JP2548942B2 - Method for preventing cracking during rapid solidification of Fe-Ni based alloy - Google Patents
Method for preventing cracking during rapid solidification of Fe-Ni based alloyInfo
- Publication number
- JP2548942B2 JP2548942B2 JP62172064A JP17206487A JP2548942B2 JP 2548942 B2 JP2548942 B2 JP 2548942B2 JP 62172064 A JP62172064 A JP 62172064A JP 17206487 A JP17206487 A JP 17206487A JP 2548942 B2 JP2548942 B2 JP 2548942B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- based alloy
- casting
- rapid solidification
- hot rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はFe−Ni基を主とする合金製品の製造におい
て、鋳片と鋳型の相対速度差の無い、いわゆる同期式連
鋳法において、極力製品サイズに近い形で鋳造し、熱間
圧延を極力簡省略化して、薄板や線材等を製造する方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a so-called synchronous continuous casting method in which there is no relative speed difference between a cast piece and a mold in the production of an alloy product mainly composed of Fe-Ni base, The present invention relates to a method for producing a thin plate, a wire rod or the like by casting in a shape as close to the product size as possible and omitting hot rolling as much as possible.
(従来の技術) 従来、各種薄板の製造においては、連続鋳造で鋳型を
振動させながら厚さ100mm以上の厚手鋳片を製造し、表
面手入をおこない、加熱炉で1000℃以上の高温に長時間
加熱した後複数スタンドより成る熱間圧延機群によって
連続的に熱間圧延し、薄鋼板や線材用の素材を製造して
来た。大量生産という観点からは大型の連続鋳造鋳片を
使用し、大型で高能率の熱間圧延機群で熱間圧延する方
式は一つの技術体系と考えられるが、高価な熱間圧延機
をはじめ加熱用の燃料や電力の面でコスト的には高価な
方式と言える。(Prior art) Conventionally, in the production of various thin plates, thick cast slabs with a thickness of 100 mm or more were produced by vibrating the mold in continuous casting, and surface tampering was performed, and long-term heating to a high temperature of 1000 ° C or higher in a heating furnace After heating for a period of time, it was continuously hot-rolled by a group of hot-rolling mills consisting of multiple stands to manufacture thin steel sheets and raw materials for wire rods. From the viewpoint of mass production, the method of using large continuous cast slabs and performing hot rolling with a large, high-efficiency hot rolling mill group is considered to be one technical system, but expensive hot rolling mills and other It can be said that the method is expensive in terms of heating fuel and electric power.
又高温で長時間加熱にともなうスケール生成や、強力
に熱間圧延を施す結果耳割れが生じやすいとか、鋼種に
よっては冷延前に熱延仮焼鈍を必要としたり、コイルの
前面研削工程を必要とする結果になり、必ずしも理想的
な製造方式かどうかは問題である。In addition, it is likely to cause scale cracking due to long-term heating at high temperature or strong hot rolling, resulting in ear cracking. Depending on the steel type, hot rolling calcination annealing may be required before cold rolling, or front coil grinding process may be required. The result is that it is not always an ideal manufacturing method.
熱膨脹係数が小さい等のユニークな特徴で知られるFe
−42%Ni合金(42アロイ)や36%Ni合金(インバー合
金)更には高透磁率で知られるパーマロイ等々のFe−Ni
基を基本とする合金においても事情は全く同様である。
特にFe−Ni基合金の現状製造技術の課題は加熱炉で高温
に長時間加熱すると、スケールが成長し、特に粒界酸化
をともなった内部酸化が起こりやすく、大きな課題とな
る。特に強力な熱間圧延機で熱間圧延すると、粒界酸化
部から耳割れが起こりやすく又、熱延後は酸洗しても内
部酸化や粒界酸化部は表面欠陥として残るので、表面研
削を十分におこなわなければこれらの表面欠陥が除去出
来ない点である。このような課題に対して現状では合金
中のS,P等を低減して、熱間の加工性を向上させる方策
(鉄と鋼,82,S496,84−S650)や、加熱炉での加熱温度
を低温化する方法等で対処し、コイル表面を十分研削す
る方向で対処しているところである。Fe is known for its unique characteristics such as a small coefficient of thermal expansion
Fe-Ni such as -42% Ni alloy (42 alloy), 36% Ni alloy (Invar alloy), and permalloy known for high magnetic permeability.
The situation is exactly the same for base-based alloys.
In particular, the problem of the current manufacturing technology of Fe-Ni-based alloys is a big problem because when they are heated at a high temperature for a long time in a heating furnace, scales grow and internal oxidation accompanied by grain boundary oxidation easily occurs. Especially when hot rolling with a powerful hot rolling mill, edge cracks are likely to occur from the grain boundary oxidized portion, and internal oxidation and grain boundary oxidized portions remain as surface defects even after pickling after hot rolling, so surface grinding It is a point that these surface defects cannot be removed unless the above is sufficiently performed. In order to solve such problems, at present, measures to reduce S, P, etc. in alloys to improve hot workability (iron and steel, 82, S496, 84-S650) and heating in a heating furnace We are dealing with the method of lowering the temperature, etc., in the direction of sufficiently grinding the coil surface.
しかし、Fe−Ni基合金の本来の特性上、加熱炉におけ
る粒界酸化はさけられず、現状の製造方式は必ずしも満
足すべきものとは言えない。However, due to the original characteristics of the Fe-Ni-based alloy, grain boundary oxidation in a heating furnace is unavoidable, and the current manufacturing method is not always satisfactory.
(発明が解決しようとする問題点) 従来の方式とは抜本的に異なる新技術として連続鋳造
の段階で極力製品サイズに近い形で鋳造することが出来
れば熱間圧延工程を大幅に簡略化出来ることとなり、鉄
鋼製造工程を抜本的に変革する技術になり得ると考えら
れる。現在焦点となっている薄鋼片製造技術については
各国で精力的な研究が展開されているが、我国において
も「鉄と鋼」85′A197〜85′A256における特集に取上げ
られ詳細に述べられている。こうして鋳片サイズによっ
て、例えば1〜10mm程度の厚みではTwin roll法が、20
〜50mm程度の厚みではTwin Belt方式のいわゆる同期式
連続鋳造法が進歩して来た。今後はこれら薄手鋳造装置
の進歩、特に鋳片幅の拡大技術が必要で、あわせてこれ
らの薄鋳片の特徴を生かし、各種鋼材での一貫した製造
技術の開発が残された課題である。これら薄鋳片の製造
法が進歩すればFe−Ni基合金の製造法に応用することで
現状の方式がかかえる課題を一挙に解決することが出来
る。(Problems to be solved by the invention) As a new technology drastically different from the conventional method, the hot rolling process can be greatly simplified if it can be cast in a shape close to the product size as much as possible in the continuous casting stage. It is thought that this could be a technology that will radically change the steel manufacturing process. The thin steel billet manufacturing technology, which is currently the focus, is being actively researched in various countries, but in Japan as well, it is discussed in detail in a special feature in "Iron and Steel"85'A197 to 85'A256. ing. Thus, depending on the size of the slab, for example, the Twin roll method with
The twin belt method, the so-called synchronous continuous casting method, has progressed with a thickness of about 50 mm. In the future, the progress of these thin casting equipment, especially the technology for expanding the width of the slab is necessary. In addition, the development of a consistent manufacturing technology for various steel materials is left by making full use of the characteristics of these thin slabs. If the manufacturing method of these thin slabs progresses, it will be possible to solve all the problems related to the current method by applying it to the manufacturing method of Fe-Ni based alloy.
すなわち、極力製品サイズに近い薄手鋳片を鋳造し、
加熱炉を経ることなく、熱間圧延を極力簡略化すれば、
加熱にともなう内部酸化が防止出来る可能性があり、コ
イル研削工程も大幅に簡略化出来ると推定される。又熱
間圧延も簡略化し得るので熱延板焼鈍工程を省略するこ
とで一層スケールにともなう表面欠陥問題の解決が容易
になると推定される。That is, cast a thin slab as close to the product size as possible,
If hot rolling is simplified as much as possible without going through a heating furnace,
It is presumed that internal oxidation due to heating could be prevented and the coil grinding process could be greatly simplified. Also, since hot rolling can be simplified, it is presumed that the problem of surface defects due to scale can be more easily solved by omitting the hot rolled sheet annealing step.
かくして、極力製品サイズに近い形で鋳造すること
で、Fe−Ni基合金の合理的製造プロセス、即ち加熱炉を
通さず、極力熱間圧延を簡略化し、熱延仮焼鈍を省略
し、酸洗板の重研削を省略し、表面欠陥の生じない方法
を提供出来ると考えられるが、大きな課題は薄鋳造で生
じる鋳片表面の割れである。先に述べた通り従来の厚手
連続鋳片の凝固速度が約100℃/secであるのに対し双ロ
ール法等では約102℃/secと大きくなり凝固収縮等も大
きく割れやすい。又従来法では鋳片の表面疵は手入で除
去することが可能であるが製品形状に極力近づけて鋳造
した鋳片表面を手入するのでは、面積が大でとうてい経
済的に成立しない。Thus, by casting in a shape close to the product size as much as possible, the rational manufacturing process of Fe-Ni-based alloys, that is, without passing through a heating furnace, simplifying hot rolling as much as possible, omitting hot rolling anneal, and pickling. It is considered possible to provide a method in which heavy grinding of the plate is omitted and a surface defect does not occur, but a major problem is cracking of the surface of the slab that occurs in thin casting. Solidification rate of the above-mentioned as a conventional thick continuous slab of about 10 0 ° C. / sec to about 10 2 ° C. / sec greatly becomes fragile greater solidification contraction in twin roll method or the like while it is. Further, according to the conventional method, the surface flaws of the cast piece can be removed manually, but if the cast surface of the cast piece that is cast so as to be as close as possible to the product shape is provided, the area is large and it is not economically feasible.
そこで、新プロセスの課題は新鋳造法にともなう鋳造
時の鋳片の割れを防止する方法を提供することである。
もちろん鋳造機や鋳造の方法の面で割れ防止対策が進め
られているが、本発明では合金組成の検討で、融点直下
においても極力割れを発生しにくい成分系を求めてなさ
れたものである。Therefore, it is an object of the new process to provide a method for preventing cracks in a slab during casting which accompanies the new casting method.
Of course, measures for preventing cracks are being advanced in terms of casting machines and casting methods, but in the present invention, the alloy composition was examined to find a component system that hardly causes cracks even just below the melting point.
(問題点を解決するための手段) Fe−Ni基合金を3mm程度の厚みに鋳造する双ロール法
の鋳造においては、鋳造時に表面縦割れが発生すること
がある。特に鋳造幅が広がると縦割れが発生しやすくな
るが、製品の性能上ミクロな割れであっても許容し得な
い。このような鋳造時の縦割れに対しては、鋳造直後の
合金の高温延性、特に溶融点直下から30〜50℃低温域の
高温延性が関連していることを見出した。前出した鉄と
鋼82,S496において溶融域からの冷却過程の熱間変形特
性についていわゆるI領域として述べられているもの
で、Sが悪影響をすることを示しているが、他の不純物
について融点直下50℃域での影響については示されてい
ない。(Means for Solving Problems) In the twin-roll casting in which an Fe-Ni-based alloy is cast to a thickness of about 3 mm, surface vertical cracks may occur during casting. In particular, if the casting width is widened, vertical cracks are likely to occur, but even microscopic cracks are unacceptable in terms of product performance. It was found that the vertical cracking during casting is related to the high temperature ductility of the alloy immediately after casting, especially the high temperature ductility in the low temperature region of 30 to 50 ° C just below the melting point. In the above-mentioned iron and steel 82, S496, the hot deformation characteristics of the cooling process from the melting zone are described as the so-called I region, and it is shown that S adversely affects the melting point of other impurities. The effect at 50 ° C directly below is not shown.
本発明者らは溶融グリーブル試験法を使用し、溶融後
急冷して詳細に検討した結果、これらのゾーンで粒界割
れが発生することを見出し、且つS,O,P,N,Cの順に悪影
響することが判明した。しかもこれらの成分の影響が加
算的であり、Sの影響が特に大きい。こうして不純物の
影響を判定して、C<0.03%,S<0.001%,N<0.003%,P
<0.006%,O<0.005%で低い程望ましく、特に鋳片幅が
広くなると、P+O+N+10×S<0.02%に規制するこ
とが必要である。特にSの有害性を緩和するためにはCa
<0.005%,Al<0.03%,Ti<0.03%の範囲で1種又は2
種以上添加することが出来る。The present inventors have used the melt greeble test method, as a result of a detailed study by quenching after melting, found that intergranular cracking occurs in these zones, and S, O, P, N, C in order. It turned out to be an adverse effect. Moreover, the influence of these components is additive, and the influence of S is particularly large. In this way, the influence of impurities was judged, and C <0.03%, S <0.001%, N <0.003%, P
<0.006%, O <0.005%, the lower the better, and it is necessary to regulate P + O + N + 10 × S <0.02% especially when the width of the slab becomes wide. In order to mitigate the harmful effects of S, Ca
1 or 2 in the range of <0.005%, Al <0.03%, Ti <0.03%
More than one species can be added.
以上の不純物規制に加えて、合金組成のSiとMnが融点
直下の延性に影響が大きいことが判明した。すなわちSi
は0.3%以下で低い程よく又Mnも0.5%以下で低い程融点
直下の高温延性を改善する。したがって鋳片幅が広い場
合にはSi+Mn<0.7%に規制することが必要である。In addition to the above impurity regulation, it was found that the alloy compositions of Si and Mn had a great influence on the ductility just below the melting point. Ie Si
Is lower than 0.3%, and the Mn is lower than 0.5%, the hot ductility just below the melting point is improved. Therefore, when the slab width is wide, it is necessary to regulate Si + Mn <0.7%.
もちろんFe−Ni基合金には使用目的に応じて、Cr≦10
%,Mo≦10%、Nb≦10%,Ti≦2%、V≦2%,Ta≦20%,
W≦10%の範囲で1種又は2種以上選択添加することが
出来る。Of course, for Fe-Ni based alloys, Cr ≤ 10 depending on the purpose of use.
%, Mo ≦ 10%, Nb ≦ 10%, Ti ≦ 2%, V ≦ 2%, Ta ≦ 20%,
One or more kinds can be selectively added within the range of W ≦ 10%.
鋳造後の鋳片は高温部を極力急速冷却してスケールの
生成を防止することが望ましい。その後必要特性に応じ
て、熱間圧延、温間圧延、冷間圧延の1種又は2種以上
のプロセスにより製品とされ、必要により熱処理を加え
ることで所定の特性が得られる。鋳造段階で表面に微細
な割れを生じた場合にはコイル研削工程を省略すると、
熱間圧延中に又は温間、冷間圧延中に割れが多数顕在化
して製品とはなり得ない。したがって鋳造段階で割れ発
生を極力抑えた合金組成を得ることが極めて重要であ
る。It is desirable that the high temperature portion of the cast slab after cooling is cooled as rapidly as possible to prevent the formation of scale. Then, depending on the required characteristics, the product is made into a product by one or more processes of hot rolling, warm rolling, cold rolling, and if necessary, heat treatment is performed to obtain predetermined characteristics. If minute cracks occur on the surface during the casting stage, omitting the coil grinding process,
During hot rolling, warm rolling, or cold rolling, many cracks become apparent and the product cannot be obtained. Therefore, it is extremely important to obtain an alloy composition in which cracking is suppressed as much as possible in the casting stage.
以下実施例にて本発明を説明する。 The present invention will be described below with reference to examples.
実施例1 電気炉−AOD法によって常法通り、42%Ni合金を溶製
した。製造性及び特性の点から不純物を減少させ、かつ
介在物を十分浮上除去させた。Example 1 A 42% Ni alloy was melted by an electric furnace-AOD method in the usual manner. Impurities were reduced in terms of manufacturability and characteristics, and inclusions were sufficiently floated and removed.
不純物及び主要成分は重量パーセントで、C 0.015%,
Si 0.02%,Mn 0.31%,P 0.003%,S 0.0003%,Ni 41.35
%,Cr 0.10%,Co 0.12%,Al 0.001%,N 0.0014%,O 0.0
030%であった。こうして本合金では重量〔%〕でP+
O+N+10×S=0.0104%となり、Si+Mn=0.51%であ
る。Impurities and main components are in weight percent, C 0.015%,
Si 0.02%, Mn 0.31%, P 0.003%, S 0.0003%, Ni 41.35
%, Cr 0.10%, Co 0.12%, Al 0.001%, N 0.0014%, O 0.0
It was 030%. Thus, in this alloy, P + in weight [%]
O + N + 10 × S = 0.0104% and Si + Mn = 0.51%.
この溶製した合金を内部水冷式ドラムより成る双ロー
ル鋳造機により、700mm幅で2.0mm厚の鋳片に鋳造した。
凝固速度は〜104℃/secである。凝固後から1000℃まで
は雰囲気を大気としロール冷却をきかせて25〜30秒で冷
却した。950℃程度で20%の圧下を加えて形状修正をお
こない、その後水冷して、600℃以下で巻取った。コイ
ルの表面に生じたスケールは薄く、内部酸化層は5μ程
度でγ粒も細粒であった。その後コイル焼鈍を省略し、
デスケールを軽度のメカニカルと酸洗で実施し、コイル
研削工程は省略し、冷間圧延を実施し、以後は常法通り
焼鈍・酸洗・調圧工程を経て製品とした。This melted alloy was cast into a 700 mm wide and 2.0 mm thick slab by a twin roll casting machine consisting of an internal water-cooled drum.
The solidification rate is ~ 10 4 ° C / sec. From the solidification to 1000 ° C, the atmosphere was set to the atmosphere and the roll was cooled to cool it in 25 to 30 seconds. The shape was corrected by applying a 20% reduction at about 950 ° C, followed by water cooling and winding at 600 ° C or lower. The scale generated on the surface of the coil was thin, the internal oxide layer was about 5 μm, and the γ grains were also fine grains. After that, omit coil annealing,
Descaling was carried out with a slight mechanical and pickling, the coil grinding step was omitted, cold rolling was carried out, and thereafter, the product was subjected to annealing, pickling and pressure adjusting steps as usual.
以上の実施例においては、製品まで表面割れは見られ
なかった。In the above examples, no surface crack was observed in the products.
本合金では成分コントロールが重要であり、特に、微
量成分がはずれた次のチャージは全く同様の工程を経た
が、コイル研削工程を省略すると冷延後コイル表面にき
わめて小さな縦割れが現われた。すなわち、Si 0.33%,
Mn 0.46%,P 0.007%,S 0.0005%,N 0.0025%,O 0.007
%のもので、他成分はほぼ同一であった。この成分系で
はSi+Mn=0.79%,P+O+N+10×S=0.0215%とな
り、鋳片をミクロで調査した結果、鋳造後にミクロな縦
割れが存在していた。In this alloy, it is important to control the components, and in particular, the next charge after the trace components were removed went through the same process, but if the coil grinding process was omitted, very small vertical cracks appeared on the coil surface after cold rolling. That is, Si 0.33%,
Mn 0.46%, P 0.007%, S 0.0005%, N 0.0025%, O 0.007
%, And other components were almost the same. In this component system, Si + Mn = 0.79%, P + O + N + 10 × S = 0.0215%, and the result of a microscopic examination of the slab revealed that micro vertical cracks were present after casting.
実施例2 電気炉−AOD法によって常法通り、Fe−70%Ni合金を
溶製した。Moを4%含有する以外は高純度・高清浄度合
金としAlをCaを使用して脱酸した後、介在物を浮上させ
た。成分はC 0.005%,Si 0.10%,Mn 0.30%,P 0.003%,
S 0.0002%,Cu 0.003%,Ni 71.3%,Cr 0.08%,Mo 4.2
%,N 0.0021%,O 0.0010%でAl 0.0011%,Ca 0.0010%
であった。ちなみにSi+Mn=0.40%でP+O+N+10×
S=0.0081%である。Example 2 An Fe-70% Ni alloy was melted by an electric furnace-AOD method in the usual manner. A high-purity, high-cleanness alloy was prepared except that it contained 4% of Mo. Al was deoxidized using Ca, and then inclusions were floated. The components are C 0.005%, Si 0.10%, Mn 0.30%, P 0.003%,
S 0.0002%, Cu 0.003%, Ni 71.3%, Cr 0.08%, Mo 4.2
%, N 0.0021%, O 0.0010%, Al 0.0011%, Ca 0.0010%
Met. By the way, Si + Mn = 0.40%, P + O + N + 10 ×
S = 0.0081%.
溶製した合金はΔtを40℃以下に管理して、双ロール
鋳造機で3.0mm厚で幅700mmに鋳造された。凝固後から10
00℃までN2を富化した空気により冷却し、30秒で冷却し
た。The melted alloy was cast in a twin roll caster with a thickness of 3.0 mm and a width of 700 mm while controlling Δt at 40 ° C or less. 10 after coagulation
It was cooled to 00 ° C. with N 2 -enriched air and cooled in 30 seconds.
その後、1000〜950℃間で熱間圧延を加えて40%圧下
したのち水冷し、670℃でコイルに巻取った。内部酸化
層は6μ程度で、μ粒径は細粒であった。本発明合金で
は40%の圧下を加えても、耳割れは生じなかった。After that, hot rolling was performed at a temperature of 1000 to 950 ° C to reduce the temperature by 40%, water cooling was performed, and the coil was wound at 670 ° C. The internal oxide layer was about 6μ and the μ particle size was fine. With the alloy of the present invention, ear cracking did not occur even when a reduction of 40% was applied.
一方成分系において、Si 0.10%,Mn 0.56%,P 0.003
%,S 0.0006%,N 0.007%,O 0.006%となったほぼ同一
成分のチャージにおいては鋳片を40%圧下した段階で耳
割れを生じた。On the other hand, in the component system, Si 0.10%, Mn 0.56%, P 0.003
%, S 0.0006%, N 0.007%, O 0.006%, with almost the same composition of charge, ear cracking occurred at the stage of pressing down the slab by 40%.
ちなみにこのチャージでのP+O+N+10×S=0.02
2%であった。By the way, P + O + N + 10 × S = 0.02 with this charge
It was 2%.
(発明の効果) 本発明によれば、Fe−Ni基合金の急冷凝固時の割れを
防止することが出来るので、Fe−Ni基合金を製品サイズ
に近い形で鋳造する際の表面欠陥発生の問題点を解決し
うるという顕著な効果が奏される。(Effect of the invention) According to the present invention, since it is possible to prevent cracking during rapid solidification of the Fe-Ni-based alloy, the occurrence of surface defects when casting the Fe-Ni-based alloy in a shape close to the product size The remarkable effect that the problem can be solved is exhibited.
Claims (1)
合金を、鋳型と鋳片の間の相対速度差のない急冷凝固同
期式連続鋳造方法によって鋳造し、熱間圧延、温間圧延
および冷間圧延の1種または2種以上の組合せによって
最終板厚とした後、最終焼鈍を行なって製品とするに当
り、合金成分中のSiを0.3%以下、Mnを0.5%以下とする
とともに、C<0.03%,S<0.001%,P<0.006%,N<0.00
3%,O<0.005%とすることを特徴とするFe−Ni基合金の
急冷凝固時の割れ防止方法。1. A Fe-Ni-based alloy containing 10% by weight or more of Ni in weight% is cast by a rapid solidification-synchronous continuous casting method in which there is no relative speed difference between a mold and a slab, and hot rolling, After making the final plate thickness by one or more combinations of warm rolling and cold rolling, and finally annealing to make a product, Si in the alloy components is 0.3% or less and Mn is 0.5% or less. And C <0.03%, S <0.001%, P <0.006%, N <0.00
A method for preventing cracking during rapid solidification of an Fe-Ni based alloy, characterized in that 3% and O <0.005%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62172064A JP2548942B2 (en) | 1987-07-11 | 1987-07-11 | Method for preventing cracking during rapid solidification of Fe-Ni based alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62172064A JP2548942B2 (en) | 1987-07-11 | 1987-07-11 | Method for preventing cracking during rapid solidification of Fe-Ni based alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6417823A JPS6417823A (en) | 1989-01-20 |
JP2548942B2 true JP2548942B2 (en) | 1996-10-30 |
Family
ID=15934865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62172064A Expired - Fee Related JP2548942B2 (en) | 1987-07-11 | 1987-07-11 | Method for preventing cracking during rapid solidification of Fe-Ni based alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2548942B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03169455A (en) * | 1989-11-29 | 1991-07-23 | Kawasaki Steel Corp | Production of continuously cast slab having excellent high temperature deformability |
-
1987
- 1987-07-11 JP JP62172064A patent/JP2548942B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6417823A (en) | 1989-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016045158A1 (en) | Oriented ultra-low carbon silicon steel and preparation method therefor | |
JP2017197843A (en) | Hot-rolled steel strip for producing electrical steel sheets and method therefor | |
KR20190077201A (en) | Hot-rolled steel sheet for non-oriented electrical steel sheet, non-oriented electrical steel sheet and method for manufacturing the same | |
EP0202336B1 (en) | Process for producing a thin plate of a high ferrosilicon alloy | |
KR101977510B1 (en) | Non-oriented electrical steel sheet having exelleant magnetic properties low deviation of thickness and method of manufacturing the same | |
JP2548942B2 (en) | Method for preventing cracking during rapid solidification of Fe-Ni based alloy | |
JPS63123556A (en) | Method for manufacturing Cr-Ni stainless steel that does not easily cause cracks during casting and hot rolling processes | |
JPS61166923A (en) | Manufacture of electrical steel sheet having superior soft magnetic characteristic | |
KR102045653B1 (en) | Non-oriented electrical steel sheet having low deviation of mechanical property and thickness and method of manufacturing the same | |
JP3067894B2 (en) | Manufacturing method of thin slab for non-oriented electrical steel sheet | |
JP3474586B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP3181304B2 (en) | Method for producing Ni-based alloy sheet | |
JPH05279826A (en) | Production of 'permalloy(r)' excellent in impedance relative magnetic permeability | |
JP3051237B2 (en) | Manufacturing method of thin slab for non-oriented electrical steel sheet | |
KR100560173B1 (en) | Manufacturing method of high Si silicon steel sheet | |
JP2768527B2 (en) | Method for producing thin Cr-Ni stainless steel sheet with excellent workability | |
JP2735899B2 (en) | Method for producing unidirectional silicon steel sheet with uniform magnetic properties | |
JPH0347601A (en) | Hot width reduction rolling method for continuously cast unidirectional electrical steel slabs | |
JPH0730407B2 (en) | Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality | |
JPH05279741A (en) | Method for manufacturing unidirectional electrical steel sheet | |
JPH04293755A (en) | Method for producing Fe-Ni-based high magnetic permeability alloy | |
CN116786772A (en) | electrical steel | |
JPH0670253B2 (en) | Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material | |
JPH02221355A (en) | Nonoriented silicon steel sheet having excellent surface properties and its manufacture | |
JPH03140426A (en) | Method for reducing surface flaw in the stage of rapidly solidifying high ni-fe alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |