JP2548979B2 - Liquid crystal display - Google Patents
Liquid crystal displayInfo
- Publication number
- JP2548979B2 JP2548979B2 JP63329390A JP32939088A JP2548979B2 JP 2548979 B2 JP2548979 B2 JP 2548979B2 JP 63329390 A JP63329390 A JP 63329390A JP 32939088 A JP32939088 A JP 32939088A JP 2548979 B2 JP2548979 B2 JP 2548979B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- display
- voltage
- alignment
- alignment film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1393—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Description
【発明の詳細な説明】 〔概要〕 薄膜トランジスタ等のスイッチング素子を画素対応に
設けたアクティブマトリクス型の液晶表示装置に関し、 視角特性を改善することを目的とし、 対向配置した透明基板と、該透明基板上に形成した表
示用電極と、少なくとも該表示用電極上に形成した配向
膜と、該配向膜により分子配向が制御された液晶と、前
記表示用電極間に表示用の電圧を印加する為のスイッチ
ング素子とを有する液晶表示装置に於いて、前記液晶
は、負の誘電率異方性を有し、且つ該液晶の屈折率異方
性Δnと、該液晶を注入するギャップ長dとの積を、Δ
n・d=(m+1/2)×(0.5〜0.6)(但し、mは整
数)とし、前記配向膜は、前記液晶の分子配向を、電圧
無印加時に少なくとも前記表示電極上に於いて垂直配向
状態とし、電圧印加時に水平一方向の配向状態に変化さ
せる構成とした。The present invention relates to an active matrix type liquid crystal display device in which switching elements such as thin film transistors are provided corresponding to pixels, and a transparent substrate and a transparent substrate which are opposed to each other for the purpose of improving viewing angle characteristics. A display electrode formed on the display electrode, an alignment film formed on at least the display electrode, a liquid crystal whose molecular orientation is controlled by the alignment film, and a display voltage for applying a display voltage between the display electrodes. In a liquid crystal display device having a switching element, the liquid crystal has a negative dielectric anisotropy, and a product of a refractive index anisotropy Δn of the liquid crystal and a gap length d for injecting the liquid crystal. Is Δ
n · d = (m + 1/2) × (0.5 to 0.6) (where m is an integer), and the alignment film aligns the molecular alignment of the liquid crystal vertically at least on the display electrode when no voltage is applied. In this state, when the voltage is applied, the orientation is changed to one horizontal direction.
本発明は、薄膜トランジスタ等のスイッチング素子を
画素対応に設けたアクティブマトリクス型の液晶表示装
置に関するものである。The present invention relates to an active matrix type liquid crystal display device provided with switching elements such as thin film transistors corresponding to pixels.
画素対応に薄膜トランジスタ(TFT)等のスイッチン
グ素子を設けたアクティブマトリクス型の液晶表示装置
は、任意の画素を任意の印加電圧で選択駆動できるか
ら、高表示品質が得られる利点がある。更に、カラーフ
ィルタを設けることにより、容易にフルカラー化が可能
となり、小型のカラーテレビジョンに適用されている。
しかし、視角特性が充分でないので、その改善が要望さ
れている。An active matrix type liquid crystal display device provided with a switching element such as a thin film transistor (TFT) corresponding to a pixel has an advantage that high display quality can be obtained because an arbitrary pixel can be selectively driven by an applied voltage. Further, by providing a color filter, full color can be easily realized, and it is applied to a small color television.
However, since the viewing angle characteristic is not sufficient, its improvement is desired.
従来例の液晶表示装置に於いては、TN(ツイステッド
・ネマチック)液晶が比較的多く使用されている。この
ような液晶表示装置に於いては、例えば、第9図に示す
ように、対向配置した基板の中の下基板の配向膜を実線
矢印の方向にラビングした場合、それと直交するよう
に、上基板の配向膜を点線矢印方向にラビングして、液
晶の分子配向を90度ツイストさせ、両側に配置する偏光
板の偏光軸を二重実線矢印と二重点線矢印で示すように
直交して配置するものである。このような直交ニコルの
場合はノーマリホワイトとなる。又偏光軸を平行に配置
する平行ニコルの場合はノーマリブラックとなる。In the conventional liquid crystal display device, TN (twisted nematic) liquid crystal is used relatively often. In such a liquid crystal display device, for example, as shown in FIG. 9, when the alignment film of the lower substrate among the substrates arranged to face each other is rubbed in the direction of the solid line arrow, the alignment film is aligned so as to be orthogonal to it. The alignment film of the substrate is rubbed in the direction of the dotted arrow to twist the molecular orientation of the liquid crystal by 90 degrees, and the polarization axes of the polarizing plates placed on both sides are arranged orthogonally as indicated by the double solid arrow and double dotted arrow. To do. In the case of such a crossed Nicol, it is normally white. In the case of parallel Nicols in which the polarization axes are arranged in parallel, normally black is obtained.
平行ニコルの場合の液晶の屈折率異方性Δnとこの液
晶を封入するギャップ長dとの積、Δn・dにより透過
率が異なるものとなり、例えば、第10図に示す特性とな
る。即ち、Δn・d≒0.5,1.0,1.5・・・の条件に於い
て透過率が最小となるが、Δn・dの値が大きくなるに
従って視角特性及び応答特性が劣ることになる。従っ
て、通常は、Δn・d≒0.5となるようにギャップ長d
を選択することになる。その場合の視角特性を第11図に
示す。即ち、左右方向の視角特性は点線曲線で示すよう
に中心から±20度の位置に於いてコントラストが70%程
度以下に低下し、上下方向の視角特性は実線曲線で示す
ように、左右方向の視角特性に比較して更に低いものと
なる。The transmittance differs depending on the product of the refractive index anisotropy Δn of the liquid crystal in the case of parallel Nicols and the gap length d that encloses this liquid crystal, Δn · d, and has the characteristics shown in FIG. 10, for example. That is, the transmittance becomes minimum under the condition of Δn · d≈0.5, 1.0, 1.5, ... However, as the value of Δn · d increases, the viewing angle characteristic and the response characteristic deteriorate. Therefore, normally, the gap length d is set so that Δn · d≈0.5.
Will be selected. The viewing angle characteristics in that case are shown in FIG. That is, as shown by the dotted line curve, the horizontal viewing angle characteristic shows that the contrast decreases to about 70% or less at the position of ± 20 degrees from the center, and the vertical viewing angle characteristic shows the horizontal direction as shown by the solid line curve. It is even lower than the viewing angle characteristic.
この場合、Δn・dを0.5以下にすれば、視角特性は
第11図に示す場合より改善されるが、第10図からも判る
ように、透過率特性が低下し、所望のコントラストが得
られないものとなり、又白黒表示の場合に色付表示とな
る場合が生じる。In this case, if Δn · d is set to 0.5 or less, the viewing angle characteristics are improved as compared with the case shown in FIG. 11, but as can be seen from FIG. 10, the transmittance characteristics are lowered and the desired contrast is obtained. There may be no display, and in the case of black and white display, color display may occur.
更に小さいΔn・dにより白黒表示を可能とする液晶
モードとして、強誘電性液晶が知られている。例えば、
第12図に示す複屈折型の場合、基板61,62に形成した電
極63,64間に液晶68を封入し、両側に偏光板65,66を配置
して、電極63,64間に表示用電圧67を印加するものであ
り、複屈折効果により常光と異常光とが干渉し、表示用
電圧を電極63,64間に印加して分子の配向方向を変化さ
せると干渉条件が変わり、白黒の表示を行わせることが
できる。Ferroelectric liquid crystal is known as a liquid crystal mode that enables monochrome display with a smaller Δn · d. For example,
In the case of the birefringence type shown in FIG. 12, the liquid crystal 68 is enclosed between the electrodes 63 and 64 formed on the substrates 61 and 62, and the polarizing plates 65 and 66 are arranged on both sides to display between the electrodes 63 and 64. A voltage 67 is applied.Ordinary light and extraordinary light interfere with each other due to the birefringence effect, and when the display voltage is applied between the electrodes 63 and 64 to change the orientation direction of the molecules, the interference condition changes, resulting in black and white. Display can be performed.
又液晶68の分子配向を右側に示すように出射側の偏光
板65の偏光軸方向(実線矢印)とし、入射側の偏光板66
の偏光軸方向(点線矢印)とすると、表示用電圧67を印
加しない時は暗状態となり、表示用電圧67を印加して液
晶分子の配向方向を変化させると、明状態となる。In addition, the molecular orientation of the liquid crystal 68 is set to the polarization axis direction (solid arrow) of the polarizing plate 65 on the outgoing side as shown on the right side, and the polarizing plate 66 on the incoming side is used.
When the display voltage 67 is not applied, a dark state is obtained when the polarization axis direction of (1) is indicated (dotted arrow), and when the display voltage 67 is applied to change the alignment direction of the liquid crystal molecules, a bright state is obtained.
又第13図に示すゲストホスト型の場合は、基板71,72
に形成した電極73,74間に2色性の色素を混合した液晶7
7を封入し、基板71の外側に偏光板75を配置し、電極73,
74間に表示用電圧76を印加するものであり、その場合の
液晶77は、液晶分子77aと色素分子77bとからなり、この
色素分子77bは、右側に示すように、液晶分子77aに平行
に配向する性質があり、電界印加により液晶分子77aの
配向を変化させると、色素分子77bの配向方向も変化
し、色素分子77bの配向方向によって着色したりしなか
ったりすることになるから、表示用電圧76の印加により
表示を行うことができる。In the case of the guest host type shown in FIG. 13, the substrates 71, 72
Liquid crystal 7 in which dichroic dye is mixed between electrodes 73 and 74 formed on
7, the polarizing plate 75 is arranged outside the substrate 71, the electrodes 73,
A display voltage 76 is applied between 74, and the liquid crystal 77 in that case is composed of liquid crystal molecules 77a and dye molecules 77b, and the dye molecules 77b are parallel to the liquid crystal molecules 77a as shown on the right side. It has an orientation property, and when the orientation of the liquid crystal molecule 77a is changed by applying an electric field, the orientation direction of the dye molecule 77b also changes, and it may or may not be colored depending on the orientation direction of the dye molecule 77b. Display can be performed by applying a voltage 76.
又偏光板75の偏光軸を実線矢印方向とした時に、表示
用電圧76を印加しない場合は暗状態となり、表示用電圧
76を印加して液晶77の分子配向方向を変化させると、明
状態となる。When the polarization axis of the polarizing plate 75 is set in the direction of the solid line arrow, if the display voltage 76 is not applied, a dark state occurs and the display voltage is
When 76 is applied to change the molecular orientation direction of the liquid crystal 77, a bright state is obtained.
前述のように、従来例のTN液晶を用いた液晶表示装置
は、Δn・dを小さくして視角特性を改善しようとして
も、透過率特性が低下するから、0.5以下に小さくする
ことは困難である。As described above, in the liquid crystal display device using the TN liquid crystal of the conventional example, even if an attempt is made to reduce Δn · d to improve the viewing angle characteristic, the transmittance characteristic is deteriorated, so it is difficult to reduce the value to 0.5 or less. is there.
又第12図及び第13図に示す強誘電性液晶を用いた従来
例に於いては、視角特性が優れているものの、双安定状
態を利用して表示を行う為、階調表示が困難であり、更
に機械的な衝撃に弱く、安定な表示が困難であるという
欠点がある。Further, in the conventional example using the ferroelectric liquid crystal shown in FIG. 12 and FIG. 13, although the viewing angle characteristic is excellent, since the display is performed by utilizing the bistable state, it is difficult to display gradation. However, it has a drawback that it is weak against mechanical shock and stable display is difficult.
本発明は、視角特性を改善することを目的とするもの
である。The present invention aims to improve the viewing angle characteristics.
本発明の液晶表示装置は、TFT等のスイッチング素子
を設けたアクティブマトリクス型の液晶表示装置であ
り、第1図を参照して説明する。The liquid crystal display device of the present invention is an active matrix liquid crystal display device provided with a switching element such as a TFT, and will be described with reference to FIG.
対向配置した透明基板1,2と、この透明基板1,2上に形
成した表示用電極3,4と、少なくとも表示用電極3,4上に
形成した配向膜5,6と、この配向膜5,6により分子配向が
制御される液晶7と、表示用電極3,4間に表示用の電圧
を印加する為のTFT等のスイッチング素子8とを有する
液晶表示装置に於いて、液晶7は、負の誘電率異方性を
有し、この液晶7の屈折率異方性Δnと、この液晶7を
注入するギャップ長dとの積を、Δn・d=(m+1/
2)×(0.5〜0.6)とし、配向膜5,6は、液晶7の分子配
向を、電圧無印加時に少なくとも表示電極3,4上に於い
て垂直配向状態とし、電圧印加時に水平一方向の配向状
態に変化させる構成とし、且つ、電圧印加時の前記液晶
7の分子配向方向に対してほぼ45度の偏光軸を有する偏
光板(図示を省略)を、透明基板1,2に設けたものであ
る。The transparent substrates 1 and 2 facing each other, the display electrodes 3 and 4 formed on the transparent substrates 1 and 2, the alignment films 5 and 6 formed on at least the display electrodes 3 and 4, and the alignment film 5 In a liquid crystal display device having a liquid crystal 7 whose molecular orientation is controlled by the electrodes 6 and 6, and a switching element 8 such as a TFT for applying a display voltage between the display electrodes 3 and 4, the liquid crystal 7 is It has a negative dielectric anisotropy, and the product of the refractive index anisotropy Δn of this liquid crystal 7 and the gap length d into which this liquid crystal 7 is injected is Δn · d = (m + 1 /
2) × (0.5 to 0.6), and the alignment films 5 and 6 make the molecular alignment of the liquid crystal 7 in a vertical alignment state at least on the display electrodes 3 and 4 when no voltage is applied, and when the voltage is applied, the alignment film is aligned in one horizontal direction. A structure in which transparent plates 1 and 2 are provided with a polarizing plate (not shown) having a configuration of changing to an alignment state and having a polarization axis of approximately 45 degrees with respect to the molecular alignment direction of the liquid crystal 7 when a voltage is applied. Is.
第1図に於ける液晶の分子は誇大化して示すものであ
り、表示用電極3,4間に印加する表示用の電圧Vを0と
した時(電圧無印加時)に、配向膜5,6により、液晶7
は左側に示すように垂直配向状態となっており、表示用
の電圧VをV1とすることにより、中央部に示すように一
部の液晶7は水平一方向に回転し、更に表示用の電圧V
を高くしてV2(>V1)とすることにより、右側に示すよ
うに電極3,4間の液晶は殆ど水平一方向に回転する。即
ち、表示用電圧に対応して液晶配向状態が連続的に変化
するから階調表示が可能となる。The molecules of the liquid crystal in FIG. 1 are shown in an exaggerated form, and when the display voltage V applied between the display electrodes 3 and 4 is set to 0 (no voltage is applied), the alignment film 5, 6, liquid crystal 7
Is in a vertical alignment state as shown on the left side, and by setting the display voltage V to V 1 , a part of the liquid crystal 7 is rotated in one horizontal direction as shown at the center, and Voltage V
By increasing the value to V 2 (> V 1 ), the liquid crystal between the electrodes 3 and 4 rotates almost in one horizontal direction as shown on the right side. That is, since the liquid crystal alignment state changes continuously according to the display voltage, gradation display is possible.
又液晶7を垂直配向状態とし、表示用電圧Vを印加す
ることにより、水平面内の一方向に配向方向が変化する
ようにし、偏光板の偏光軸をこの一方向に対して45度傾
斜させ、且つ直交ニコルとした場合、透過光強度Iが I=I0sin2(π・Δn′・d/λ) となる。ここで、Δn′は液晶分子の変形の程度に応じ
て最大のΔn(液晶分子本来の屈折率異方性)まで変化
する実効的な屈折率異方性であり、λは光の波長であ
る。従って、液晶分子が完全に水平方向に変化した場合
にΔn′→Δnとなり、この時の透過率を最大とするよ
うに、ギャップ長dを選定すれば、即ち、mを任意の整
数、λを光の波長として、Δn・d=〔(1/2)+m〕
λとすれば良いことになり、表示用電圧印加により白と
なる。又平行ニコルとすれば、表示用電圧印加により黒
となる。又m=0とすると、Δn・d=λ/2となるか
ら、従来例のTN液晶を用いた場合の最小値のΔn・d=
λに比較して、1/2とすることができる。Further, the liquid crystal 7 is vertically aligned, and by applying the display voltage V, the alignment direction is changed in one direction in the horizontal plane, and the polarization axis of the polarizing plate is inclined by 45 degrees with respect to this one direction. Further, when the crossed Nicols are used, the transmitted light intensity I becomes I = I 0 sin 2 (π · Δn ′ · d / λ). Here, Δn ′ is the effective refractive index anisotropy that changes to the maximum Δn (the original refractive index anisotropy of the liquid crystal molecules) according to the degree of deformation of the liquid crystal molecules, and λ is the wavelength of light. . Therefore, when the liquid crystal molecules change completely in the horizontal direction, Δn ′ → Δn, and the gap length d is selected so that the transmittance at this time is maximized. That is, m is an arbitrary integer, λ As the wavelength of light, Δn · d = [(1/2) + m]
If λ is set, white is produced by applying the display voltage. If parallel Nicols are used, black is produced by applying a display voltage. Further, when m = 0, Δn · d = λ / 2, and therefore Δn · d = the minimum value when the conventional TN liquid crystal is used.
It can be halved compared to λ.
又視角特性は、Δn・dを小さくするに従って改善さ
れるものであり、前述のようにΔn・dを従来例に比較
して1/2とすることにより、視角特性を改善することが
できる。Further, the viewing angle characteristics are improved as Δn · d is decreased. As described above, the viewing angle characteristics can be improved by reducing Δn · d to 1/2 as compared with the conventional example.
以下図面を参照して本発明の実施例について詳細に説
明する。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第2図は本発明の実施例の断面図であり、11,12はガ
ラス等の透明基板、13,14はITO等の透明の電極、15,16
は配向膜、17は液晶、18はTFT(薄膜トランジスタ)、1
9,20は偏光板、Gはゲート、Dはドレイン、Sはソース
を示す。FIG. 2 is a sectional view of an embodiment of the present invention, in which 11 and 12 are transparent substrates such as glass, 13 and 14 are transparent electrodes such as ITO, and 15 and 16 are shown.
Is an alignment film, 17 is a liquid crystal, 18 is a TFT (thin film transistor), 1
Reference numerals 9 and 20 denote polarizing plates, G denotes a gate, D denotes a drain, and S denotes a source.
スイッチング素子を構成するTFT18は、直交配置し、
交点は相互に絶縁されたデータバスラインとスキャンバ
スライン(図示せず)の交点に配置され、TFT18のドレ
インDがデータバスラインに、ゲートGがスキャンバス
ラインにそれぞれ接続され、ソースSが表示用の電極14
に接続されている。The TFTs 18 that form the switching element are arranged orthogonally,
The intersection is arranged at the intersection of the data bus line and the scan bus line (not shown) which are insulated from each other, the drain D of the TFT 18 is connected to the data bus line, the gate G is connected to the scan bus line, and the source S is displayed. Electrode for
It is connected to the.
又液晶17は負の誘電率異方性を有するものを用いるも
のである。一般に液晶は、シッフ基,アゾ基,アゾキシ
基,エステル基等を中央基とし、ベンゼン環を介してア
ルキル基,アルコキシ基,シアノ基等が結合されている
ものであり、この中のシアノ基を持たない液晶の大部分
が負の誘電率異方性を有するものである。このような負
の誘電率異方性を有する液晶としては、例えば、アルキ
ル・シクロヘキシル・カーボニトリル系(メルク社製)
の液晶が知られている。Further, the liquid crystal 17 is one having a negative dielectric constant anisotropy. In general, a liquid crystal has a Schiff group, an azo group, an azoxy group, an ester group, and the like as a central group, and an alkyl group, an alkoxy group, a cyano group, and the like are bonded via a benzene ring. Most liquid crystals that do not have negative dielectric anisotropy. Examples of the liquid crystal having such a negative dielectric anisotropy include, for example, an alkylcyclohexylcarbonitrile system (manufactured by Merck).
Liquid crystal is known.
又配向膜15,16は、垂直配向作用を有する例えばシラ
ンカップリング剤等を添加して用いるものであり、液晶
分子を誇大化して示すように、電極13,14間に電圧を印
加しない時に垂直配向状態とするものである。又電極1
3,14間に電圧を印加した時に、水平面内の同一方向に液
晶分子の配向方向が変化するように、若干の水平配向作
用を持たせているものである。この同一方向の水平配向
作用はラビング処理により得ることができるものであ
り、対向配置した透明基板11,12上の配向膜15,16に於け
るラビング方向は反対方向とするものである。Further, the alignment films 15 and 16 are used by adding, for example, a silane coupling agent having a vertical alignment action, and when the voltage is not applied between the electrodes 13 and 14 as shown by exaggerating the liquid crystal molecules. It is an oriented state. Electrode 1
When a voltage is applied between 3 and 14, a slight horizontal alignment action is given so that the alignment direction of the liquid crystal molecules changes in the same direction in the horizontal plane. This horizontal alignment action in the same direction can be obtained by a rubbing treatment, and the rubbing directions in the alignment films 15 and 16 on the transparent substrates 11 and 12 arranged opposite to each other are opposite to each other.
又透明基板11,12の外側に、偏光板19,20を配置し、配
向膜15,16に於けるラビング方向に対して偏光軸を45度
傾斜させ、直交ニコル或いは平行ニコルとするものであ
る。Further, polarizing plates 19 and 20 are arranged outside the transparent substrates 11 and 12, and the polarization axis is inclined by 45 degrees with respect to the rubbing direction in the alignment films 15 and 16 to form orthogonal Nicols or parallel Nicols. .
前述のような構成の液晶表示装置に於いて、スキャン
バスラインを順次選択してスキャンパルスを印加し、そ
れと同時にデータバスラインに表示情報に従った表示用
電圧を印加すると、スキャンパルスがゲートGに印加さ
れたTFT18がオン状態となり、データバスラインに印加
された表示用電圧は、オン状態のTFT18のドレインDか
らソースSを介して電極14に印加され、対向する電極13
を例えば接地すれば、電極13,14間に表示用電圧が印加
され、その電圧値に対応して液晶分子の配向方向が垂直
から水平方向に変化するから、階調表示も可能となる。In the liquid crystal display device having the above-described structure, when the scan bus lines are sequentially selected and the scan pulse is applied, and at the same time, the display voltage according to the display information is applied to the data bus line, the scan pulse is applied to the gate G. The TFT 18 applied to the TFT is turned on, and the display voltage applied to the data bus line is applied to the electrode 14 via the drain D to the source S of the TFT 18 in the turned-on state, and the opposite electrode 13 is applied.
When, for example, is grounded, a display voltage is applied between the electrodes 13 and 14, and the alignment direction of the liquid crystal molecules changes from the vertical direction to the horizontal direction according to the voltage value, so that gray scale display is also possible.
例えば、第3図(a)に示すように、直交ニコルの場
合の偏光板19,20の偏光軸が直交し、液晶17の分子は紙
面と垂直に配向されており、透過光はほぼ零である。そ
して、電極13,14間に電圧を印加すると、(b)に示す
ように、偏光板19,20の偏光軸に対して45度の方向に液
晶17の分子が紙面と水平となる方向に回転する。それに
よって、透過光は最大となる。For example, as shown in FIG. 3 (a), in the case of crossed Nicols, the polarization axes of the polarizing plates 19 and 20 are orthogonal to each other, the molecules of the liquid crystal 17 are oriented perpendicular to the paper surface, and the transmitted light is almost zero. is there. Then, when a voltage is applied between the electrodes 13 and 14, as shown in (b), the molecules of the liquid crystal 17 rotate in the direction of 45 degrees with respect to the polarization axes of the polarizing plates 19 and 20 in the direction parallel to the paper surface. To do. Thereby, the transmitted light is maximized.
前述の配向膜15,16を、例えば、ポリビニルアルコー
ル3wt%の水溶液に、垂直配向作用のあるシランカップ
リング剤(オクタデシルジメチルアンモニウムクロライ
ド)を1wt%添加して、電極13,14を含む全面にスピンコ
ートし、160℃で処理した後、ラビング処理を施して形
成した。このラビング処理は、前述のように、透明基板
11側の配向膜15と、透明基板12側の配向膜16とに於いて
反対方向とするものである。その場合のプレチルト角を
光学的に測定したところ、約85度であった。The alignment films 15 and 16 described above are spun on the entire surface including the electrodes 13 and 14 by adding 1 wt% of a silane coupling agent (octadecyldimethylammonium chloride) having a vertical alignment action to an aqueous solution of 3 wt% of polyvinyl alcohol. After coating and treatment at 160 ° C., a rubbing treatment was applied to form. This rubbing process is performed on the transparent substrate as described above.
The orientations of the orientation film 15 on the 11 side and the orientation film 16 on the transparent substrate 12 side are opposite to each other. When the pretilt angle in that case was optically measured, it was about 85 degrees.
このような配向膜15,16を有する透明基板11,12間に、
エステル系とエタン系とを主成分とする液晶を注入し
た。この混合液晶の誘電率異方性Δεは−2、屈折率異
方性Δnは0.05であった。そして、Δn・d=0.275と
なるように、ギャップ長dを5.5μmに設定した。Between the transparent substrates 11 and 12 having such alignment films 15 and 16,
A liquid crystal containing an ester type and an ethane type as main components was injected. The dielectric anisotropy Δε of this mixed liquid crystal was −2, and the refractive index anisotropy Δn was 0.05. The gap length d was set to 5.5 μm so that Δn · d = 0.275.
この液晶表示装置の視角特性は、第4図に示すものと
なった。即ち、左右方向の視角特性と上下方向の視角特
性とは類似したものとなり、且つ第11図に示す従来例の
視角特性と比較すれば明らかなように、視角特性が改善
されている。The viewing angle characteristics of this liquid crystal display device are shown in FIG. That is, the viewing angle characteristic in the left-right direction and the viewing angle characteristic in the up-down direction are similar, and the viewing angle characteristic is improved as is clear from comparison with the viewing angle characteristic of the conventional example shown in FIG.
又透過率特性は、第5図の点線曲線Aに示すものとな
り、実線曲線Bで示す従来例の特性に比較して傾斜が緩
くなり、階調表示が容易であることが判る。即ち、従来
例に於いては、ΔVの電圧で明状態から暗状態に変化
し、本発明の実施例に於いては、ΔV′で明状態から暗
状態に変化する。従って、ΔV<ΔV′であるから、階
調表示の為の電圧の設定が容易となる。Further, the transmittance characteristic is as shown by the dotted curve A in FIG. 5, and the inclination is gentler than that of the characteristic of the conventional example shown by the solid curve B, which shows that gradation display is easy. That is, in the conventional example, the voltage changes from the bright state to the dark state with a voltage of ΔV, and in the embodiment of the present invention, the voltage changes from the bright state to the dark state with ΔV ′. Therefore, since ΔV <ΔV ′, it becomes easy to set the voltage for gradation display.
従来例のTN液晶を用いた場合と、本発明の実施例の負
の誘電率異方性の液晶を用いた場合とに於ける比較特性
を第1表に示す。Table 1 shows comparative characteristics between the case of using the TN liquid crystal of the conventional example and the case of using the liquid crystal of the negative dielectric anisotropy of the embodiment of the present invention.
液晶の比抵抗は、表示用電圧を効率良く液晶に印加す
る為に大きいことが望ましいものであり、本発明の実施
例に於いては、従来例に比較して1桁大きい比抵抗とな
った。又書込効率は、液晶に印加される実効電圧の表示
用電圧に対する割合であり、本発明に於いては、表示用
電圧の総てが実効電圧となる。又ラビング時の静電気は
小さい方が望ましいものであり、本発明の実施例に於い
ては水平配向作用を僅か生じさせる為であるから、弱い
ラビングで済むことになり、それによって、10V前後の
低い値となるから、TFT18の静電破壊防止の点から有利
となる。 It is desirable that the specific resistance of the liquid crystal is large in order to efficiently apply the display voltage to the liquid crystal, and in the embodiment of the present invention, the specific resistance is one digit higher than that of the conventional example. . The writing efficiency is the ratio of the effective voltage applied to the liquid crystal to the display voltage, and in the present invention, all the display voltages are effective voltages. Further, it is desirable that the static electricity during rubbing is small, and in the embodiment of the present invention, since a slight horizontal alignment action is caused, weak rubbing will suffice. Since it is a value, it is advantageous from the viewpoint of preventing electrostatic breakdown of the TFT 18.
又像の焼付は、一定の表示パターンを連続して表示し
た場合に、画面切替時に於いてそのパターンが残像とし
て残るか否かの性能であり、液晶のΔε/εに依存し、
本発明の実施例に於いては、1時間(1H)以上経過して
も残像となることはなかった。Image sticking is the performance of whether or not the pattern remains as an afterimage when the screen is switched when a certain display pattern is continuously displayed, and depends on the liquid crystal Δε / ε.
In the examples of the present invention, an afterimage did not occur even after 1 hour (1H) or more.
前述のような点から、液晶17の屈折率異方性Δnと、
液晶17を注入するギャップ長dとの積のΔn・dを、0.
25<Δn・d<0.3の範囲とすることが好適であった。From the above points, the refractive index anisotropy Δn of the liquid crystal 17 and
The product Δn · d of the gap length d for injecting the liquid crystal 17 is 0.
It was preferable that the range was 25 <Δn · d <0.3.
又mを任意の整数、λを光の波長として、Δn・d≒
(m+1/2)×0.55となるように設定することが好適で
あった。従って、m=0とすると、Δn・d=0.275と
なり、前述の実施例の場合の条件となる。従って、本発
明に於いては、屈折率異方性Δnとギャップ長dとの積
を、Δn・d=(m+1/2)×(0.5〜0.6)の範囲とす
るものである。In addition, m is an arbitrary integer and λ is a wavelength of light, and Δn · d≈
It was preferable to set it to be (m + 1/2) × 0.55. Therefore, when m = 0, Δn · d = 0.275, which is the condition for the above-described embodiment. Therefore, in the present invention, the product of the refractive index anisotropy Δn and the gap length d is within the range of Δn · d = (m + 1/2) × (0.5 to 0.6).
第6図(a),(b)は本発明の第1の実施例の配向
膜の製造方法の説明図であり、(a)に示すように、透
明基板31上に表示用の電極32を形成する。この電極32
は、第2図に於ける電極13,14に対応するものである。
この電極32を含む全面に垂直配向作用を有する配向膜33
を形成し、(b)に示すようにラビングブラシ34等によ
り1方向にラビングする。それによって、液晶分子は、
垂直配向となると共に、電圧印加時にラビング方向に従
った水平一方向に回転する方向が定まり、均一でコント
ラストの高い表示が可能となる。FIGS. 6 (a) and 6 (b) are explanatory views of the method for producing an alignment film of the first embodiment of the present invention. As shown in FIG. 6 (a), a display electrode 32 is formed on a transparent substrate 31. Form. This electrode 32
Corresponds to the electrodes 13 and 14 in FIG.
An alignment film 33 having a vertical alignment action on the entire surface including the electrode 32.
Are formed and are rubbed in one direction by a rubbing brush 34 or the like as shown in (b). Thereby, the liquid crystal molecules become
Along with the vertical orientation, the direction of rotation in one horizontal direction according to the rubbing direction is determined when a voltage is applied, and uniform and high-contrast display is possible.
第7図(a)〜(c)は本発明の第2の実施例の配向
膜の製造方法の説明図であり、(a)に示すように、透
明基板41上に表示用の電極42を形成し、この電極42を含
む全面にポリイミド等の水平配向作用を有する配向膜43
を形成する。そして、(b)に示すように、ラビングブ
ラシ44等により1方向にラビングし、次に(c)に示す
ように、配向膜43上に垂直配向作用を有する前述のシラ
ンカップリング剤等からなる配向膜45を形成する。この
場合は、垂直配向作用を有する配向膜45により液晶分子
は垂直配向となり、配向膜43による水平配向作用によ
り、電圧印加時の液晶分子の水平配向方向が規制される
ものとなる。FIGS. 7 (a) to 7 (c) are explanatory views of a method for manufacturing an alignment film according to the second embodiment of the present invention. As shown in FIG. 7 (a), a display electrode 42 is formed on a transparent substrate 41. An alignment film 43 having a horizontal alignment action such as polyimide is formed on the entire surface including the electrode 42.
To form. Then, as shown in (b), it is rubbed in one direction by a rubbing brush 44 or the like, and then, as shown in (c), it comprises the above-mentioned silane coupling agent or the like having a vertical alignment action on the alignment film 43. An alignment film 45 is formed. In this case, the liquid crystal molecules are vertically aligned by the alignment film 45 having the vertical alignment action, and the horizontal alignment direction of the liquid crystal molecules when voltage is applied is regulated by the horizontal alignment action by the alignment film 43.
第8図は本発明の第3の実施例の配向膜の配置説明図
であり、51はスキャンバスライン、52はデータバスライ
ンであり、直交配置された交点は図示を省略した絶縁層
により絶縁されている。又53はゲートG,ドレインD,ソー
スSからなるTFT、54は表示用の電極、55は垂直配向作
用を有する配向膜である。この垂直配向作用を有する配
向膜55を、電極54上にのみ形成し、その他の部分は通常
の水平配向作用を有する配向膜とすることができる。こ
のような配向膜55を選択的に形成するには、スクリーン
印刷やエッチング技術を利用すれば良いことになる。FIG. 8 is a layout explanatory view of an alignment film of a third embodiment of the present invention, 51 is a scan bus line, 52 is a data bus line, and the intersecting points arranged orthogonally are insulated by an insulating layer (not shown). Has been done. Further, 53 is a TFT including a gate G, a drain D and a source S, 54 is a display electrode, and 55 is an alignment film having a vertical alignment action. The alignment film 55 having the vertical alignment function can be formed only on the electrode 54, and the other portions can be an alignment film having the normal horizontal alignment function. In order to selectively form such an alignment film 55, screen printing or etching technology may be used.
そして、この配向膜55上の液晶は垂直配向となり、又
その周辺の液晶は、配向膜55以外の配向膜のラビング方
向に従った方向の水平配向となり、電極54に電圧を印加
した時に、垂直配向の液晶は、それに隣接する水平配向
の液晶の配向方向に従って変化することになるから、配
向膜55は水平配向の為のラビングを行う必要がないもの
となる。The liquid crystal on the alignment film 55 has a vertical alignment, and the liquid crystal around the alignment film has a horizontal alignment in a direction according to the rubbing direction of the alignment films other than the alignment film 55, and when a voltage is applied to the electrode 54, the liquid crystal is vertically aligned. Since the oriented liquid crystal changes according to the orientation direction of the horizontally oriented liquid crystal adjacent thereto, the orientation film 55 does not need to be rubbed for the horizontal orientation.
本発明は、前述の実施例にのみ限定されるものではな
く、例えば、配向膜についても既に知られている垂直配
向作用を有する材料を用いて構成できることは勿論であ
り、又カラーフィルタを設けてフルカラー表示を行わせ
ることも可能である。又第2図又は第8図に示す電極配
置に於いて、同一の透明基板上のスキャンバスラインと
データバスラインとのうちのデータバスラインを、他方
の透明基板上に設けた構成の液晶表示装置に対しても本
発明を適用することができるものである。The present invention is not limited to the above-described embodiments, and it goes without saying that the alignment film can be formed using a material having a vertical alignment action which is already known, and a color filter is provided. It is also possible to perform full-color display. Further, in the electrode arrangement shown in FIG. 2 or FIG. 8, a liquid crystal display having a structure in which the data bus line of the scan bus line and the data bus line on the same transparent substrate is provided on the other transparent substrate. The present invention can also be applied to a device.
以上説明したように、本発明は、負の誘電率異方性を
有する液晶7を、少なくとも電極3,4上に於いて垂直配
向作用を有する配向膜5,6を形成した基板1,2間に封入し
たものであり、TFT等のスイッチング素子8を介して電
極3,4間に印加する電圧に対応して、液晶分子が連続的
に水平一方向に配向方向を変化させるから、印加電圧の
選定により階調表示を容易に行わせることができる。As described above, according to the present invention, the liquid crystal 7 having the negative dielectric anisotropy is formed between the substrates 1 and 2 on which the alignment films 5 and 6 having the vertical alignment action are formed at least on the electrodes 3 and 4. The liquid crystal molecules continuously change their alignment direction in one horizontal direction in response to the voltage applied between the electrodes 3 and 4 via the switching element 8 such as a TFT. It is possible to easily perform gradation display by selection.
又屈折率異方性Δnとギャップ長dとの積を、mを整
数として、Δn・d=(m+1/2)×(0.5〜0.6)の範
囲となるように設定するもので、それにより、m=0と
した場合は、従来例のTN液晶を用いた場合のΔn・dの
1/2に選定することが可能となり、それによって視角特
性を改善することができる利点がある。Further, the product of the refractive index anisotropy Δn and the gap length d is set to be in the range of Δn · d = (m + 1/2) × (0.5 to 0.6), where m is an integer. When m = 0, Δn · d of the conventional TN liquid crystal is used.
It is possible to select 1/2, which has the advantage that the viewing angle characteristics can be improved.
又表示用電圧として、中間レベルの電圧を印加した時
に、波長による透過率の差が生じるから、カラーフィル
タを用いないでカラー表示を行うことが可能となる。従
って、投写型表示装置として利用することも可能とな
る。Further, when an intermediate level voltage is applied as the display voltage, a difference in transmittance occurs depending on the wavelength, so that it is possible to perform color display without using a color filter. Therefore, it can also be used as a projection display device.
第1図は本発明の原理説明図、第2図は本発明の実施例
の断面図、第3図(a),(b)は直交ニコルの場合の
説明図、第4図は本発明の実施例の視角特性曲線図、第
5図は透過率特性曲線図、第6図(a),(b)及び第
7図(a)〜(c)は本発明の実施例の配向膜の製造方
法の説明図、第8図は本発明の実施例の配向膜配置説明
図、第9図は従来例のTN液晶の配向処理方向及び偏光軸
の説明図、第10図は平行ニコルの場合のΔn・dと透過
率との関係曲線図、第11図は従来例の視角特性曲線図、
第12図は従来例の複屈折型の説明図、第13図は従来例の
ゲストホスト型の説明図である。 1,2は透明基板、3,4は電極、5,6は配向膜、7は液晶、
8はスイッチング素子である。1 is an explanatory view of the principle of the present invention, FIG. 2 is a sectional view of an embodiment of the present invention, FIGS. 3 (a) and 3 (b) are explanatory views in the case of an orthogonal Nicol, and FIG. 4 is an illustration of the present invention. FIG. 5 is a view angle characteristic curve diagram of the embodiment, FIG. 5 is a transmittance characteristic curve diagram, and FIGS. 6 (a), (b) and FIGS. 7 (a) to 7 (c) are manufacture of the alignment film of the embodiment of the present invention. FIG. 8 is an explanatory view of a method, FIG. 8 is an explanatory view of an alignment film arrangement of an embodiment of the present invention, FIG. 9 is an explanatory view of an alignment treatment direction and a polarization axis of a conventional TN liquid crystal, and FIG. 10 is a case of parallel nicols. A relational curve diagram between Δn · d and transmittance, FIG. 11 is a view angle characteristic curve diagram of a conventional example,
FIG. 12 is an explanatory view of a birefringence type of a conventional example, and FIG. 13 is an explanatory view of a guest host type of a conventional example. 1, 2 are transparent substrates, 3 and 4 are electrodes, 5 and 6 are alignment films, 7 is liquid crystal,
8 is a switching element.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠山 嘉一 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 小林 駿介 東京都練馬区西大泉3丁目13番40号 (56)参考文献 特開 昭59−81621(JP,A) 特開 昭62−180326(JP,A) 特開 平2−151830(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kaichi Toyama, Kaichi Toyama 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Within Fujitsu Limited (72) Inventor Susuke Kobayashi, Nishiozumi, Nerima-ku, Tokyo 3-13-40 (56) ) Reference JP 59-81621 (JP, A) JP 62-180326 (JP, A) JP 2-151830 (JP, A)
Claims (1)
基板(1,2)上に形成した表示用電極(3,4)と、少なく
とも該表示用電極(3,4)上に形成した配向膜(5,6)
と、該配向膜(5,6)により分子配向が制御された液晶
(7)と、前記表示用電極(3,4)間に表示用の電圧を
印加する為のスイッチング素子(8)とを有する液晶表
示装置に於いて、 前記液晶(7)は、負の誘電率異方性を有し、且つ該液
晶(7)の屈折率異方性Δnと、該液晶(7)を注入す
るギャップ長dとの積を、Δn・d=(m+1/2)×
(0.5〜0.6)(但し、mは整数)とし、 前記配向膜(5,6)は、前記液晶(7)の分子配向を、
電圧無印加時に少なくとも前記表示電極(3,4)上に於
いて垂直配向状態とし、電圧印加時に水平一方向の配向
状態に変化させる構成とし、 前記電圧印加時の前記液晶(7)の分子配向方向に対し
てほぼ45度の偏光軸を有する偏光板を前記透明基板(1,
2)に設けた ことを特徴とする液晶表示装置。1. A transparent substrate (1, 2) facing each other, a display electrode (3, 4) formed on the transparent substrate (1, 2), and at least on the display electrode (3, 4). Alignment film (5,6)
A liquid crystal (7) whose molecular orientation is controlled by the orientation films (5, 6) and a switching element (8) for applying a display voltage between the display electrodes (3, 4). In the liquid crystal display device having the liquid crystal (7), the liquid crystal (7) has a negative dielectric anisotropy, and a refractive index anisotropy Δn of the liquid crystal (7) and a gap for injecting the liquid crystal (7). The product of length d and Δn · d = (m + 1/2) ×
(0.5 to 0.6) (where m is an integer), the alignment film (5, 6) defines the molecular alignment of the liquid crystal (7),
A molecular orientation of the liquid crystal (7) when the voltage is applied is such that the liquid crystal (7) is vertically aligned at least on the display electrodes (3, 4) when no voltage is applied, and is changed to a horizontal unidirectional orientation when voltage is applied. A polarizing plate having a polarization axis of about 45 degrees to the transparent substrate (1,
A liquid crystal display device characterized in that it is provided in 2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63329390A JP2548979B2 (en) | 1988-12-28 | 1988-12-28 | Liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63329390A JP2548979B2 (en) | 1988-12-28 | 1988-12-28 | Liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02176625A JPH02176625A (en) | 1990-07-09 |
JP2548979B2 true JP2548979B2 (en) | 1996-10-30 |
Family
ID=18220900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63329390A Expired - Lifetime JP2548979B2 (en) | 1988-12-28 | 1988-12-28 | Liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2548979B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6281956B1 (en) | 1996-09-30 | 2001-08-28 | Fujitsu Limited | Liquid crystal display device operating in a vertically aligned mode |
US7522238B2 (en) | 2004-04-26 | 2009-04-21 | Sumitomo Chemical Company, Limited | Laminate polarizing plate, a method of producing the same and a liquid crystal display |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0872757A4 (en) * | 1995-09-26 | 1999-11-24 | Chisso Corp | Homeotropic sprayed-nematic liquid crystal display device |
JP3282986B2 (en) * | 1996-02-28 | 2002-05-20 | 富士通株式会社 | Liquid crystal display |
JPH11349582A (en) | 1998-06-10 | 1999-12-21 | Chisso Corp | Liquid crystalline compound having negative value of dielectric anisotropy, liquid crystalline composition containing the liquid crystalline compound and liquid display element using the liquid crystalline composition |
JP3975562B2 (en) | 1998-06-25 | 2007-09-12 | チッソ株式会社 | Liquid crystal compound having negative dielectric anisotropy value, liquid crystal composition containing the liquid crystal compound, and liquid crystal display device using the liquid crystal composition |
TW200806451A (en) | 1999-10-21 | 2008-02-01 | Konica Minolta Opto Inc | Optical film, its manufacturing method and liquid crystal display device using it |
CN1322338C (en) | 2002-08-15 | 2007-06-20 | 富士胶片株式会社 | Antireflection film, polarizing plate and image display device |
TWI319762B (en) | 2002-09-27 | 2010-01-21 | 1,7,8-trifluoro-2-naphthol and manufacturing methods for liquid crystal compositions containing the same | |
EP1978381A1 (en) | 2002-11-25 | 2008-10-08 | FUJIFILM Corporation | Anti-reflection film, polarizing plate and liquid crystal display device |
JP4202877B2 (en) * | 2003-09-24 | 2008-12-24 | 富士フイルム株式会社 | Liquid crystal display |
JP4663285B2 (en) * | 2004-09-22 | 2011-04-06 | 富士フイルム株式会社 | Liquid crystal display device |
TWI427336B (en) | 2004-12-28 | 2014-02-21 | Fujifilm Corp | Optical compensation sheet, process for producing the same, and polarizing plate and liquid crystal display device using the same |
JP4628140B2 (en) | 2005-03-03 | 2011-02-09 | 富士フイルム株式会社 | Cellulose acylate film, polarizing plate and liquid crystal display device |
KR20080009195A (en) | 2005-04-22 | 2008-01-25 | 후지필름 가부시키가이샤 | Optical film, polarizing plate and liquid crystal display |
TWI421597B (en) * | 2005-08-22 | 2014-01-01 | Fujifilm Corp | Optical film, optically compensatory film and polarizing plate and liquid crystal display using same |
US8182102B2 (en) | 2008-03-28 | 2012-05-22 | Fujifilm Corporation | Transparent support, optical film, polarizing plate and image display device |
JP2011202129A (en) | 2010-03-26 | 2011-10-13 | Fujifilm Corp | Polyester resin, and optical material, film and image display device using the same |
JP5725260B2 (en) | 2012-06-06 | 2015-05-27 | Dic株式会社 | Liquid crystal light modulator |
JP6275961B2 (en) | 2013-06-26 | 2018-02-07 | 富士フイルム株式会社 | Optical film and display device |
WO2018151295A1 (en) | 2017-02-17 | 2018-08-23 | 富士フイルム株式会社 | Liquid crystal display device |
JP7553474B2 (en) | 2019-12-26 | 2024-09-18 | 富士フイルム株式会社 | Light-absorbing anisotropic layer, laminate, optical film, image display device, backlight module |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104525B2 (en) * | 1986-02-04 | 1995-11-13 | セイコーエプソン株式会社 | Active matrix liquid crystal device |
-
1988
- 1988-12-28 JP JP63329390A patent/JP2548979B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6281956B1 (en) | 1996-09-30 | 2001-08-28 | Fujitsu Limited | Liquid crystal display device operating in a vertically aligned mode |
US7075609B2 (en) | 1996-09-30 | 2006-07-11 | Sharp Kabushiki Kaisha | Liquid crystal display device comprising p-type liquid crystal layer operating in vertically aligned mode including first and second retardation films |
US7379140B2 (en) | 1996-09-30 | 2008-05-27 | Sharp Kabushiki Kaisha | Liquid crystal display device operating in a vertically aligned mode comprising an optically biaxial retardation film |
US7548294B2 (en) | 1996-09-30 | 2009-06-16 | Sharp Kabushiki Kaisha | Liquid crystal display device operating in a vertically aligned mode |
US7808592B2 (en) | 1996-09-30 | 2010-10-05 | Sharp Kabushiki Kaisha | Liquid crystal display device operating in a vertical aligned mode having particular optical biaxial retardation film |
US7522238B2 (en) | 2004-04-26 | 2009-04-21 | Sumitomo Chemical Company, Limited | Laminate polarizing plate, a method of producing the same and a liquid crystal display |
US7920230B2 (en) | 2004-04-26 | 2011-04-05 | Sumitomo Chemical Company, Limited | Laminate polarizing plate, a method of producing the same and a liquid crystal display |
Also Published As
Publication number | Publication date |
---|---|
JPH02176625A (en) | 1990-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2548979B2 (en) | Liquid crystal display | |
US20020018167A1 (en) | Liquid crystal display | |
US20070030428A1 (en) | Liquid crystal display | |
JPH07181439A (en) | Active matrix liquid crystal display device | |
JPH052166A (en) | Liquid crystal display device | |
JP3497986B2 (en) | Driving method of liquid crystal display element and liquid crystal display device | |
US6151003A (en) | Liquid crystal display device operating in a vertically aligned mode | |
JPH06194655A (en) | Liquid crystal display element and its production | |
JPH10161077A (en) | Liquid crystal display device | |
JP2000267104A (en) | Liquid crystal display | |
JP2635435B2 (en) | Liquid crystal display | |
JP3404467B2 (en) | Liquid crystal display | |
KR100344366B1 (en) | Driving method for liquid crystal device | |
JP2001147414A (en) | TN type liquid crystal display | |
KR100735272B1 (en) | Optically Compensated Band Mode Liquid Crystal Display | |
JP3730320B2 (en) | LCD panel | |
JP2003344857A (en) | Liquid crystal element and driving method of the same | |
JP2836594B2 (en) | Ferroelectric liquid crystal display and antiferroelectric liquid crystal display | |
JPH0862639A (en) | Liquid crystal device | |
JP2000275683A (en) | Liquid crystal element and method for driving the liquid crystal element | |
JP3239310B2 (en) | Ferroelectric liquid crystal display device | |
JP3378038B2 (en) | Driving method of electro-optical device | |
JP2000275684A (en) | Liquid crystal element and liquid crystal device using the same | |
JP2004077542A (en) | Liquid crystal element, and method for driving and manufacturing the same | |
JP2000180858A (en) | Liquid crystal element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070808 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 13 |