JP2544678B2 - Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same - Google Patents
Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the sameInfo
- Publication number
- JP2544678B2 JP2544678B2 JP2152844A JP15284490A JP2544678B2 JP 2544678 B2 JP2544678 B2 JP 2544678B2 JP 2152844 A JP2152844 A JP 2152844A JP 15284490 A JP15284490 A JP 15284490A JP 2544678 B2 JP2544678 B2 JP 2544678B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- copper
- water supply
- thickness
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Chemically Coating (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、淡水配管系、すなわち建物等の給水・給湯
系の配管に使用される内面Snめっき銅管とその製造方法
に関する。Description: TECHNICAL FIELD The present invention relates to an inner surface Sn-plated copper pipe used for a fresh water pipe system, that is, a pipe for a water supply / hot water supply system of a building and the like, and a manufacturing method thereof.
[従来の技術] 上水道の給水用配管材料としては銅管、鋼管、ステン
レス鋼管、塩化ビニール管等が使用されている。このな
かでも銅管は、長尺であってもコイル状に巻き上げ、運
搬を容易にすることが可能であり、また工事の施工性や
水、温水に対して耐食性が良好であることで広く使用さ
れており、特に建築用配管には多く使用されている。し
かし、特殊な水質条件下(たとえばpHが比較的低い上
水)では、銅管内表面から銅イオンが溶出し、水中の銅
イオン濃度が厚生省の上水道水水質基準である1ppm以上
になることがある。また、銅イオン量が1ppm以下であっ
ても、洗剤の種類により、青色に着色されることがあ
り、水中の銅イオンの量は少ないほうが望ましい。この
銅イオンの溶出を減少させる方法として、Cu-Mg系合金
等の開発または給水中へ薬剤の投入が行われてきた。し
かし、合金系では、溶解、鋳造、加工等の製造方法が繁
雑となり、高価になる。また、給水中への薬剤の投入で
は薬剤の補充、投入設備の新設等が必要であった。[Prior Art] Copper pipes, steel pipes, stainless steel pipes, vinyl chloride pipes, etc. are used as water supply piping materials. Among them, copper pipes can be rolled up in a coil shape even if they are long to facilitate transportation, and are widely used due to their workability in construction and good corrosion resistance to water and hot water. It is widely used, especially in piping for construction. However, under special water quality conditions (for example, tap water with a relatively low pH), copper ions may elute from the inner surface of the copper pipe, and the copper ion concentration in water may exceed 1 ppm, which is the tap water quality standard of the Ministry of Health and Welfare. is there. Even if the amount of copper ions is 1 ppm or less, it may be colored blue depending on the type of detergent, and it is desirable that the amount of copper ions in water is small. As a method of reducing the elution of copper ions, Cu-Mg alloys have been developed or chemicals have been added to the water supply. However, in the alloy system, manufacturing methods such as melting, casting, and processing are complicated and expensive. In addition, it was necessary to replenish the chemicals and install a new injection facility when the chemicals were injected into the water supply.
これらを解決するために、銅管の内面に低融点の金属
または合金とフラックスを被覆した後加熱することによ
り合金を被覆し、耐食性を向上させたもの(特開昭60-2
00954号公報、特開昭60-200975号公報、特開昭62-61717
号公報、特開昭62-61718号公報)、内面にCu-Snの合金
層を形成させた銅管(特開昭61-221359号公報)、銅管
内に溶融状態のメッキ金属をフローティングプラグを用
いてメッキする方法(特開昭62-61716号公報)等が提案
されている。In order to solve these problems, the inner surface of a copper pipe is coated with a metal or alloy having a low melting point and a flux, and then the alloy is coated by heating to improve the corrosion resistance (JP-A-60-2).
00954, JP60-200975, JP62-61717
JP-A-62-61718), a copper tube having a Cu-Sn alloy layer formed on its inner surface (JP-A-61-221359), and a floating plug of molten plated metal in the copper tube. There has been proposed a method of plating by using (Japanese Patent Laid-Open No. 62-61716).
[発明が解決しょうとする課題] 上述の従来の技術は、いずれもそれなりにそれ相当の
性能が得られるものであるが、メッキ金属粉末とフラッ
クスとを銅管内面に均一に塗着し、加熱を行って皮膜を
形成することは、高度な技術・熟練を必要とする作業で
あり、常に一定品質の製品を提供することは困難であっ
た。また、このようなメッキ手段は、管の直径に対し長
さの短い管材には適用できるが、給水・給湯用配管のよ
うな管の直径に対し長さの長い管材(通常内径15.88m
m、長さ4m以上)には適用できなかった。[Problems to be Solved by the Invention] Although the above-mentioned conventional techniques are capable of attaining comparable performance to some extent, the plated metal powder and the flux are uniformly applied to the inner surface of the copper pipe and heated. It is a work that requires a high level of skill and skill to form a film by carrying out, and it has been difficult to always provide a product of constant quality. In addition, such plating means can be applied to pipes whose length is shorter than the diameter of the pipe, but pipes whose length is longer than the pipe diameter (usually an inner diameter of 15.88m
m, length 4m or more) was not applicable.
また、銅表面から銅イオンが溶出するのを避けるため
には、銅表面をSnで被覆することは、公知である。しか
もユーリックの著書に「銅イオンによる水の汚染は、銅
管の内面をSnで被覆することによって(tinned coppe
r)避けることができる。この被覆に孔(pore)が存在
すると、SnまたはCu-Sn金属間化合物がCuに対してカソ
ードとなって、Cuが露出した部分の腐食が促進されるの
で、孔は避けなければならない」(H.H.ユーリック著
「腐食反応とその制御−原理と応用−CORROSION AND CO
RROSION CONTROR」産業図書(1968)p275)とあるよう
に、忌み嫌われていた。Further, it is known to coat the copper surface with Sn in order to avoid elution of copper ions from the copper surface. Moreover, Yurick's book states, "Water pollution by copper ions is caused by coating the inner surface of the copper tube with Sn (tinned coppe
r) Can be avoided. The presence of pores in this coating causes Sn or Cu-Sn intermetallics to become a cathode for Cu and promote corrosion of exposed Cu, so pores should be avoided. " HH Yulic "Corrosion reaction and its control-Principle and application-CORROSION AND CO
RROSION CONTROR ”industry book (1968) p275), it was disliked.
しかし、置換メッキまたは化学還元メッキで形成された
皮膜は、微小孔があっても、Snの水素過電圧が高くなる
ために、または犠牲陽極効果により、銅イオンが溶出し
ないことが推定される。However, it is presumed that copper ions do not elute in the film formed by the displacement plating or the chemical reduction plating because of the high hydrogen overvoltage of Sn or the sacrificial anode effect even if the film has micropores.
そこで本発明の目的は、銅管の内面を、従来考えられ
ていなかった置換メッキ法または化学還元メッキ法によ
り、厚さ3μm以下ないし0.1μm以上のSnメッキ層で
被覆し、水道水による銅イオンの溶出を軽減し、しかも
安価で取り扱い容易な内面処理銅管を提供することにあ
る。Therefore, an object of the present invention is to coat the inner surface of a copper pipe with a Sn plating layer having a thickness of 3 μm or less to 0.1 μm or more by a displacement plating method or a chemical reduction plating method which has not been considered so far, and copper ions from tap water are provided. Another object of the present invention is to provide an inner surface-treated copper pipe which is less expensive and easy to handle.
[課題を解決するための手段] 上記目的を達成するため、本発明者らは鋭意研究を重
ねた結果、置換メッキまたは化学還元メッキによる極め
て薄い皮膜は、たとえ微小な孔が存在する皮膜であって
も、銅イオンの溶出防止に十分な効果があることを知見
し、本発明を完成するに至った。[Means for Solving the Problems] As a result of intensive studies conducted by the present inventors in order to achieve the above object, an extremely thin film formed by displacement plating or chemical reduction plating is a film having minute holes. However, they have found that they have a sufficient effect of preventing the elution of copper ions, and have completed the present invention.
すなわち、本発明の要旨は、銅管内面に置換メッキま
たは化学還元メッキにより、母材である銅の上に、厚さ
3μm以下ないし0.1μm以上に積層されたSn結晶粒か
ら成る置換メッキまたは化学還元メッキにより形成した
Snメッキ皮膜を有する給水・給湯用内面Snメッキ銅管を
第1の発明とし、コイル状の銅管の端部開口部から管内
部に、メッキ前処理液を流通させて管内部を洗浄後、Sn
換算量で1g/l〜20g/lの置換メッキ液または化学還元メ
ッキ液を、10〜60分間連続的に流通させ、厚さ3μm以
下のSnメッキ皮膜を銅管内面に形成させることにより、
給水・給湯用内面Snメッキ銅管を製造する方法を第2の
発明とするものである。That is, the gist of the present invention is that the inner surface of a copper tube is subjected to displacement plating or chemical reduction plating, and displacement plating or chemical reaction comprising Sn crystal grains laminated to a thickness of 3 μm or less to 0.1 μm or more on copper as a base material. Formed by reduction plating
An inner surface Sn-plated copper pipe for water supply / hot water supply having a Sn-plated film is defined as the first invention, and a plating pretreatment liquid is circulated from the end opening of the coiled copper pipe to the inside of the pipe to wash the inside of the pipe, Sn
By converting 1 g / l to 20 g / l of the displacement plating solution or the chemical reduction plating solution continuously for 10 to 60 minutes, a Sn plating film having a thickness of 3 μm or less is formed on the inner surface of the copper tube.
A second invention is a method of manufacturing an inner surface Sn-plated copper pipe for supplying water and hot water.
[作用] 本発明は、皮膜の厚さが非常に薄く、たとえ微小孔が
存在しても、Sn結晶粒が積層されたSnメッキ皮膜を、銅
管内面に有することが特徴である。[Operation] The present invention is characterized in that the thickness of the coating is very thin, and even if micropores are present, it has an Sn plating coating in which Sn crystal grains are laminated on the inner surface of the copper tube.
結晶粒が積層されること Snの置換メッキにおいては、銅と錫との置換反応によ
って析出が進行する。第2図に示した走査電子顕微鏡の
写真から、メッキの析出形態は、(a)ないし(e)に
示すような状態で、各時間毎に結晶粒が積層されたもの
である。この皮膜形成過程を模式的に第1図(a)ない
し(c)に示した。化学還元メッキにおいては、表面の
触媒活性により皮膜が積層される。Stacking of crystal grains In displacement plating of Sn, precipitation proceeds due to the substitution reaction of copper and tin. From the scanning electron microscope photograph shown in FIG. 2, the deposition pattern of plating is such that crystal grains are laminated at each time in the state as shown in (a) to (e). This film forming process is schematically shown in FIGS. 1 (a) to (c). In chemical reduction plating, a film is laminated due to the catalytic activity of the surface.
メッキ皮膜の厚さ メッキ皮膜の厚さは、銅イオンの溶出を防止するため
には、0.1μm以上存在することが好ましい。また、置
換メッキの場合には、銅と錫との置換反応によって析出
が進行するため、せいぜい3μmが限度である。化学還
元メッキでは、反応が遅く、被着に長時間を要するこ
と、および3μm以上と厚くなっても銅イオンの溶出防
止効果が飽和するので、3μm以下が好ましい。Thickness of plating film The thickness of the plating film is preferably 0.1 μm or more in order to prevent the elution of copper ions. Further, in the case of displacement plating, since the precipitation proceeds due to the substitution reaction of copper and tin, the maximum is 3 μm. In the chemical reduction plating, the reaction is slow, the deposition takes a long time, and the effect of preventing the elution of copper ions is saturated even when the thickness is 3 μm or more, and therefore the thickness is preferably 3 μm or less.
銅イオンの溶出を防止するには、銅が露出していない
ことが最も好ましい。たとえば、ユーリックの著書に
「銅の露出部分における腐食が促進されるので孔は避け
なければならない。」とあるように、忌み嫌われてい
た。しかし、置換メッキまたは化学還元メッキで形成さ
れた皮膜は、被覆率が50%以上であれば、Snの水素過電
圧が高くなるため、または犠牲陽極効果により、銅イオ
ンが溶出しないことが推定される。本発明はたとえ銅が
露出していても、Snメッキ法によって銅イオンの溶出を
防止できることにある。しかし、被覆率が50%未満では
この効果が得られなくなる。In order to prevent the elution of copper ions, it is most preferable that the copper is not exposed. For example, he was disliked, as Euric wrote in his book, "Pores should be avoided because they accelerate corrosion in exposed copper." However, it is presumed that the copper ion does not elute in the coating formed by displacement plating or chemical reduction plating if the coverage is 50% or more because the hydrogen overvoltage of Sn becomes high or due to the sacrificial anode effect. . The present invention is to prevent the elution of copper ions by the Sn plating method even if copper is exposed. However, if the coverage is less than 50%, this effect cannot be obtained.
次に、製造方法について説明する。Next, a manufacturing method will be described.
管内部に処理液を連続的に流通させること 管内部に処理液を連続的に流通させることは、管内面
の処理を行うのは特には発明力を要しないが、給水、給
湯用銅管のような直径に対する長さの長いものに対して
は有効である。また、処理液として置換メッキまたは化
学還元メッキを用いるのは、メッキ皮膜の析出速度が遅
いため、銅管の内面に薄い皮膜を均一に形成させる効果
がある。Continuously circulating the treatment liquid inside the pipe Continuously circulating the treatment liquid inside the pipe does not require the invention to perform treatment on the inner surface of the pipe. It is effective for such a long length with respect to the diameter. Further, the use of displacement plating or chemical reduction plating as the treatment liquid has an effect of uniformly forming a thin film on the inner surface of the copper tube because the plating film deposition rate is slow.
メッキ液中のSn濃度 Sn濃度は、メッキ厚さに最も影響を及ぼすものであ
り、1g/l未満では皮膜形成速度が低く、温度をあげても
長時間を必要とするので工業的に不利である。20g/lを
越えるとメッキ液の種類によっては溶解が飽和し、液が
製作できなくなる。Sn concentration in the plating solution The Sn concentration has the greatest effect on the plating thickness.If it is less than 1 g / l, the film formation rate is low and it takes a long time even if the temperature is raised, which is industrially disadvantageous. is there. If it exceeds 20 g / l, depending on the type of plating solution, the solution will be saturated and the solution cannot be manufactured.
処理時間 置換メッキは、銅と錫との置換反応によって析出が進
行するため、露出した銅部分が少なくなれば、析出が低
下するので、皮膜厚さを制御するには処理時間を調整す
るのが好ましい。また、化学還元メッキは、メッキ液を
新しく更新すれば、厚いメッキ厚さが得られるが、皮膜
厚さを制御するには、析出速度は1μm/hr程度であるの
で、処理時間を調整するのが好ましい。Treatment time In displacement plating, the precipitation proceeds due to the substitution reaction of copper and tin. Therefore, if the exposed copper portion is reduced, the precipitation will decrease, so it is necessary to adjust the treatment time to control the film thickness. preferable. Also, with chemical reduction plating, a thick plating thickness can be obtained by newly updating the plating solution, but in order to control the film thickness, the deposition rate is about 1 μm / hr, so the treatment time should be adjusted. Is preferred.
温度は、メッキ厚さに影響を及ぼし、温度が高いほど
メッキ速度が速くなり好ましいが、80℃以上ではメッキ
液に分解が起こるので好ましくない。The temperature affects the plating thickness, and the higher the temperature is, the faster the plating speed becomes, which is preferable, but if the temperature is 80 ° C. or higher, the plating solution is decomposed, which is not preferable.
[実施例] 本発明の実施例について説明する。[Examples] Examples of the present invention will be described.
実施例1 一辺の長さが100mmの脱酸銅の板材を用意し、下記に
示す工程で第1表に示す置換メッキ液および化学還元
メッキ液を用い、液温度を60℃とし、処理時間を種々
変えたメッキを行い、メッキ厚さを種々変化させた試験
材を得た。Example 1 A deoxidized copper plate having a side length of 100 mm was prepared, the displacement plating solution and the chemical reduction plating solution shown in Table 1 were used in the following steps, the solution temperature was 60 ° C., and the treatment time was Plating with various changes was performed to obtain test materials with various changes in plating thickness.
アルカリ脱脂→水洗→酸洗(高濃度酸性溶液)→水洗→
中和(希薄酸性溶液)→メッキ→水洗→湯洗→乾燥 得られた試験材の一部を、塩酸溶液で溶解し、重量減
少量からメッキ厚さを計算によって求め、第2表に示す
ようなメッキ厚さを有する試験材を得た。これらの試験
材を水道水中に24時間浸漬し、水道水中に溶出した銅イ
オン量を、原子吸光光度分析法によって測定し、これら
の結果を第2表に示した。Alkaline degreasing → Washing → Pickling (high-concentration acidic solution) → Washing →
Neutralization (dilute acidic solution) → plating → washing with water → washing with hot water → drying A part of the obtained test material was dissolved in a hydrochloric acid solution, the plating thickness was calculated from the weight reduction amount, and a test material having a plating thickness as shown in Table 2 was obtained. These test materials were immersed in tap water for 24 hours, and the amount of copper ions eluted in the tap water was measured by atomic absorption spectrophotometry. The results are shown in Table 2.
これらから発明例のNo1〜10は、メッキ皮膜厚さが0.1
μm以上存在するため、銅イオン溶出量が0.08ppm以下
であり、良好である。これに対し、比較例のNo.11は、
メッキ皮膜厚さが4μm存在するため、銅イオン溶出量
が0.01ppm以下と良好であるが、これは板材を溶融メッ
キ法で得られたもので、長い管材の内面メッキを行うの
は困難である。 From these, the invention examples No. 1 to 10 have a plating film thickness of 0.1.
Since it is present in an amount of μm or more, the elution amount of copper ions is 0.08 ppm or less, which is good. On the other hand, No. 11 of the comparative example is
Since the plating film thickness is 4 μm, the elution amount of copper ions is as good as 0.01 ppm or less, but this is obtained by the hot dipping method of the plate material, and it is difficult to plate the inner surface of a long pipe material. .
No.12および16は、いずれもメッキ厚さが厚いため、
銅イオン溶出量が0.01ppm以下と良好であるが、フラッ
クス加熱法および電気メッキ法で得られたもので、長い
管材の内面メッキを行うのは困難である。No. 12 and 16 have thick plating thickness, so
The elution amount of copper ions is as good as 0.01 ppm or less, but it is obtained by the flux heating method and the electroplating method, and it is difficult to perform the inner surface plating of a long pipe material.
No.13および14は、置換メッキおよび化学還元メッキ
であるが、メッキ厚さが0.01μmと薄いため、銅イオン
の溶出量が0.36ppmおよび0.20ppmとなり本発明を基準値
(0.1ppm)を越えている。No. 13 and 14 are displacement plating and chemical reduction plating, but since the plating thickness is as thin as 0.01 μm, the elution amount of copper ions is 0.36 ppm and 0.20 ppm, which exceeds the standard value (0.1 ppm) of the present invention. ing.
No.15は、化学還元メッキでメッキ皮膜厚さを4μm
形成させたものであるが、銅イオン溶出量が0.01ppm以
下であり良好であるが、化学還元メッキの速度が低く、
液の更新を頻繁に行うことと、これらの処理に長時間を
必要とするので好ましくない。No.15 is chemical reduction plating and the plating film thickness is 4 μm.
Although it was formed, the copper ion elution amount is 0.01 ppm or less and it is good, but the rate of chemical reduction plating is low,
Frequent renewal of the liquid and long processing time are not preferable.
No.17は、メッキ処理していない銅板材であり、銅イ
オン溶出量が1.24ppmと多くなっている。No. 17 is a copper plate material that has not been plated, and the amount of copper ions eluted is as high as 1.24 ppm.
実施例2 各種置換メッキ液を用い、Sn濃度、処理時間および処
理温度を変えた試験を、実施例1と同様な方法で行い、
その結果を第3表に示す。Example 2 Using various displacement plating solutions, tests in which Sn concentration, treatment time and treatment temperature were changed were conducted in the same manner as in Example 1,
The results are shown in Table 3.
メッキ液のSn濃度、処理時間および処理温度が発明の
範囲内にあるNo.18〜27は、メッキ厚さとして0.08μm
以上が得られ、銅イオン溶出量が0.08ppm以下となり、
良好である。 No. 18 to 27, in which the Sn concentration of the plating solution, the treatment time and the treatment temperature are within the scope of the invention, have a plating thickness of 0.08 μm.
The above is obtained, the copper ion elution amount is 0.08 ppm or less,
It is good.
これに対し、No.28は、Sn濃度が20g/lと高いが、処理
時間が5分と短く、メッキ厚さが0.08μmと薄くなり、
銅イオン溶出量が0.10ppmとなった。On the other hand, No. 28 has a high Sn concentration of 20 g / l, but the treatment time is as short as 5 minutes and the plating thickness is as thin as 0.08 μm.
The elution amount of copper ions was 0.10 ppm.
No.29,30および31は、置換メッキ液のSn濃度が0.5g/lと
低いため、処理時間および処理温度を発明の範囲の上限
で行ったが、メッキ厚さが0.05〜0.07μmとなり、銅イ
オンの溶出量が0.15〜0.18ppmと高くなった。In Nos. 29, 30 and 31, since the Sn concentration of the displacement plating solution was as low as 0.5 g / l, the treatment time and the treatment temperature were set to the upper limits of the range of the invention, but the plating thickness became 0.05 to 0.07 μm, The elution amount of copper ions was as high as 0.15 to 0.18 ppm.
実施例3 置換メッキ液および化学還元メッキ液を用い、処理時
間および処理温度を変えた試験を、実施例1と同様な方
法で行い、その結果を第4表に示す。Example 3 A test was conducted by using the displacement plating solution and the chemical reduction plating solution and changing the treatment time and the treatment temperature in the same manner as in Example 1, and the results are shown in Table 4.
処理時間および処理温度が発明の範囲内にあるNo.32〜4
5は、メッキ厚さとして0.25μm以上が得られ、銅イオ
ン溶出量も0.04ppm以下となり、良好である。 No. 32 to 4 whose processing time and temperature are within the scope of the invention
In No. 5, the plating thickness is 0.25 μm or more, and the amount of copper ions eluted is 0.04 ppm or less, which is good.
これに対し、比較例のNo.46〜51は、いずれも処理時
間が5分と短いため、メッキ厚さとして0.04μm以下と
なり、銅イオン溶出量も0.19ppm以上となった。On the other hand, in Comparative Examples Nos. 46 to 51, since the treatment time was short at 5 minutes, the plating thickness was 0.04 μm or less, and the copper ion elution amount was 0.19 ppm or more.
実施例4 外径15.88mm、肉厚0.71mm、長さ50mの脱酸銅管のコイ
ルを用意し、実施例1で示した処理工程で、コイルの管
端から処理液を流通させ、メッキ処理を行なった。得ら
れた銅管について、コイルの両端および中央部から長さ
500mmの試験材を切り出し、メッキ皮膜の厚さおよび銅
イオン溶出試験を行った。Example 4 A coil of a deoxidized copper pipe having an outer diameter of 15.88 mm, a wall thickness of 0.71 mm and a length of 50 m was prepared, and the treatment liquid was circulated from the pipe end of the coil in the treatment process shown in the first embodiment to perform plating treatment. Was done. For the obtained copper tube, length from both ends and the center of the coil
A test material of 500 mm was cut out and subjected to a plating film thickness and a copper ion elution test.
メッキ皮膜の厚さの測定は、銅管内に塩酸溶液を充填
し、Sn層を溶解させ、重量減少量からメッキ厚さを計算
によって求めた。The thickness of the plating film was measured by filling a copper tube with a hydrochloric acid solution to dissolve the Sn layer, and calculating the plating thickness from the weight reduction amount.
銅イオン溶出試験は、500mmの銅管に水道水を充填・
密封し、24時間後における銅イオン溶出量を、原子吸光
光度分析法によって測定した。それらの結果を第5表に
示した。In the copper ion elution test, tap water is filled in a 500 mm copper pipe.
After sealing and 24 hours later, the elution amount of copper ions was measured by atomic absorption spectrophotometry. The results are shown in Table 5.
処理時間および処理温度が発明の範囲内にあるNo.52
〜54は、メッキ厚さとして0.33μm以上が得られ、銅イ
オン溶出量も0.01ppm以下となり、良好である。これに
対し、比較例のNo.55および56は、いずれも処理時間が
5分と短いため、メッキ厚さとして0.02μm以下とな
り、銅イオン溶出量も0.31ppm以上となった。 No.52 with processing time and processing temperature within the scope of the invention
Nos. 54 to 54 have a plating thickness of 0.33 μm or more, and the elution amount of copper ions is 0.01 ppm or less, which is good. On the other hand, in Comparative Examples Nos. 55 and 56, since the treatment time was as short as 5 minutes, the plating thickness was 0.02 μm or less, and the elution amount of copper ions was 0.31 ppm or more.
[発明の効果] 本発明は、以上説明したように構成されているので、
簡単に銅管内面へ薄いSnメッキ皮膜を形成させることが
可能となり、銅イオンの溶出を防止し、しかも継手部品
も従来のものをそのまま使用できるという効果が奏さ
れ、産業上極めて有用である。EFFECT OF THE INVENTION Since the present invention is configured as described above,
It is possible to easily form a thin Sn plating film on the inner surface of a copper pipe, prevent the elution of copper ions, and have the effect that the conventional joint parts can be used as they are, which is extremely useful industrially.
第1図(a)(b)(c)は、Sn結晶が積層される状況
を示す模式図である。 第2図(a)は1分後、第2図(b)は5分後、第2図
(c)は10分後、第2図(d)は30分後、第2図(e)
は60分後の置換メッキによるSn結晶が積層された状況を
示す走査型顕微鏡写真図である。FIGS. 1 (a), (b) and (c) are schematic views showing a situation in which Sn crystals are stacked. Figure 2 (a) after 1 minute, Figure 2 (b) after 5 minutes, Figure 2 (c) after 10 minutes, Figure 2 (d) after 30 minutes, Figure 2 (e).
FIG. 6 is a scanning micrograph showing a state in which Sn crystals are laminated by displacement plating after 60 minutes.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 浩三 愛知県名古屋市港区千年3丁目1番12号 住友軽金属工業株式会社技術研究所内 (56)参考文献 特開 昭63−109179(JP,A) 特公 昭55−34862(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kozo Kono, Kochi Kono, Aichi Prefecture, Nagoya City, 3-1, 12th, 1000, Minen-ku, Sumitomo Light Metal Industries, Ltd. (56) Reference JP-A-63-109179 (JP, A) ) Japanese Patent Publication Sho 55-34862 (JP, B2)
Claims (2)
いて、母材である銅の上に、厚さ3μmないし0.1μm
以上に積層されたSn結晶粒からなる置換メッキまたは化
学還元メッキにより形成したSnメッキ皮膜を有すること
を特徴とする給水・給湯用内面Snメッキ銅管。1. In an internal surface film structure of a copper pipe for water supply / hot water supply, a thickness of 3 μm to 0.1 μm is formed on copper as a base material.
An inner surface Sn-plated copper pipe for water / hot water supply, comprising an Sn plating film formed by displacement plating or chemical reduction plating composed of the above-mentioned Sn crystal grains.
に、メッキ前処理液を流通させて管内部を洗浄後、Sn換
算量で1g/l〜20g/lの置換メッキ液または化学還元メッ
キ液を10〜60分間連続的に流通させ、厚さ3μm以下な
いし0.1μm以上のSnメッキ皮膜を銅管内面に形成させ
ることを特徴とする給水・給湯用内面Snメッキ銅管の製
造方法。2. A pretreatment liquid for plating is circulated from the end opening of the coiled copper pipe into the pipe to wash the inside of the pipe, and then a substitution plating liquid of 1 g / l to 20 g / l in terms of Sn or Manufacture of Sn-plated copper pipe for water supply / hot water supply, characterized in that a chemical reduction plating solution is continuously circulated for 10 to 60 minutes to form a Sn plating film having a thickness of 3 μm or less to 0.1 μm or more on the inner surface of the copper pipe. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2152844A JP2544678B2 (en) | 1990-06-13 | 1990-06-13 | Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2152844A JP2544678B2 (en) | 1990-06-13 | 1990-06-13 | Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0445282A JPH0445282A (en) | 1992-02-14 |
JP2544678B2 true JP2544678B2 (en) | 1996-10-16 |
Family
ID=15549367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2152844A Expired - Lifetime JP2544678B2 (en) | 1990-06-13 | 1990-06-13 | Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2544678B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996028686A1 (en) * | 1995-03-16 | 1996-09-19 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy pipe for water/hot water supply equipped with protective film on its inner surface, production thereof, and heat-exchanger for hot water supply |
JP2007069985A (en) * | 2005-08-09 | 2007-03-22 | Nippon Electric Glass Co Ltd | Glass roving package, glass roving packing element, and its packing method |
JP2009180452A (en) * | 2008-01-31 | 2009-08-13 | Sumitomo Light Metal Ind Ltd | Water heat exchanger for water heater |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5534862A (en) * | 1978-09-04 | 1980-03-11 | Hitachi Ltd | Commutator |
JPS6261716A (en) * | 1985-09-10 | 1987-03-18 | Hitachi Cable Ltd | Internal plating method for metal pipes |
JPS63109179A (en) * | 1986-10-27 | 1988-05-13 | Usui Internatl Ind Co Ltd | Method for forming coated film of tin or tin-based alloy on inner surface of metallic pipe |
JP2611364B2 (en) * | 1988-08-26 | 1997-05-21 | 上村工業株式会社 | Electroless tin plating bath and electroless tin plating method |
-
1990
- 1990-06-13 JP JP2152844A patent/JP2544678B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0445282A (en) | 1992-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2369620A (en) | Method of coating cupreous metal with tin | |
JP2004502868A (en) | Improvement of zinc-aluminum alloy film forming method by immersion in molten metal bath | |
JP2544678B2 (en) | Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same | |
JPH03236476A (en) | Manufacture of aluminium memory disk finished by flat and smooth metal plating | |
US3206324A (en) | Method and pre-flux for coating ferrous metals with nickel prior to galvanizing | |
US3674655A (en) | Surface preparation of uranium parts | |
JP2962496B2 (en) | Magne-based alloy plating method | |
JPH0823072B2 (en) | Inner-composite coated copper pipe for water / hot water supply and method for manufacturing the same | |
WO2005014890A1 (en) | An electrolyte solution | |
JPS5932556B2 (en) | Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting | |
JP3369553B2 (en) | Plating film structure with heat and corrosion resistance | |
JPH04214848A (en) | Hot-dip galvanized coating material and method for hot-dip galvanizing | |
JPH0765190B2 (en) | Copper pipe for water / hot water supply having Cu-Sn alloy layer on inner surface and method for manufacturing the same | |
JP4469055B2 (en) | Hot-dip Zn-Mg-Al alloy plating method | |
JPH1112751A (en) | Electroless plating method of nickel and / or cobalt | |
JPS5928598A (en) | Pb alloy insoluble anode for electroplating | |
JPS61166999A (en) | Method for cleaning surface of steel sheet | |
JPH0123555B2 (en) | ||
JPH06240467A (en) | Aluminum plate excellent in filiform erosion resistance | |
JPH05171389A (en) | Method for producing hot dip galvanized steel sheet | |
JP3867199B2 (en) | Method for producing electrogalvanized steel sheet | |
JP2726144B2 (en) | Manufacturing method of high corrosion resistance Pb-Sn alloy plated Cr-containing steel sheet with excellent coverage and adhesion | |
JPS6033897B2 (en) | Manufacturing method of lead-tin alloy plated steel sheet with excellent corrosion resistance | |
JPS5932557B2 (en) | Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting | |
KR890002987B1 (en) | Surface treated steel plates with a weldability and method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |