[go: up one dir, main page]

JP2551369B2 - Film thickness measuring method and composition analyzing method of HgCdTe crystal thin film - Google Patents

Film thickness measuring method and composition analyzing method of HgCdTe crystal thin film

Info

Publication number
JP2551369B2
JP2551369B2 JP32250393A JP32250393A JP2551369B2 JP 2551369 B2 JP2551369 B2 JP 2551369B2 JP 32250393 A JP32250393 A JP 32250393A JP 32250393 A JP32250393 A JP 32250393A JP 2551369 B2 JP2551369 B2 JP 2551369B2
Authority
JP
Japan
Prior art keywords
mct
thin film
crystal thin
hgcdte
exp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32250393A
Other languages
Japanese (ja)
Other versions
JPH07174525A (en
Inventor
連也 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP32250393A priority Critical patent/JP2551369B2/en
Publication of JPH07174525A publication Critical patent/JPH07174525A/en
Application granted granted Critical
Publication of JP2551369B2 publication Critical patent/JP2551369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線検出器等に用い
られるHgCdTe結晶薄膜の膜厚測定方法および組成
分析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness measuring method and a composition analyzing method for a HgCdTe crystal thin film used for an infrared detector and the like.

【0002】[0002]

【従来の技術】非破壊でHgCdTe結晶薄膜(以下単
にHgCdTe膜と記す)の膜厚測定方法および組成分
析方法として、赤外透過スペクトルから求める方法が非
常に良く用いられる[アプライド・フィジックス・レタ
ーズ(Applied・Physics・Letter
s52(1988)2151頁)]。この赤外透過法
は、まず膜厚dMCT を赤外透過スペクトルのフリンジの
周期△κを用いてdMCT =1/(2nMCT △κ)より求
める。次に吸収係数αが500cm-1とした時、最大透
過率にexp(−αdMCT )をかけた値に等しい透過率
の波長を求める。この波長のエネルギーはHgCdTe
結晶のバンドギャップに等しいことが実験的にわかって
いる。したがって、ここで得られたバンドギャップの値
から、ジャーナル・オブ・アプライド・フィジックス
(Journal of Applied Physi
cs53(1982)7099頁に報告されている組成
との関係式を用いてHg1-x Cdx Te膜の組成xを求
めるものである。
2. Description of the Related Art As a film thickness measuring method and a composition analyzing method of a non-destructive HgCdTe crystal thin film (hereinafter simply referred to as HgCdTe film), a method obtained from an infrared transmission spectrum is very often used [Applied Physics Letters ( Applied / Physics / Letter
s52 (1988) p. 2151)]. In this infrared transmission method, first, the film thickness d MCT is obtained from d MCT = 1 / (2n MCT Δκ) using the fringe period Δκ of the infrared transmission spectrum. Next, when the absorption coefficient α is set to 500 cm -1 , the wavelength of the transmittance equal to the value obtained by multiplying the maximum transmittance by exp (-αd MCT ) is obtained. The energy of this wavelength is HgCdTe
It is experimentally known that it is equal to the band gap of the crystal. Therefore, from the value of the band gap obtained here, the Journal of Applied Physics (Journal of Applied Physics) is used.
The composition x of the Hg 1-x Cd x Te film is obtained by using the relational expression with the composition reported in cs53 (1982) page 7099.

【0003】[0003]

【発明が解決しようとする課題】赤外透過法では、基板
を取り除いたHgCdTe膜のみを測定するか赤外光に
対して透明な基板を用いたときでないと測定できない。
また、基板が赤外光に対して透明であっても、その面が
鏡面研磨されていないと、赤外光の散乱によりスペクト
ルが変わる。しかし、現在ではCdTe基板以外にもS
i、GaAs、サファイヤ等の様々な基板の上にHgC
dTe膜が成長されており、赤外光を透過しない基板や
裏面が粗面の基板を用いることも多い。その場合は従来
の赤外透過法による組成分析を行うことはできない。そ
れに対して赤外反射スペクトルは基板の影響は少なく、
原理的には赤外透過法と同様に組成分析を行うことがで
きるはずである。しかし、CdTe等のバッファー層を
介したHgCdTe膜成長というのは非常に良く行われ
ているが、この場合の赤外反射スペクトルは図1に示し
たように非常に複雑で、現在までのこの赤外反射スペク
トルから組成を求める方法に関する報告例は皆無であ
る。
In the infrared transmission method, the measurement can be performed only by measuring the HgCdTe film from which the substrate is removed or by using a substrate transparent to infrared light.
Even if the substrate is transparent to infrared light, if its surface is not mirror-polished, the spectrum changes due to the scattering of infrared light. However, at present, in addition to CdTe substrate, S
HgC on various substrates such as i, GaAs, sapphire
A dTe film is grown and a substrate that does not transmit infrared light or a substrate whose back surface is rough is often used. In that case, composition analysis by the conventional infrared transmission method cannot be performed. In contrast, the infrared reflection spectrum is less affected by the substrate,
In principle, compositional analysis should be possible in the same manner as the infrared transmission method. However, HgCdTe film growth via a buffer layer such as CdTe is very well performed, but the infrared reflection spectrum in this case is very complicated as shown in FIG. There are no reports on the method of determining the composition from the external reflection spectrum.

【0004】本発明はこのような従来の事情に鑑みてな
されたもので、バッファー層を介したHgCdTe膜の
膜厚と組成を基板の種類に関係なく非破壊で測定するこ
とのできるHgCdTe結晶薄膜の膜厚測定方法および
組成分析法を提供することを目的とする。
The present invention has been made in view of the above conventional circumstances, and is capable of nondestructively measuring the thickness and composition of a HgCdTe film via a buffer layer regardless of the type of substrate. An object of the present invention is to provide a method for measuring the film thickness and a composition analysis method.

【0005】[0005]

【課題を解決するための手段】第1の発明によるHgC
dTe結晶薄膜の膜厚測定方法は、基板上にバッファー
層を介して成長したHgCdTe(MCT)結晶薄膜の
赤外反射スペクトルによる膜厚測定方法において、Hg
CdTe結晶薄膜の吸収係数が0とみなせる波数範囲で
の最大の振幅が得られる波数κ 1 、最大振幅付近でのフ
リンジの周期△κMCT 、極小振幅の間隔△κB とを求
め、バッファー層とHgCdTe結晶薄膜の波数κ 1
おける屈折率n B ,n MCT を用いて、バッファー層の膜
厚dB とHgCdTe結晶薄膜の膜厚dMCT を次の二
式、 dB =1/(2nB △κB ) dMCT =(1−nB B △κMCT )/(2nMCT △κMCT ) より求めることを特徴とするものである。
[Means for Solving the Problems] HgC according to the first invention
The film thickness measuring method of the dTe crystal thin film is the method of measuring the film thickness of the HgCdTe (MCT) crystal thin film grown on the substrate through the buffer layer by the infrared reflection spectrum.
Wavenumber kappa 1 the maximum amplitude in the wave number range of the absorption coefficient of CdTe crystal thin film can be regarded as 0 is obtained, the fringe period △ kappa MCT near the maximum amplitude, and a distance △ kappa B minimum amplitude calculated, the buffer layer And the wavenumber κ 1 of HgCdTe crystal thin film
Using the refractive indices n B and n MCT in the above, the film thickness d B of the buffer layer and the film thickness d MCT of the HgCdTe crystal thin film can be calculated by the following two equations: d B = 1 / (2n B Δκ B ) d MCT = ( it is characterized in that obtained from 1-n B d B △ κ MCT) / (2n MCT △ κ MCT).

【0006】また、第2の発明のHgCdTe結晶薄膜
の組成分析方法は、基板上にバッファ層を介して成長し
たHgCdTe結晶薄膜の膜厚d MCT を赤外反射スペク
トル法により求めた後、波数κ 1 における最大の振幅A
と、HgCdTe結晶薄膜の吸収係数がある値を持つ波
数範囲での極大の振幅Bとそこでの波数κ 2 を求め、振
幅Bと振幅Aの比Ra(=B/A)を求めるための
式、 Ra=R12223exp(−αdMCT )/[(1−
22)(1−r32)R4252 ] ただし、 R1 =1−r12+r23−r312 =1+r12+r23+r313 =(1−r22)(1−r3 2)+[1−exp(−
2αdMCT )](r2+r324 =1−r12exp(−αdMCT )+r23−r3
1exp(−αdMCT ) R5 =1+r12exp(−αdMCT )+r23+r3
1exp(−αdMCT ) r1 :空気とHgCdTe結晶界面での反射におけるフ
レネルの複素反射係数 r2 :HgCdTeの結晶とバッファー層界面での反射
におけるフレネルの複素反射係数 r3 :バッファー層と基板界面での反射におけるフレネ
ルの複素反射係数 を用いてHgCdTe結晶薄膜の吸収係数αを求め、次
でこのαとHg1-X CdX Teのxとの関係線より組成
xを求めることを特徴とするものである。
Further, the composition analysis method of the HgCdTe crystal thin film of the second invention is such that the HgCdTe crystal thin film is grown on the substrate via the buffer layer.
The film thickness d MCT of the HgCdTe crystal thin film was measured by infrared reflection spectroscopy.
The maximum amplitude A at wave number κ 1 after the Toll method
And a wave with a certain value of absorption coefficient of HgCdTe crystal thin film
Maximum obtain an amplitude B and the wave number kappa 2 in which in a few range, vibration
The following equation for obtaining the ratio Ra (= B / A) of the width B and the amplitude A , Ra = R 12 R 22 R 3 exp (−αd MCT ) / [(1-
r 22 ) (1-r 32 ) R 42 R 52 ] However, R 1 = 1-r 1 r 2 + r 2 r 3 −r 3 r 1 R 2 = 1 + r 1 r 2 + r 2 r 3 + r 3 r 1 R 3 = (1-r 22) (1-r 3 2) + [1-exp (-
2αd MCT )] (r 2 + r 3 ) 2 R 4 = 1-r 1 r 2 exp (-αd MCT ) + r 2 r 3 -r 3
r 1 exp (−αd MCT ) R 5 = 1 + r 1 r 2 exp (−αd MCT ) + r 2 r 3 + r 3
r 1 exp (−αd MCT ) r 1 : complex reflection coefficient of Fresnel in reflection at air and HgCdTe crystal interface r 2 : complex reflection coefficient of Fresnel in reflection at HgCdTe crystal and buffer layer interface r 3 : buffer layer and The absorption coefficient α of the HgCdTe crystal thin film is obtained by using the Fresnel complex reflection coefficient at the reflection at the substrate interface, and then the composition x is obtained from the relation line between this α and Hg 1-X Cd X Te x. It is what

【0007】[0007]

【作用】このような手段を備えた本発明の方法では、ま
ず赤外反射スペクトルより図1に示したパラメータを測
定する。測定する値は、最大振幅での振幅Aとそこでの
波数κ1 、二番目の極大振幅での振幅Bとそこでの波数
κ2 、最大振幅付近でのフリンジの周期△κMCT 、極小
振幅の間隔△κb である。Aとκ1 、△κMCT 、△κb
はHgCdTe膜の吸収係数αがほぼ0とみなせる長波
長側で測定する。なお、図1は横軸は波数κ、縦軸は反
射率Rとして描かれている。
In the method of the present invention equipped with such means, the parameters shown in FIG. 1 are first measured from the infrared reflection spectrum. The values to be measured are the amplitude A at the maximum amplitude and the wave number κ 1 there, the amplitude B at the second maximum amplitude and the wave number κ 2 there, the fringe period Δκ MCT near the maximum amplitude, and the interval between the minimum amplitudes. Δκ b . A and κ 1 , Δκ MCT , Δκ b
Is measured on the long wavelength side where the absorption coefficient α of the HgCdTe film can be considered to be almost zero. In FIG. 1, the horizontal axis is the wave number κ and the vertical axis is the reflectance R.

【0008】次に図2に示した薄膜構造における反射率
を計算する。この薄膜は、HgCdTe膜1、バッファ
ー層2、および基板3からなる。さらにHgCdTe膜
表面は空気4と接している。それぞれの層の複素屈折率
をNsub 、Nb 、NMCT 、NAir とする。これらの屈折
率は複素数で波数κの関数である。また、それぞれの界
面での反射係数(フレネルの複素反射係数)を、空気と
HgCdTe膜界面での反射ではr1 、HgCdTe膜
とバッファー層界面での反射ではr2 、バッファー層と
基板との界面での反射ではr3 と定める。反射係数はそ
の界面を形成する二種類の物質の屈折率より計算するこ
とができ、例えばHgCdTe膜とバッファー層界面で
の反射係数r2 は次式で表される。 r2 =(Nb −NMCT )/(Nb +NMCT ) ここで、HgCdTe膜内での位相遅れ△1 、およびバ
ッファー層内での位相遅れ△2 は、それぞれ△1 =4π
κNMCT MCT 、△2 =4πκNb b と表される。H
gCdTe膜表面に向かって垂直に入射された光に対し
て、全体の反射係数rは式(1)のようになる。 r=[r1 +r2 exp(−i△1 )+r3 exp{−i(△1 +△2 )}+r1 2 3 exp(−i△2 )]/[1+r1 2 exp(−i△1 )+r2 3 exp(−i△2 )+r3 1 exp{−i(△1 +△2 )}]………(1) ただし、iは虚数である。
Next, the reflectance of the thin film structure shown in FIG. 2 will be calculated. This thin film is composed of a HgCdTe film 1, a buffer layer 2, and a substrate 3. Furthermore, the surface of the HgCdTe film is in contact with air 4. Let the complex refractive index of each layer be N sub , N b , N MCT , and N Air . These indices are complex and a function of wavenumber κ. The reflection coefficient at each interface (Fresnel's complex reflection coefficient) is r 1 for reflection at the interface between air and the HgCdTe film, r 2 for reflection at the interface between the HgCdTe film and the buffer layer, and the interface between the buffer layer and the substrate. It is defined as r 3 in the reflection at. The reflection coefficient can be calculated from the refractive indexes of two kinds of substances forming the interface, and for example, the reflection coefficient r 2 at the interface between the HgCdTe film and the buffer layer is represented by the following equation. r 2 = (N b −N MCT ) / (N b + N MCT ), where the phase delay Δ 1 in the HgCdTe film and the phase delay Δ 2 in the buffer layer are Δ 1 = 4π, respectively.
κN MCT d MCT, expressed as △ 2 = 4πκN b d b. H
The total reflection coefficient r for the light vertically incident on the surface of the gCdTe film is as shown in Expression (1). r = [r 1 + r 2 exp (-i △ 1) + r 3 exp {-i (△ 1 + △ 2)} + r 1 r 2 r 3 exp (-i △ 2)] / [1 + r 1 r 2 exp ( -i △ 1) + r 2 r 3 exp (-i △ 2) + r 3 r 1 exp {-i (△ 1 + △ 2)}] ......... (1) where, i is the imaginary number.

【0009】赤外反射スペクトルに現れる反射率Rはこ
の反射係数rにその複素共約をかけたものである。この
計算は非常に複雑であるが、反射係数の虚数項すなわち
位相変化項のみを無視すれば次のように近似できる。ま
ず、HgCdTe膜の吸収係数をα、バッファー層の吸
収係数を0としたとき、HgCdTe膜とバッファー層
の複素屈折率の実数項nMCT 、nb を用いると、反射率
Rは式(2)のように表すことができる。 R=1−(1−r1 2 ){(1−r2 2 )(1−
3 2 )+R6 }/R7 …………(2) ただし、 R6 =(1−exp(−2αdMCT )){(r2 2 +r
3 2 )+2r2 3 cosδ2 } R7 =1+r1 2 2 2 exp(−2αdMCT )+r2
2 3 2 +r3 2 1 2exp(−2αdMCT )+2r
1 2 (1+r3 2 )exp(−αdMCT )cosδ1
+2r2 3 (1+r1 2 )exp(−2αdMCT )c
osδ2 +2r31 exp(−αdMCT )cos(δ
1 +δ2 )+2r1 2 2 3 exp(−αdMCT )c
os(δ1 +δ2 ) δ1 =4πκnMCT MCT δ2 =4πκnb b 吸収係数αを0、mを任意の整数とした場合、式(2)
より反射率Rはδ2 =2mπのとき振幅が極大、δ2
(2m+1)πのとき振幅が極小となる。よって、バッ
ファー層の膜厚db は式(3)より求めることができ
る。 db =1/(2nb △κb )…………………………………………………(3) 次に、HgCdTe膜の膜厚dMCT を求める。バッファ
ー層としてはCdTeもしくはZnを4%ほどドープし
たCdZnTeが用いられる場合がほとんどである。こ
のときnMCT 〉nb となる。また、膜厚もHgCdTe
膜の方が通常厚いことから、δ1 はδ2 より極めて大き
いと仮定するとdMCT は式(4)により求められる。 dMCT =(1−nb b △κMCT )/(2nMCT △κMCT )……………(4) ここで、振幅B(吸収係数がα)と振幅A(吸収係数が
0)の比Ra(=B/A)は式(5)により表される。 Ra=R1 2 2 2 3 exp(−αdMCT )/[(1−r2 2 )(1−r3 2 )R4 2 5 2 ]………………………………………………………………(5) ただし、 R1 =1−r1 2 +r2 3 −r3 12 =1+r1 2 +r2 3 +r3 13 =(1−r2 2 )(1−r3 2 )+[1−exp
(−2αdMCT )](r2+r3 24 =1−r1 2 exp(−αdMCT )+r2 3
3 1 exp(−αdMCT ) R5 =1+r1 2 exp(−αdMCT )+r2 3
3 1 exp(−αdMCT ) ここで、赤外反射スペクトルより求めた振幅Bおよび振
幅Aの比Raを式(5)に代入すると波数κ2 における
吸収係数αが求まる。図3は式(5)より求めたRaと
αdMCT の関係を示すグラフである。吸収係数α、波数
κ、およびHg1-x Cdx Te膜の組成xの関係は、組
成のわかった何種類かのHgCdTe膜の赤外透過スペ
クトルをあらかじめ測定しておくことにより得られる。
また、ジュンハオチュ(Jun hao Chu)等に
よりジャーナル・オブ・アプライド・フィジックス(J
ournal of Applied Physics
71(1992)3955頁に報告されている関係式を
利用して組成を求めることもできる。図4は4種類の波
数κにおける吸収係数αと組成xの関係を示したグラフ
である。
The reflectance R appearing in the infrared reflection spectrum is the reflection coefficient r multiplied by its complex co-reduction. Although this calculation is very complicated, it can be approximated as follows by ignoring only the imaginary term of the reflection coefficient, that is, the phase change term. First, assuming that the absorption coefficient of the HgCdTe film is α and the absorption coefficient of the buffer layer is 0, using the real number terms n MCT and n b of the complex refractive index of the HgCdTe film and the buffer layer, the reflectance R can be calculated by the formula (2). Can be expressed as R = 1- (1-r 1 2) {(1-r 2 2) (1-
r 3 2 ) + R 6 } / R 7 ...... (2) However, R 6 = (1-exp (-2αd MCT )) {(r 2 2 + r
3 2 ) + 2r 2 r 3 cos δ 2 } R 7 = 1 + r 1 2 r 2 2 exp (-2αd MCT ) + r 2
2 r 3 2 + r 3 2 r 1 2 exp (-2αd MCT) + 2r
1 r 2 (1 + r 3 2 ) exp (−αd MCT ) cos δ 1
+ 2r 2 r 3 (1 + r 1 2) exp (-2αd MCT) c
osδ 2 + 2r 3 r 1 exp (−αd MCT ) cos (δ
1 + δ 2 ) + 2r 1 r 2 2 r 3 exp (-αd MCT ) c
os (δ 1 + δ 2) δ 1 = 4πκn MCT d MCT δ 2 = 4πκn b d b absorption coefficient α 0, when m is an arbitrary integer, Equation (2)
Therefore, the reflectance R has a maximum amplitude when δ 2 = 2 mπ, and δ 2 =
The amplitude becomes minimum when (2m + 1) π. Therefore, the film thickness d b of the buffer layer can be obtained from the equation (3). d b = 1 / (2n b Δκ b ) ……………………………………………… (3) Next, the film thickness d MCT of the HgCdTe film is obtained. In most cases, CdTe or CdZnTe doped with Zn of about 4% is used for the buffer layer. At this time, n MCT > n b . In addition, the film thickness is also HgCdTe
Since the film is usually thicker, assuming that δ 1 is much larger than δ 2 , d MCT is given by equation (4). d MCT = (1-n b d b △ κ MCT) / (2n MCT △ κ MCT) ............... (4) where amplitude B (absorption coefficient alpha) and amplitude A (absorption coefficient 0) The ratio Ra (= B / A) of is expressed by equation (5). Ra = R 1 2 R 2 2 R 3 exp (-αd MCT ) / [(1-r 2 2 ) (1-r 3 2 ) R 4 2 R 5 2 ] …………………………………… …………………………………… (5) However, R 1 = 1-r 1 r 2 + r 2 r 3 −r 3 r 1 R 2 = 1 + r 1 r 2 + r 2 r 3 + r 3 r 1 R 3 = (1-r 2 2 ) (1-r 3 2 ) + [1-exp
(−2αd MCT )] (r 2 + r 3 ) 2 R 4 = 1−r 1 r 2 exp (−αd MCT ) + r 2 r 3
r 3 r 1 exp (−αd MCT ) R 5 = 1 + r 1 r 2 exp (−αd MCT ) + r 2 r 3 +
r 3 r 1 exp (−αd MCT ) Here, when the ratio Ra of the amplitude B and the amplitude A obtained from the infrared reflection spectrum is substituted into the equation (5), the absorption coefficient α at the wave number κ 2 is obtained. FIG. 3 is a graph showing the relationship between Ra and αd MCT obtained from equation (5). The relationship between the absorption coefficient α, the wave number κ, and the composition x of the Hg 1-x Cd x Te film can be obtained by measuring the infrared transmission spectra of several types of HgCdTe films whose compositions are known.
In addition, the journal of applied physics (J
individual of Applied Physics
71 (1992) p. 3955 can be utilized to determine the composition. FIG. 4 is a graph showing the relationship between the absorption coefficient α and the composition x at four types of wave numbers κ.

【0010】なお、バッファー層の無い場合は二番目の
極大振幅は存在しないのでα≠0のところの任意の振幅
をBとして求めれば良い。
If there is no buffer layer, the second maximum amplitude does not exist. Therefore, an arbitrary amplitude at α ≠ 0 may be obtained as B.

【0011】[0011]

【実施例】次に本発明を図面を用いて説明する。まず第
1の実施例として膜厚測定方法について説明する。
The present invention will be described below with reference to the drawings. First, a film thickness measuring method will be described as a first embodiment.

【0012】図2に示すように、Si基板1上にCdT
eのバッファー層2を介して分子線エピタキシー法によ
りHgCdTe膜を成長する。また、成長時に基板上を
部分的にマスクすることにより、未成長部分、すなわち
バッファー層2のみの領域を形成した。これは膜厚の信
頼性を段差計より評価するためのものである。Si基板
1は低抵抗率の基板を用いたため、赤外光に対して不透
明で、赤外透過法による組成の測定はできない。空気、
HgCdTe、CdTe、Siの屈折率はそれぞれ、n
AIR =1.00、nMCT =3.55、nb =2.68、
si=3.44である。屈折率の波数依存性はここでは
考慮されていない。
As shown in FIG. 2, CdT is formed on the Si substrate 1.
The HgCdTe film is grown by the molecular beam epitaxy method via the buffer layer 2 of e. Further, by partially masking the substrate during the growth, an ungrown portion, that is, a region of only the buffer layer 2 was formed. This is for evaluating the reliability of the film thickness with a step gauge. Since the Si substrate 1 is a substrate having a low resistivity, it is opaque to infrared light and its composition cannot be measured by the infrared transmission method. air,
The refractive indices of HgCdTe, CdTe, and Si are n.
AIR = 1.00, n MCT = 3.55, n b = 2.68,
n si = 3.44. The wavenumber dependence of the refractive index is not considered here.

【0013】赤外反射スペクトルをフーリエ変換赤外分
光装置により測定した。その結果を図1に示す。測定波
数は400〜4000cm-1である。本実施例におい
て、図1の赤外反射スペクトルより得られた測定値は次
の通りであった。A=0.4120、κ1 =1040c
-1、B=0.0466、κ2 =1730cm-1、△κ
MCT =150cm-1、△κb =684cm-1。なお、κ
1 の値は測定波数付近での屈折率は一定と仮定したた
め、本実施例では用いていない。これらの値を式
(3)、(4)に代入して、バッファー層2の膜厚db
=2.73μm、HgCdTe膜1の膜厚dMCT =8.
36μmを得た。段差計による膜厚値はそれぞれ2.6
μm、8.5μmであり、測定誤差やマスクによる成長
時の分子線の散乱を考慮するとほぼ妥当な値が得られ
た。
The infrared reflection spectrum was measured by a Fourier transform infrared spectroscope. The result is shown in FIG. The measurement wave number is 400 to 4000 cm −1 . In this example, the measured values obtained from the infrared reflection spectrum of FIG. 1 were as follows. A = 0.4120, κ 1 = 1040c
m -1 , B = 0.0466, κ 2 = 1730 cm -1 , Δκ
MCT = 150 cm −1 , Δκ b = 684 cm −1 . Note that κ
The value of 1 is not used in this example because it is assumed that the refractive index near the measured wave number is constant. Substituting these values into the equations (3) and (4), the film thickness d b of the buffer layer 2
= 2.73 μm, the film thickness of the HgCdTe film 1 d MCT = 8.
36 μm was obtained. The film thickness value by the step gauge is 2.6 each
The values were μm and 8.5 μm, which were almost reasonable values in consideration of the measurement error and the scattering of the molecular beam during growth due to the mask.

【0014】次に第2の実施例として組成分析方法につ
いて説明する。まず第1の実施例における測定値を用い
振幅Bと振幅Aの比Ra=0.1131を式(5)に代
入し吸収係数αの値として2607cm-1を得た(αd
MCT =2.18)。この値は図4における波数κ2 =1
730cm-1においてはCd組成xが0.229に相当
する。以上の手順によりHg1-x Cdx Te膜1のCd
組成値xの値を求めることができた。なお、他の元素の
組成値は、化学量論性が成り立つとして一義的に決定す
ることができる。ここで得られた組成値を電子プローブ
微小分析法(EPMA)による組成分析により評価を行
った。その結果、HgCdTe膜1のCd組成値xは
0.230であり、本実施例の方法で得られた値と誤差
の範囲内で一致した。
Next, a composition analysis method will be described as a second embodiment. First, using the measured value in the first embodiment, the ratio Ra = 0.1131 of the amplitude B and the amplitude A was substituted into the equation (5) to obtain 2607 cm −1 as the value of the absorption coefficient α (αd
MCT = 2.18). This value is the wave number κ 2 = 1 in FIG.
At 730 cm -1 , the Cd composition x corresponds to 0.229. The Cd of the Hg 1-x Cd x Te film 1 is
The value of the composition value x could be obtained. The composition values of other elements can be uniquely determined assuming that stoichiometry holds. The composition values obtained here were evaluated by composition analysis by electron probe microanalysis (EPMA). As a result, the Cd composition value x of the HgCdTe film 1 was 0.230, which was in agreement with the value obtained by the method of this example within the error range.

【0015】上述した第1及び第2の実施例により求め
られた、膜厚、組成値と他の評価方法により得られた値
を表1に示す。表1より本実施例の信頼性が高いことが
証明される。
Table 1 shows the film thickness, the composition value, and the values obtained by other evaluation methods, which were obtained by the above-mentioned first and second embodiments. Table 1 proves that the reliability of this embodiment is high.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】以上説明したように本発明の方法によれ
ば、基板の種類によらずバッファー層付きのHgCdT
e結晶薄膜の膜厚および組成を、非破壊で簡単に測定す
ることができる。このため赤外線検出器の受光波長を精
度良く決めることができる。
As described above, according to the method of the present invention, HgCdT with a buffer layer is used regardless of the type of substrate.
The film thickness and composition of the e-crystal thin film can be easily measured nondestructively. Therefore, the light receiving wavelength of the infrared detector can be accurately determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】バッファー層を介したHgCdTe膜の赤外反
射スペクトルを示す図。
FIG. 1 is a diagram showing an infrared reflection spectrum of a HgCdTe film via a buffer layer.

【図2】実施例に用いた試料の構成を示す断面図。FIG. 2 is a cross-sectional view showing the structure of a sample used in an example.

【図3】RaとαdMCT の関係を示す図。FIG. 3 is a diagram showing a relationship between Ra and αd MCT .

【図4】4種類の波数κにおける吸収係数αと組成xの
関係を示す図。
FIG. 4 is a diagram showing the relationship between absorption coefficient α and composition x at four types of wave numbers κ.

【符号の説明】[Explanation of symbols]

1 HgCdTe膜 2 バッファー層 3 Si基板 4 空気 1 HgCdTe film 2 Buffer layer 3 Si substrate 4 Air

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上にバッファー層を介して成長したH
gCdTe(MCT)結晶薄膜の赤外反射スペクトルに
よる膜厚測定方法において、HgCdTe結晶薄膜の吸
収係数が0とみなせる波数範囲での最大の振幅が得られ
る波数κ 1 、最大振幅付近でのフリンジの周期△κ
MCT 、極小振幅の間隔△κB とを求め、バッファー層と
HgCdTe結晶薄膜の波数κ 1 における屈折率n B
MCT を用いて、バッファー層の膜厚dB とHgCdT
e結晶薄膜の膜厚dMCT を次の二式、 dB =1/(2nB △κB ) dMCT =(1−nB B △κMCT )/(2nMCT △κMCT ) より求めることを特徴とするHgCdTe結晶薄膜の膜
厚測定方法。
1. H grown on a substrate through a buffer layer
In the film thickness measurement method by infrared reflection spectrum of the gCdTe (MCT) crystal thin film, the maximum amplitude in the wave number range where the absorption coefficient of the HgCdTe crystal thin film can be regarded as 0 is obtained.
That the wave number κ 1, the period of the fringe in the vicinity of the maximum amplitude △ κ
The MCT and the interval Δκ B of the minimum amplitude are obtained, and the refractive index n B of the buffer layer and the HgCdTe crystal thin film at the wave number κ 1 ,
with n MCT, the thickness of the buffer layer d B and HgCdT
The film thickness d MCT of the e crystal thin film is calculated by the following two equations: d B = 1 / (2n B Δκ B ) d MCT = (1−n B dB B Δκ MCT ) / (2n MCT Δκ MCT ) A method for measuring a film thickness of a HgCdTe crystal thin film, comprising:
【請求項2】基板上にバッファ層を介して成長したHg
CdTe結晶薄膜の膜厚dMCT を赤外反射スペクトル法
により求めた後、波数κ 1 における最大の振幅Aと、H
gCdTe結晶薄膜の吸収係数がある値を持つ波数範囲
での極大の振幅Bとそこでの波数κ 2 を求め、振幅Bと
振幅Aの比Ra(=B/A)を求めるための次式、 Ra=R12223exp(−αdMCT )/[(1−
22)(1−r32)R4252 ] ただし、 R1 =1−r12+r23−r312 =1+r12+r23+r313 =(1−r22)(1−r3 2)+[1−exp(−
2αdMCT )](r2+r324 =1−r12exp(−αdMCT )+r23−r3
1exp(−αdMCT ) R5 =1+r12exp(−αdMCT )+r23+r3
1exp(−αdMCT ) r1 :空気とHgCdTe結晶界面での反射におけるフ
レネルの複素反射係数 r2 :HgCdTeの結晶とバッファー層界面での反射
におけるフレネルの複素反射係数 r3 :バッファー層と基板界面での反射におけるフレネ
ルの複素反射係数 を用いてHgCdTe結晶薄膜の吸収係数αを求め、次
でこのαとHg1-X CdX Teのxとの関係線より組成
xを求めることを特徴とするHgCdTe結晶薄膜の組
成分析方法。
2. Hg grown on a substrate via a buffer layer
After obtaining the film thickness d MCT of the CdTe crystal thin film by the infrared reflection spectrum method, the maximum amplitude A at the wave number κ 1 and H
Wavenumber range where the absorption coefficient of gCdTe crystal thin film has a certain value
The maximum amplitude B at and the wave number κ 2 at
The following expression for obtaining the ratio Ra (= B / A) of the amplitude A , Ra = R 12 R 22 R 3 exp (−αd MCT ) / [(1-
r 22 ) (1-r 32 ) R 42 R 52 ] However, R 1 = 1-r 1 r 2 + r 2 r 3 −r 3 r 1 R 2 = 1 + r 1 r 2 + r 2 r 3 + r 3 r 1 R 3 = (1-r 22) (1-r 3 2) + [1-exp (-
2αd MCT )] (r 2 + r 3 ) 2 R 4 = 1-r 1 r 2 exp (-αd MCT ) + r 2 r 3 -r 3
r 1 exp (−αd MCT ) R 5 = 1 + r 1 r 2 exp (−αd MCT ) + r 2 r 3 + r 3
r 1 exp (−αd MCT ) r 1 : complex reflection coefficient of Fresnel in reflection at the interface between air and HgCdTe crystal r 2 : complex reflection coefficient of Fresnel in reflection at interface between HgCdTe crystal and buffer layer r 3 : buffer layer and The absorption coefficient α of the HgCdTe crystal thin film is obtained using the Fresnel complex reflection coefficient at the reflection at the substrate interface, and then the composition x is obtained from the relation line between this α and Hg 1-X Cd X Te x A method for analyzing the composition of a HgCdTe crystal thin film.
JP32250393A 1993-12-21 1993-12-21 Film thickness measuring method and composition analyzing method of HgCdTe crystal thin film Expired - Lifetime JP2551369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32250393A JP2551369B2 (en) 1993-12-21 1993-12-21 Film thickness measuring method and composition analyzing method of HgCdTe crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32250393A JP2551369B2 (en) 1993-12-21 1993-12-21 Film thickness measuring method and composition analyzing method of HgCdTe crystal thin film

Publications (2)

Publication Number Publication Date
JPH07174525A JPH07174525A (en) 1995-07-14
JP2551369B2 true JP2551369B2 (en) 1996-11-06

Family

ID=18144381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32250393A Expired - Lifetime JP2551369B2 (en) 1993-12-21 1993-12-21 Film thickness measuring method and composition analyzing method of HgCdTe crystal thin film

Country Status (1)

Country Link
JP (1) JP2551369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482150B (en) * 2023-06-25 2023-09-12 浙江珏芯微电子有限公司 Tellurium-cadmium-mercury doping activation rate evaluation method

Also Published As

Publication number Publication date
JPH07174525A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
JPH0252205A (en) Film thickness measuring method
US5683180A (en) Method for temperature measurement of semiconducting substrates having optically opaque overlayers
US20230304788A1 (en) Method for measuring thickness and optical properties of multi-layer film
IE45575L (en) Scale for calibrating electron beam instruments
JPH10223715A (en) Measuring method for epitaxial film thickness of multilayer epitaxial wafer
JP2551369B2 (en) Film thickness measuring method and composition analyzing method of HgCdTe crystal thin film
Corl et al. Thickness measurement of silicon dioxide layers by ultraviolet-visible interference method
Johnson et al. Effect of substrate thickness, back surface texture, reflectivity, and thin film interference on optical band-gap thermometry
Kim et al. An evaluation of errors in determining the refractive index and thickness of thin SiO2 films using a rotating analyzer ellipsometer
Roth et al. In situ substrate temperature measurement during MBE by band-edge reflection spectroscopy
Arakawa et al. Optical properties of metals by spectroscopic ellipsometry
Donecker et al. Optical determination of the composition of bulk SiGe monocrystals
Boher et al. Spectroscopic ellipsometry for Si (1− x) Gex characterization: comparison with other experimental techniques
JPS61200407A (en) Fourier transform infrared film thickness measurement method
Luttmann et al. Optical properties of Cd1− x Mg x Te epitaxial layers: A variable‐angle spectroscopic ellipsometry study
JP2890588B2 (en) Method of measuring film thickness
Lee et al. Characterization of Si Epitaxial Layer grown on highly-doped Si substrate by using THz reflection spectroscopy
JPH0763524A (en) Thin film evaluation method and evaluation apparatus
JPH10206354A (en) Method for measuring density of thin film
US4128338A (en) Modified optical transmission technique for characterizing epitaxial layers
Hazelwood Derivation of optical constants from transmission measurements alone—applied to MoSe2
JPS6179142A (en) Infrared absorption analysis
US20250102292A1 (en) Device and method for measuring thickness
JPH0296639A (en) Method and jig for measuring infrared absorption spectrum
DeLuisi Disparities in the determination of atmospheric ozone from solar ultraviolet transmission measurements 298.1‐319.5 nm

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960702