave on the second piezoelectric substrate that selectively diffracts only a part of light having a polarization plane having And a second interdigitated electrode provided.
第1の圧電性基板及び第2の圧電性基板の表面にそれ
ぞれ発生した表面弾性波によって、入射された光のうち
それぞれ所定の偏りをもつ偏光面を有する光のみが一
部、選択的に回折される。Due to the surface acoustic waves generated on the surfaces of the first piezoelectric substrate and the second piezoelectric substrate, only a part of the incident light having a polarization plane with a predetermined polarization is selectively diffracted. To be done.
一方、SAW素子による回折作用は、SAWによる正弦波状
格子の格子間隔をdとしたとき、入射光の波長λと回折
角度θの関係が、 2d・sinθ=λ ……(1) であることが知られている。On the other hand, regarding the diffraction effect of the SAW element, the relationship between the wavelength λ of the incident light and the diffraction angle θ is 2d · sin θ = λ (1) when the grating spacing of the sinusoidal grating by SAW is d. Are known.
この関係より波長の違いは回折角度に影響を与えるも
のの、偏光を分離するという点においては波長依存性は
ない。もし、回折角度θを所望の角度にしたいのであれ
ば、入射光の波長λに応じた格子間隔dとすればよく、
格子間隔dは、SAWを発生すべく備えられた交差指形電
極へ入力する周波数で制御できる。また偏光分離比は、
交差指形電極への入力電力で制御可能である。From this relationship, although the difference in wavelength affects the diffraction angle, there is no wavelength dependence in separating polarized light. If the diffraction angle θ is desired to be a desired angle, the grating spacing d may be set according to the wavelength λ of the incident light.
The lattice spacing d can be controlled by the frequency input to the interdigital electrodes provided to generate SAW. The polarization split ratio is
It can be controlled by the input power to the interdigital electrodes.
第1図に本発明に係る多層型偏光ビームスプリッター
の一実施例を示す。FIG. 1 shows an embodiment of a multilayer polarization beam splitter according to the present invention.
本実施例では、SAWの伝搬方向に垂直な偏光状態の光
だけ一部回折するという、後述する実験で確認された性
質を生ずる圧電性基板を使用している。In this embodiment, a piezoelectric substrate is used, which has a property that is confirmed in an experiment described later that only light having a polarization state perpendicular to the SAW propagation direction is partially diffracted.
光学研磨された光透過性を有する第1の圧電性基板3
の表面に,SAWを発生する第1の交差指形電極4を設けた
構造のSAW素子と、同じく光学研磨された光透過性を有
する第2の圧電性基板5の表面に、SAWを発生する第2
の交差指形電極6を設けた構造のSAW素子があり、第1
の圧電性基板3と第2の圧電性基板5は、SAWの伝搬方
向が直交するように、かつ、互いのSAWの伝搬面が平行
になるように隔置されている。このように第1の圧電性
基板3と第2の圧電性基板5を配置することで、入射光
7のS偏光成分8は第1の圧電性基板3上のSAWによっ
て回折され、また入射光7のP偏光成分9は第2の圧電
性基板5上のSAWによって回折されることになる。入射
光7に含まれるS偏光成分8とP偏光成分9の絶対値と
比は、第1の交差指形電極4と第2の交差指形電極6へ
入力する電力に対する回折効率を予め測定しておくこと
で、回折光量から算出することが可能となる。なお、第
1図には、長方形をなす圧電性基板を示してあるが,光
透過性を有する圧電性基板であれば、どのような形状の
ものでもよい。Optically polished first piezoelectric substrate 3 having optical transparency
SAW is generated on the surface of the SAW element having the structure in which the first interdigital finger-shaped electrode 4 for generating SAW is provided on the surface of and the surface of the second piezoelectric substrate 5 which is also optically polished and has a light transmitting property. Second
There is a SAW element having a structure in which the interdigitated electrode 6 of
The piezoelectric substrate 3 and the second piezoelectric substrate 5 are arranged such that the SAW propagation directions are orthogonal to each other and the SAW propagation surfaces are parallel to each other. By arranging the first piezoelectric substrate 3 and the second piezoelectric substrate 5 in this way, the S-polarized component 8 of the incident light 7 is diffracted by the SAW on the first piezoelectric substrate 3 and the incident light The P-polarized component 9 of 7 will be diffracted by the SAW on the second piezoelectric substrate 5. For the absolute value and the ratio of the S-polarized component 8 and the P-polarized component 9 contained in the incident light 7, the diffraction efficiency with respect to the power input to the first interdigital electrode 4 and the second interdigital electrode 6 is measured in advance. It becomes possible to calculate it from the diffracted light amount by setting it in advance. Although a rectangular piezoelectric substrate is shown in FIG. 1, any shape may be used as long as it is a piezoelectric substrate having optical transparency.
この実施例では、第1図に示すように、第1の圧電性
基板3と第2の圧電性基板5のそれぞれ同じ側の面にSA
Wを発生させるようにしたので、両圧電性基板を隔置し
たが、第2の圧電性基板5の反対側の面にSAWを発生さ
せるようにすれば隔置しなくてもよい。In this embodiment, as shown in FIG. 1, the SA is provided on the same side surface of the first piezoelectric substrate 3 and the second piezoelectric substrate 5, respectively.
Since W is generated, the two piezoelectric substrates are separated from each other. However, if the SAW is generated on the opposite surface of the second piezoelectric substrate 5, it is not necessary to separate them.
また、一般的に圧電性基板は高屈折率をもち、そのた
め光の表面反射が大きく、透過した光の強度が大幅に減
少してしまう場合が多い。一例として、後述の実現で使
用したニオブ酸リチウム結晶の屈折率は、常光線屈折率
が2.286、異常光線屈折率が2.200であり、表裏面の反射
による損失で、透過光は入射光の約70%を減衰する。Further, generally, the piezoelectric substrate has a high refractive index, so that the surface reflection of light is large and the intensity of transmitted light is often greatly reduced. As an example, the refractive index of the lithium niobate crystal used in the realization described later is that the ordinary ray refractive index is 2.286, the extraordinary ray refractive index is 2.200, the loss due to the reflection on the front and back surfaces, the transmitted light is about 70 of the incident light. Decay%.
このような場合には、酸化シリコンのような光透過性
をもち、SAWの伝搬に影響を与えることが少ない材料で
圧電性基板の表裏面に光反射防止膜を付けることにより
反射による光減衰をおさえることが可能である。In such a case, by attaching a light reflection prevention film on the front and back surfaces of the piezoelectric substrate with a material that has optical transparency such as silicon oxide and has little effect on the propagation of SAW, the light attenuation due to reflection can be reduced. It can be suppressed.
ここで、SAW素子の偏光選択性を調べた実験について
説明する。Here, an experiment for examining the polarization selectivity of the SAW element will be described.
この実験で用いたSAW素子は圧電性基板としてニオブ
酸リチウム結晶(LiNbO3)のYカット基板を用い、圧電
性基板上の交差指形電極(共振周波数f0=107MHz)はSA
WがZ軸方向へ伝搬する配置にした。光源は波長λがλ
=0.633μmのHe−Neレーザー(ランダム偏光)を使用
して、消光比が10-4以下の特性をもつ偏光子に1回通
し、直線偏光に直してからSAW伝搬平面に対して垂直に
入射した。測定は入射する直線偏光の偏光面の角度を変
え、そのときの回折光量を測る方法をとった。The SAW element used in this experiment uses a lithium niobate crystal (LiNbO 3 ) Y-cut substrate as the piezoelectric substrate, and the interdigital electrode (resonance frequency f 0 = 107 MHz) on the piezoelectric substrate is SA.
It is arranged so that W propagates in the Z-axis direction. The wavelength of the light source is λ
= 0.633μm He-Ne laser (random polarization), once passed through a polarizer with an extinction ratio of 10 -4 or less, converted to linear polarization, and then made incident perpendicular to the SAW propagation plane. did. The measurement was performed by changing the angle of the plane of polarization of the incident linearly polarized light and measuring the amount of diffracted light at that time.
第2図(a)(b)に、入射光の偏光状態とSAW素子
の設置関係を示す。2 (a) and 2 (b) show the polarization state of incident light and the installation relationship of the SAW element.
1は圧電性基板、2は交差指形電極、7は入射光、8
はS偏光成分、9はP偏光成分、X・Y・Zは圧電性基
板の結晶軸である。圧電性基板1の中央部に示してある
格子模様はSAWによる周期的屈折率変化をモデル化して
描いたものである。第2図(a)に示すように、入射光
7が圧電性基板1のSAWによる光回折格子に入射したと
き、該入射光7のS偏光成分だけが回折する。1 is a piezoelectric substrate, 2 is an interdigital electrode, 7 is incident light, 8
Is an S-polarized component, 9 is a P-polarized component, and XYZ are crystal axes of the piezoelectric substrate. The lattice pattern shown in the center of the piezoelectric substrate 1 is drawn by modeling the periodical refractive index change due to SAW. As shown in FIG. 2A, when the incident light 7 is incident on the SAW optical diffraction grating of the piezoelectric substrate 1, only the S-polarized component of the incident light 7 is diffracted.
第3図(a)に、偏光面の回転角度と回折光量の関係
について測定結果を示した。ただし、回折光量は最大値
で規格化してある。図において、HはHorizontal type
を示し、VはVertical typeを示している。この測定結
果はSAW伝搬方向に対して垂直な偏光状態の光が入射し
たときに最も回折光量が多くなることを示している。FIG. 3 (a) shows the measurement results of the relationship between the rotation angle of the polarization plane and the amount of diffracted light. However, the amount of diffracted light is normalized by the maximum value. In the figure, H is Horizontal type
, And V indicates the Vertical type. This measurement result shows that the amount of diffracted light is the largest when the light in the polarization state perpendicular to the SAW propagation direction is incident.
第3図(b)は回折光量が最大になる設定、つまり入
射偏光面をSAW伝搬方向と垂直な状態に設定して、入射
光の偏光状態と回折光の偏光状態の比較を示した。横軸
は回転する検光子の回転角度であり、縦軸は検出した回
折光量を最大値で規格化した値である。図において、実
線は入射光を、点は回折光を示す。FIG. 3 (b) shows a comparison between the polarization state of the incident light and the polarization state of the diffracted light when the amount of diffracted light is set to the maximum, that is, the incident polarization plane is set perpendicular to the SAW propagation direction. The horizontal axis is the rotation angle of the rotating analyzer, and the vertical axis is the value obtained by normalizing the detected diffracted light amount by the maximum value. In the figure, a solid line indicates incident light and a point indicates diffracted light.
以上の測定結果により、この実験で測定したSAW素子
は回折作用において偏光選択性をもち、回折光は入射光
の偏光状態を保持していることが確認された。From the above measurement results, it was confirmed that the SAW element measured in this experiment has polarization selectivity in the diffracting action and the diffracted light retains the polarization state of the incident light.
以上、述べたように、本発明に係る多層型偏光ビーム
スプリッターでは、圧電性基板上に発生したSAWが、偏
光選択性をもつ光回折格子を形成することを実験により
確認し、その性質を利用することで、光の波長に依存し
ない、かつ、偏光分離比が可変である偏光分離素子が実
現でき、そのような素子を2枚組み合わせる構造にする
ことで、入射光に含まれるS偏光成分とP偏光成分を分
離できる偏光分離用光学部品としての多層型偏光ビーム
スプリッターが実現できた。As described above, in the multilayer polarization beam splitter according to the present invention, it was confirmed by experiments that the SAW generated on the piezoelectric substrate forms an optical diffraction grating having polarization selectivity, and the property is utilized. By doing so, it is possible to realize a polarization separation element that does not depend on the wavelength of light and has a variable polarization separation ratio. By combining two such elements, the S polarization component included in the incident light A multilayer polarization beam splitter as a polarization separating optical component capable of separating the P polarization component has been realized.
第1図は本発明に係る多層型偏光ビームスプリッターの
構成の一実施例を示す。第2図(a)(b)は入射光の
偏光状態とSAW素子の設置関係を示す。第3図(a)は
偏光面の回転角度と回折光量の関係を示す。第3図
(b)は入射光の偏光状態と回折光の偏光状態の比較を
示す。 図において、1は圧電性基板、2は交差指形電極、3は
第1の圧電性基板、4は第1の交差指形電極、5は第2
の圧電性基板、6は第2の交差指形電極、7は入射光、
8はS偏光成分、9はP偏光成分をそれぞれ示す。FIG. 1 shows an embodiment of the structure of a multi-layered polarization beam splitter according to the present invention. 2 (a) and 2 (b) show the polarization state of the incident light and the installation relationship of the SAW element. FIG. 3A shows the relationship between the rotation angle of the polarization plane and the amount of diffracted light. FIG. 3B shows a comparison between the polarization state of incident light and the polarization state of diffracted light. In the figure, 1 is a piezoelectric substrate, 2 is an interdigital electrode, 3 is a first piezoelectric substrate, 4 is a first interdigital electrode, and 5 is a second electrode.
Piezoelectric substrate, 6 is a second interdigital electrode, 7 is incident light,
8 indicates an S-polarized component, and 9 indicates a P-polarized component.
Claims (1)
と、該第1の圧電性基板に入射される光のうち所定の偏
りをもつ偏光面を有する光のみを一部、選択的に回折す
るような表面弾性波を、前記第1の圧電性基板上に発生
するように、前記第1の圧電性基板の表面に設けられた
第1の交差指形電極(4)と、前記第1の圧電性基板を
透過した光が入射するように配置された光透過性を有す
る第2の圧電性基板(5)と、該第2の圧電性基板に入
射される光のうち所定の偏りをもつ偏光面を有する光の
みを一部、選択的に回折するような表面弾性波を、前記
第2の圧電性基板上に発生するように、前記第2の圧電
性基板の表面に設けられた第2の交差指形電極(6)と
を備え、透過する光のうちのそれぞれ一部を少なくとも
2つの異なる方向へ回折し分離する多層型偏光ビームス
プリッター。1. A first piezoelectric substrate (3) having optical transparency.
And a surface acoustic wave that selectively diffracts only a part of the light having a polarization plane having a predetermined polarization among the lights incident on the first piezoelectric substrate. As generated above, the first interdigitated electrode (4) provided on the surface of the first piezoelectric substrate and the light transmitted through the first piezoelectric substrate are arranged to enter. And a second piezoelectric substrate (5) having a light-transmitting property, and a part of the light incident on the second piezoelectric substrate, which has a polarization plane with a predetermined polarization, is selectively diffracted. A second interdigital electrode (6) provided on the surface of the second piezoelectric substrate so as to generate such surface acoustic waves on the second piezoelectric substrate. A multi-layered polarization beam splitter that diffracts and splits a portion of each of the rays of light into at least two different directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62290898A JP2553365B2 (en) | 1987-11-18 | 1987-11-18 | Multi-layer polarization beam splitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62290898A JP2553365B2 (en) | 1987-11-18 | 1987-11-18 | Multi-layer polarization beam splitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01133036A JPH01133036A (en) | 1989-05-25 |
JP2553365B2 true JP2553365B2 (en) | 1996-11-13 |
Family
ID=17761934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62290898A Expired - Fee Related JP2553365B2 (en) | 1987-11-18 | 1987-11-18 | Multi-layer polarization beam splitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2553365B2 (en) |
-
1987
- 1987-11-18 JP JP62290898A patent/JP2553365B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01133036A (en) | 1989-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1420275B1 (en) | Isolator and optical attenuator | |
US5329397A (en) | Acousto-optic tunable filter | |
JPS62172203A (en) | Method for measuring relative displacement | |
US3622220A (en) | Holographic optical polarizers and beam splitters | |
US11982906B1 (en) | Polarization-independent diffractive optical structures | |
JP4792679B2 (en) | Isolator and variable voltage attenuator | |
EP0474237B1 (en) | Prism optical device and polarizer using it | |
JP2995985B2 (en) | Depolarizing plate | |
JP2553365B2 (en) | Multi-layer polarization beam splitter | |
JP3541575B2 (en) | Optical head device and composite anisotropic diffraction element used therefor | |
EP0484626A1 (en) | Polarizing beam splitter | |
JP2686941B2 (en) | Polarimeter | |
Liu et al. | Polarization device employing the combination effect of double refraction and diffraction | |
JPH01207723A (en) | Polarized light diffracting element | |
JP2789941B2 (en) | How to use birefringent diffraction grating polarizer | |
JPS61175619A (en) | Orthogonal polarization type optical frequency shifter | |
JPH069089B2 (en) | Light head | |
JPH04276702A (en) | Polarizing beam splitter | |
JPS59180335A (en) | spectrum analyzer | |
JPS61175621A (en) | Orthogonal polarization type optical frequency shifter | |
SU1755237A1 (en) | Polarizing prism | |
JP3533714B2 (en) | Acousto-optic device and method of adjusting polarization characteristics thereof | |
GB2170321A (en) | Optical frequency shifter for heterodyne measurement | |
JPS6132030A (en) | Optical multiplexing method | |
JPS61113038A (en) | Waveguide type opto-acoustic collimator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |