JP2548962B2 - heat pump - Google Patents
heat pumpInfo
- Publication number
- JP2548962B2 JP2548962B2 JP63018683A JP1868388A JP2548962B2 JP 2548962 B2 JP2548962 B2 JP 2548962B2 JP 63018683 A JP63018683 A JP 63018683A JP 1868388 A JP1868388 A JP 1868388A JP 2548962 B2 JP2548962 B2 JP 2548962B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat pump
- cooler
- carbon dioxide
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷媒として二酸化炭素を用いるヒートポン
プに関するものである。なお、ここでヒートポンプと
は、温流体を製造する狭義のヒートポンプのみならず、
冷流体を製造する冷凍機を含む広義のヒートポンプをい
う。The present invention relates to a heat pump using carbon dioxide as a refrigerant. In addition, here, the heat pump is not limited to a heat pump in a narrow sense for producing a warm fluid,
It refers to a heat pump in a broad sense that includes a refrigerator that produces a cold fluid.
近年、圧縮式ヒートポンプの作動冷媒として用いられ
るフロン(クロロフルオロカーボン)中に含まれる塩素
(Cl)が、大気の成層圏のオゾン層を破壊するという理
由により、該フロンの使用を国際的に規制しようとする
検討が行なわれている。In recent years, chlorine (Cl) contained in CFCs (chlorofluorocarbons) used as working refrigerants for compression heat pumps has been attempting to regulate the use of CFCs internationally because they destroy the ozone layer in the stratosphere of the atmosphere. Consideration is being made.
即ち、このオゾン層では大気圏に照射される光の内、
生物に有害な290〜320nmの光を吸収しており、該オゾン
を分解し破壊したならば前記の有害な光が地表に到達し
てしまうからである。That is, in this ozone layer, of the light that illuminates the atmosphere,
It absorbs light of 290 to 320 nm, which is harmful to living things, and if the ozone is decomposed and destroyed, the harmful light reaches the surface of the earth.
ところでもし全てのハロゲン化されたクロロフルオロ
アルカンが規制されるとすれば、現在ヒートポンプに用
いられている主要冷媒のフロン−13、フロン−11、フロ
ン−114、フロン−12、フロン−22等は全て規制される
ことになる。By the way, if all halogenated chlorofluoroalkanes are regulated, the major refrigerants currently used in heat pumps such as CFC-13, CFC-11, CFC-114, CFC-12, CFC-22 are All will be regulated.
このため現在使用されているフロン系冷媒以外の代替
冷媒の開発が急がれている。Therefore, the development of alternative refrigerants other than the CFC-based refrigerants currently used is urgently needed.
そして現時点において、フロン系以外の冷媒で最も有
望な冷媒としては、不燃性、安全性、無害、不腐食性等
の点から、二酸化炭素が考えられる。At the present time, carbon dioxide is considered to be the most promising refrigerant other than the chlorofluorocarbon-based refrigerant in view of nonflammability, safety, harmlessness, noncorrosion, and the like.
しかしながらこの二酸化炭素は臨界温度が非常に低
く、通常の空調条件で運転してヒートポンプサイクルを
組んだ場合、成績係数が極端に悪く経済的でないという
問題点があった。However, carbon dioxide has a very low critical temperature, and when it is operated under normal air conditioning conditions to form a heat pump cycle, the coefficient of performance is extremely poor and it is not economical.
本発明は上述の点に鑑みてなされたものであり、フロ
ン系の冷媒の代わりに二酸化炭素を用い、且つ従来のヒ
ートポンプに比べて省エネルギーが図れるヒートポンプ
を提供することを目的とする。The present invention has been made in view of the above points, and an object of the present invention is to provide a heat pump that uses carbon dioxide instead of a CFC-based refrigerant and that can save energy as compared with a conventional heat pump.
上記問題点を解決するため本発明は、ヒートポンプ
を、圧縮機、冷却器、減圧機構及び蒸発器を具備し、こ
れらの機器を冷媒経路で接続して冷媒循環流路を形成す
るヒートポンプにおいて、冷媒として二酸化炭素を用い
るとともに、前記冷却器内の冷媒を超臨界圧流体の状態
とし、且つ該冷却器を冷媒の流れと負荷流体の流れが対
向する向流形熱交換器として構成した。In order to solve the above problems, the present invention provides a heat pump, comprising a compressor, a cooler, a decompression mechanism, and an evaporator, and a heat pump that forms a refrigerant circulation flow path by connecting these devices with a refrigerant path. Carbon dioxide is used as the refrigerant, the refrigerant in the cooler is in the state of supercritical pressure fluid, and the cooler is configured as a countercurrent heat exchanger in which the flow of the refrigerant and the flow of the load fluid are opposed to each other.
また本発明は、ヒートポンプを、圧縮機、冷却器、減
圧機構及び蒸発器を具備し、これらの機器を冷媒経路で
接続して冷媒循環流路を形成するヒートポンプにおい
て、冷媒として二酸化炭素を用いるとともに、前記冷却
器内の冷媒を超臨界圧流体の状態とし、且つ該冷却器を
その伝熱面上に水を散布する散水装置を具備する構成と
して構成した。The present invention also includes a heat pump, a compressor, a cooler, a decompression mechanism, and an evaporator, which uses carbon dioxide as a refrigerant in a heat pump in which these devices are connected by a refrigerant path to form a refrigerant circulation flow path. The refrigerant in the cooler is in a supercritical pressure fluid state, and the cooler is provided with a water spraying device for spraying water on the heat transfer surface thereof.
本発明は上記の如くヒートポンプを構成したので、冷
媒として二酸化炭素を用いるので、その分子中に塩素を
含むフロンを使用する必要がなく、従って成層圏を破壊
することはない。Since the present invention has constituted the heat pump as described above, since carbon dioxide is used as the refrigerant, it is not necessary to use CFC containing chlorine in its molecule, and therefore the stratosphere is not destroyed.
また冷却器内の冷媒を超臨界圧流体の状態としたの
で、従来使われてきたフロン−12の場合よりも成績係数
の高いヒートポンプを提供できる。Moreover, since the refrigerant in the cooler is in the state of supercritical pressure fluid, it is possible to provide a heat pump having a higher coefficient of performance than that of the conventionally used Freon-12.
また冷却器の構造を向流形にすれば、温度変化を有効
に利用でき、ヒートポンプを省エネルギーとすることが
できる。Further, if the structure of the cooler is a counterflow type, the temperature change can be effectively utilized and the heat pump can save energy.
また冷却器をその伝熱面上に水を散布する散水装置を
具備する構造とすれば、冷媒の圧力を低くすることがで
き、通常の冷房に用いることができ、さらに有効とな
る。Further, if the cooler is provided with a water spraying device for spraying water on its heat transfer surface, the pressure of the refrigerant can be lowered, and it can be used for ordinary cooling, which is even more effective.
以下、本発明に係るヒートポンプの第1の実施例を図
面に基づいて詳細に説明する。Hereinafter, a first embodiment of a heat pump according to the present invention will be described in detail with reference to the drawings.
第1図はこの実施例に係るヒートポンプの構成を示す
構成図である。FIG. 1 is a configuration diagram showing the configuration of the heat pump according to this embodiment.
同図に示すように、このヒートポンプは圧縮機1、冷
却器2、減圧機構3及び蒸発器4を具備し、これらの機
器を冷媒経路5,6,7,8で接続して冷媒循環流路を形成し
て構成されている。また、このヒートポンプの冷媒には
二酸化炭素が用いられる。As shown in the figure, this heat pump comprises a compressor 1, a cooler 2, a pressure reducing mechanism 3 and an evaporator 4, and these devices are connected by refrigerant paths 5, 6, 7 and 8 to form a refrigerant circulation flow path. Is formed. Carbon dioxide is used as the refrigerant of this heat pump.
次にこの第1図に示すヒートポンプの作動サイクルを
説明する。Next, the operation cycle of the heat pump shown in FIG. 1 will be described.
なおここで第2図は二酸化炭素のモリエ線図上に、給
湯と冷房が同時に行なえる条件を備えたサイクルの一例
を描いた図であり、以下この図をも参照しながら説明す
る。Note that FIG. 2 is a diagram showing an example of a cycle on the Mollier diagram of carbon dioxide, in which hot water supply and cooling can be performed at the same time, which will be described below also with reference to this diagram.
なおこの第2図における条件は、蒸発温度は5℃で、
圧縮機は可逆断熱圧縮で、冷却器・蒸発器は等圧変化
で、減圧機構は等エンタルピー膨張であるとする。The conditions in FIG. 2 are that the evaporation temperature is 5 ° C.
It is assumed that the compressor is reversible adiabatic compression, the cooler / evaporator is isobaric pressure change, and the decompression mechanism is isenthalpic expansion.
ここでこのサイクルは点線のA→B→C→Dで示す。 Here, this cycle is indicated by a dotted line A → B → C → D.
第1図、第2図に示すように、まず冷媒である二酸化
炭素ガスは、圧縮機1によって圧縮されて超臨界圧流体
になり(第2図のB)、冷媒経路5を通って冷却器2に
送られ、ここで冷却される(第2図のC)。通常のヒー
トポンプではこの部分は凝縮器となるが、本実施例にお
ける冷媒は超臨界圧流体となっているので凝縮せず、配
管10により送られる負荷流体により超臨界状態のままで
冷却される。冷却された超臨界圧流体は冷媒経路6を通
り、減圧機構3によって減圧され(第2図のD)、冷媒
経路7を通って蒸発器4に入る。このときの冷媒は超臨
界の状態になっていないので、通常のヒートポンプのよ
うに冷媒は配管9によって送られる熱源流体により過熱
され、蒸発し、再び圧縮機1に戻り、これによってその
サイクルが形成される。As shown in FIGS. 1 and 2, first, carbon dioxide gas which is a refrigerant is compressed by the compressor 1 to become a supercritical pressure fluid (B in FIG. 2), and passes through the refrigerant path 5 to cool the cooler. 2 where it is cooled (C in FIG. 2). In a normal heat pump, this portion serves as a condenser, but since the refrigerant in this embodiment is a supercritical pressure fluid, it does not condense and is cooled in the supercritical state by the load fluid sent through the pipe 10. The cooled supercritical fluid passes through the refrigerant path 6, is decompressed by the decompression mechanism 3 (D in FIG. 2), and enters the evaporator 4 through the refrigerant path 7. Since the refrigerant at this time is not in a supercritical state, the refrigerant is superheated by the heat source fluid sent through the pipe 9 like a normal heat pump, evaporates, and returns to the compressor 1 again, thereby forming the cycle. To be done.
上記例においては、冷却器2の入口冷媒温度が80℃で
あり、出口冷媒温度が40℃である(第2図のB→C)。In the above example, the inlet refrigerant temperature of the cooler 2 is 80 ° C and the outlet refrigerant temperature is 40 ° C (B → C in Fig. 2).
ここで冷却器2を向流形熱交換器で構成することによ
って、この冷却器2内での冷媒の温度変化を有効に利用
すれば、冷却器2内での冷媒と負荷流体の温度分布が第
3図に示すようになる。If the cooler 2 is configured by a countercurrent heat exchanger to effectively use the temperature change of the refrigerant in the cooler 2, the temperature distribution of the refrigerant and the load fluid in the cooler 2 can be improved. As shown in FIG.
即ち、同図に示すように、冷媒は80℃から40℃に冷却
され、逆に負荷流体は30℃から70℃に加熱され給湯負荷
に供される。That is, as shown in the figure, the refrigerant is cooled from 80 ° C to 40 ° C, and conversely, the load fluid is heated from 30 ° C to 70 ° C and supplied to the hot water supply load.
一方上記二酸化炭素の場合と同様の条件に、従来給湯
等に用いられているフロン−12を適用した場合のサイク
ルは、第4図に示すフロン−12のモリエ線図上のサイク
ルa→b→c→dのようになる。On the other hand, the cycle when CFC-12 conventionally used for hot water supply is applied to the same condition as the case of carbon dioxide is as follows: cycle a → b → on the Mollier diagram of CFC-12 shown in FIG. It becomes like c → d.
ここで負荷流体を40℃から70℃に加熱するために冷媒
の凝縮温度は75℃となる。Here, in order to heat the load fluid from 40 ° C to 70 ° C, the condensation temperature of the refrigerant becomes 75 ° C.
第2図と第4図からこの条件下での成績係数COPを求
めてみると、二酸化炭素の場合がCOP=4.4、フロン−12
の場合がCOP=3.7であり、従来型のフロン−12に比べ、
成績係数が約2割よくなる。このように冷媒として二酸
化炭素を用い、その超臨界状態を有効に利用したヒート
ポンプは、特に負荷流体の出入口温度差が大きいことか
ら、負荷流体を給湯用の給湯水や乾燥用の空気流とし、
給湯装置や乾燥装置として使用するのが一番効果的であ
る。The coefficient of performance COP under these conditions is calculated from Figs. 2 and 4, and COP = 4.4 and CFC-12 in the case of carbon dioxide.
In the case of COP = 3.7, compared to the conventional CFC-12,
The coefficient of performance is improved by about 20%. Thus, using carbon dioxide as a refrigerant, a heat pump that effectively utilizes its supercritical state, in particular, because the temperature difference between the inlet and outlet of the load fluid is large, the load fluid as hot water for hot water supply and air flow for drying,
It is most effective when used as a water heater or dryer.
なお本実施例をそのまま普通の冷房に用いることも可
能であるが、冷却器2内の冷媒の圧力が高くなる。Although this embodiment can be used as it is for ordinary cooling, the pressure of the refrigerant in the cooler 2 becomes high.
そこで、次に冷媒の圧力を低くできる第2の実施例を
説明する。Therefore, a second embodiment in which the pressure of the refrigerant can be lowered will be described next.
第5図はこの第2の実施例の構成を示す構成図であ
る。FIG. 5 is a configuration diagram showing the configuration of the second embodiment.
なおここで上記第1実施例と同一部分には同一の符号
を付する。The same parts as those in the first embodiment are designated by the same reference numerals.
同図に示すように、この実施例においては、冷媒であ
る二酸化炭素ガスは圧縮機1により圧縮されて冷媒経路
5を通って冷却器2に送られる。この冷却器2内では、
ポンプ12、配管11を通って散水装置13より散布される水
が、ファン14によって通風される空気によって帰化、冷
却し、その散布水によって冷媒が冷却する。なお散布水
の温度条件によって冷媒は凝縮する場合もある。As shown in the figure, in this embodiment, the carbon dioxide gas that is a refrigerant is compressed by the compressor 1 and sent to the cooler 2 through the refrigerant path 5. In this cooler 2,
The water sprayed from the sprinkler device 13 through the pump 12 and the pipe 11 is naturalized and cooled by the air ventilated by the fan 14, and the sprayed water cools the refrigerant. The refrigerant may be condensed depending on the temperature condition of the spray water.
この冷却された冷媒は冷媒経路6を通り、減圧機構3
によって減圧され、冷媒経路7を通って蒸発器4に入
る。蒸発器4では冷媒は配管9により送られる冷房負荷
流体により加熱され蒸発し、一方冷房負荷流体は冷却さ
れ、負荷に供される。この後冷媒は再び圧縮機1に戻り
サイクルを形成する。The cooled refrigerant passes through the refrigerant path 6 and passes through the pressure reducing mechanism 3
The pressure is reduced by and enters the evaporator 4 through the refrigerant path 7. In the evaporator 4, the refrigerant is heated and evaporated by the cooling load fluid sent through the pipe 9, while the cooling load fluid is cooled and supplied to the load. After this, the refrigerant returns to the compressor 1 again to form a cycle.
このようにこの実施例によれば、冷却器2内での冷媒
の温度条件は、従来の空冷形の冷却器に比べて、水の気
化熱を利用するので、低く保つことができ、結果として
冷媒の圧力を低くすることができるので、普通の冷房に
用いることができ、さらに有効となる。As described above, according to this embodiment, the temperature condition of the refrigerant in the cooler 2 can be kept low because the heat of vaporization of water is used as compared with the conventional air-cooled cooler, and as a result, Since the pressure of the refrigerant can be lowered, it can be used for ordinary cooling and is more effective.
以上本発明を実施例に基づいて説明したが、本発明は
上記実施例に限定されるものではなく、本発明の範囲で
種々の変形が可能であることは言うまでもない。Although the present invention has been described above based on the embodiments, it is needless to say that the present invention is not limited to the above embodiments and various modifications can be made within the scope of the present invention.
以上詳細に説明したように、本発明に係るヒートポン
プによれば、冷媒として二酸化炭素を用いるので、その
分子中に塩素を含むフロンを使用する必要がなく、従っ
て成層圏を破壊することはないという優れた効果を有す
る。As described in detail above, according to the heat pump of the present invention, since carbon dioxide is used as the refrigerant, it is not necessary to use freon containing chlorine in its molecule, and therefore it is excellent in that it does not destroy the stratosphere. Have the effect.
また本発明に係るヒートポンプによれば、二酸化炭素
の超臨界圧状態を有効に利用することにより、従来使わ
れてきたフロン−12の場合よりも成績係数の高いヒート
ポンプを提供できるという優れた効果を有する。Further, according to the heat pump of the present invention, by effectively utilizing the supercritical pressure state of carbon dioxide, it is possible to provide an excellent effect that it is possible to provide a heat pump with a higher coefficient of performance than the case of CFC-12 conventionally used. Have.
また本発明に係るヒートポンプの冷却器の構造を向流
形にすれば、温度変化を有効に利用でき、省エネルギー
とすることができる。Further, if the structure of the cooler of the heat pump according to the present invention is a countercurrent type, the temperature change can be effectively used and energy can be saved.
また本発明に係るヒートポンプの冷却器をその伝熱面
上に水を散布する散水装置を具備する構造とすれば、冷
媒の圧力を低くすることができ、通常の冷媒に用いるこ
とができ、さらに有効となる。Further, if the structure of the cooler of the heat pump according to the present invention is provided with a water spraying device for spraying water on its heat transfer surface, the pressure of the refrigerant can be lowered, and it can be used as a normal refrigerant. It becomes effective.
第1図は本発明の第1の実施例に係るヒートポンプの構
成を示す構成図、第2図は二酸化炭素のモリエ線図上
に、給湯・冷房が同時に行なえる条件を備えたサイクル
の一例を描いた図、第3図は向流形熱交換器で構成した
冷却器2内での冷媒と負荷流体の温度分布を示す図、第
4図はフロン−12のモリエ線図上に、サイクルの一例を
描いた図、第5図は本発明の第2の実施例の構成を示す
構成図である。 図中、1……圧縮機、2……冷却器、4……蒸発器、3
……減圧機構、5,6,7,8……冷媒経路、11……配管、12
……ポンプ、13……散水装置、14……ファン、である。FIG. 1 is a configuration diagram showing a configuration of a heat pump according to a first embodiment of the present invention, and FIG. 2 is an example of a cycle provided with conditions for hot water supply / cooling at the same time on a Mollier diagram of carbon dioxide. The drawing and FIG. 3 are diagrams showing the temperature distributions of the refrigerant and the load fluid in the cooler 2 constituted by the countercurrent heat exchanger, and FIG. 4 is the Mollier diagram of Freon-12 showing the cycle FIG. 5 is a diagram showing an example, and FIG. 5 is a configuration diagram showing a configuration of a second embodiment of the present invention. In the figure, 1 ... Compressor, 2 ... Cooler, 4 ... Evaporator, 3
...... Pressure reduction mechanism, 5,6,7,8 …… Refrigerant path, 11 …… Piping, 12
...... Pump, 13 ... Sprinkler, 14 ... Fan.
Claims (4)
備し、これらの機器を冷媒経路で接続して冷媒循環流路
を形成するヒートポンプにおいて、冷媒として二酸化炭
素を用いるとともに、前記冷却器内の冷媒を超臨界圧流
体の状態とし、且つ該冷却器を冷媒の流れと負荷流体の
流れが対向する向流形熱交換器としたことを特徴とする
ヒートポンプ。1. A heat pump comprising a compressor, a cooler, a decompression mechanism and an evaporator, wherein these devices are connected by a refrigerant path to form a refrigerant circulation flow path, wherein carbon dioxide is used as a refrigerant and the cooling is performed. A heat pump, characterized in that the refrigerant in the container is in a supercritical pressure fluid state, and the cooler is a countercurrent heat exchanger in which the flow of the refrigerant and the flow of the load fluid are opposed to each other.
あることを特徴とする請求項(1)記載のヒートポン
プ。2. The heat pump according to claim 1, wherein the load fluid of the cooler is hot water for hot water supply.
あることを特徴とする請求項(1)記載のヒートポン
プ。3. The heat pump according to claim 1, wherein the load fluid of the cooler is an air flow for drying.
備し、これらの機器を冷媒経路で接続して冷媒循環流路
を形成するヒートポンプにおいて、冷媒として二酸化炭
素を用いるとともに、前記冷却器内の冷媒を超臨界圧流
体の状態とし、且つ該冷却器をその伝熱面上に水を散布
する散布装置を具備する構成としたことを特徴とするヒ
ートポンプ。4. A heat pump comprising a compressor, a cooler, a decompression mechanism and an evaporator, wherein these devices are connected by a refrigerant path to form a refrigerant circulation channel, carbon dioxide is used as the refrigerant, and the cooling is performed. A heat pump characterized in that the refrigerant in the container is in a state of supercritical pressure fluid, and the cooling device is provided with a spraying device for spraying water on its heat transfer surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63018683A JP2548962B2 (en) | 1988-01-28 | 1988-01-28 | heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63018683A JP2548962B2 (en) | 1988-01-28 | 1988-01-28 | heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01193561A JPH01193561A (en) | 1989-08-03 |
JP2548962B2 true JP2548962B2 (en) | 1996-10-30 |
Family
ID=11978409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63018683A Expired - Lifetime JP2548962B2 (en) | 1988-01-28 | 1988-01-28 | heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2548962B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0837291B1 (en) * | 1996-08-22 | 2005-01-12 | Denso Corporation | Vapor compression type refrigerating system |
DE69831534T2 (en) * | 1997-07-18 | 2006-06-29 | Denso Corp., Kariya | Pressure control valve for refrigeration system |
JPH1163686A (en) * | 1997-08-12 | 1999-03-05 | Zexel Corp | Refrigeration cycle |
JPH1163694A (en) * | 1997-08-21 | 1999-03-05 | Zexel Corp | Refrigeration cycle |
JP3227651B2 (en) | 1998-11-18 | 2001-11-12 | 株式会社デンソー | Water heater |
JP2001304701A (en) | 2000-04-19 | 2001-10-31 | Denso Corp | Heat pump water heater |
JP4059616B2 (en) | 2000-06-28 | 2008-03-12 | 株式会社デンソー | Heat pump water heater |
JP2002089883A (en) * | 2000-09-12 | 2002-03-27 | Sanyo Electric Co Ltd | Cooling and drying apparatus in which hot-water supply unit is used |
JP5250954B2 (en) * | 2006-10-05 | 2013-07-31 | ダイキン工業株式会社 | Air conditioner |
JP2009139072A (en) * | 2007-12-04 | 2009-06-25 | Shinichi Chikauchi | Hot water generating system using heat of condenser for air conditioner and refrigerator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4205532A (en) * | 1977-05-02 | 1980-06-03 | Commercial Refrigeration (Wiltshire) Limited | Apparatus for and method of transferring heat |
-
1988
- 1988-01-28 JP JP63018683A patent/JP2548962B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4205532A (en) * | 1977-05-02 | 1980-06-03 | Commercial Refrigeration (Wiltshire) Limited | Apparatus for and method of transferring heat |
Also Published As
Publication number | Publication date |
---|---|
JPH01193561A (en) | 1989-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2189544C2 (en) | Method for realizing artificial cooling | |
EP1121565B1 (en) | heat exchange refrigerant subcool and/or precool system and method | |
US20050028545A1 (en) | Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor | |
US20040237527A1 (en) | Exhaust heat recovery system | |
JP2548962B2 (en) | heat pump | |
JP2010065986A (en) | Refrigeration cycle device and air conditioner | |
JP3880519B2 (en) | Cooling device and aerosol generation system including the same | |
JP2000346466A (en) | Vapor compression type refrigerating cycle | |
JP2004286289A (en) | Refrigerant cycle device | |
US3621666A (en) | Cooling apparatus and process | |
JP3703889B2 (en) | Cooling device and refrigerator | |
JPH0854149A (en) | Refrigerating device | |
JP2776200B2 (en) | Absorption type ice cold storage device | |
JPS6213945A (en) | Cooling and heating device | |
JP2004069276A (en) | Waste heat recovering cooling system | |
JPH05272837A (en) | Compression absorption composite heat pump | |
JPS6353456B2 (en) | ||
JP3466018B2 (en) | Liquid phase separation type absorption refrigeration system | |
KR200257255Y1 (en) | refrigerator/heat pump system | |
JPH0712412A (en) | Refrigerating cycle and refrigerating device | |
Riffat et al. | Automobile air-conditioning using a rotary absorption/recompression system | |
JPH09145184A (en) | Air conditioner | |
JPS6158745B2 (en) | ||
JP3242143B2 (en) | Ammonia refrigerator | |
JPH05264120A (en) | Combined refrigerating device |