[go: up one dir, main page]

JP2540946B2 - Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same - Google Patents

Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same

Info

Publication number
JP2540946B2
JP2540946B2 JP1166523A JP16652389A JP2540946B2 JP 2540946 B2 JP2540946 B2 JP 2540946B2 JP 1166523 A JP1166523 A JP 1166523A JP 16652389 A JP16652389 A JP 16652389A JP 2540946 B2 JP2540946 B2 JP 2540946B2
Authority
JP
Japan
Prior art keywords
steel sheet
elements
total
annealing
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1166523A
Other languages
Japanese (ja)
Other versions
JPH0336242A (en
Inventor
昭彦 西本
佳弘 細谷
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP1166523A priority Critical patent/JP2540946B2/en
Publication of JPH0336242A publication Critical patent/JPH0336242A/en
Application granted granted Critical
Publication of JP2540946B2 publication Critical patent/JP2540946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無方向性電磁鋼板、特に低鉄損,高磁束密度
を有する無方向性電磁鋼板およびその製造方法に関す
る。
The present invention relates to a non-oriented electrical steel sheet, particularly a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, and a method for producing the same.

〔従来技術およびその問題点〕[Prior art and its problems]

近年、省エネルギーの観点からモーターの高効率化、
小型化が要請され、鉄心材料として用いられる無方向性
電磁鋼板についても、低鉄損,高磁束密度化による磁気
特性の向上が益々重要となってきている。
In recent years, from the viewpoint of energy saving, high efficiency of motors,
With respect to the non-oriented electrical steel sheet used as an iron core material, which is required to be downsized, it is becoming more and more important to improve the magnetic characteristics by reducing the iron loss and increasing the magnetic flux density.

無方向性電磁鋼板において鉄損を低減するには、Siの
添加による電気抵抗の増大を通じて渦流損を低下させる
というのが一般的である。しかしながら、鋼中のSi量が
増大すると、熱延巻取り後のフェライトの再結晶が起こ
りにくくなり、このように熱延板中のフェライト再結晶
率が低いと、続いて冷延−焼鈍した鋼板の磁束密度が低
下してしまう。そこで、Si添加に伴うこのような欠点を
補うために、熱延板を焼鈍してフェライトの再結晶を充
分行った後に冷延−焼鈍する方法が開示されている。し
かし、このような熱延板焼鈍だけでは、鋼板の低鉄損化
及び高磁束密度化を充分に達成することはできない。
In order to reduce the iron loss in a non-oriented electrical steel sheet, it is common to reduce the eddy current loss by increasing the electrical resistance by adding Si. However, when the amount of Si in the steel increases, recrystallization of ferrite after hot rolling and winding hardly occurs, and when the ferrite recrystallization rate in the hot rolled sheet is low as described above, the cold rolled-annealed steel sheet is subsequently used. The magnetic flux density of will decrease. Therefore, in order to compensate for such drawbacks caused by the addition of Si, a method of annealing a hot-rolled sheet to sufficiently recrystallize the ferrite and then cold-annealing is disclosed. However, only such hot-rolled sheet annealing cannot sufficiently reduce the iron loss and the high magnetic flux density of the steel sheet.

また、鋼中にSn、Sb等の元素を添加すると、熱延板焼
鈍時にこれらの元素がフェライト粒界に偏析し、冷圧後
の焼鈍段階において、磁気特性に有害な(111)成分の
粒界近傍からの再結晶を抑制することにより、さらに磁
束密度を向上させるという技術が開示されている(例え
ば、特開昭57−35627号)。しかし、これらの元素が熱
延板の板厚方向で均一に粒界上に偏析すると、冷圧後焼
鈍段階でのフェライト粒成長性が抑制され、鉄損の低下
が抑えられてしまうという問題点がある。
When elements such as Sn and Sb are added to the steel, these elements segregate at the ferrite grain boundaries during hot-rolled sheet annealing and, in the annealing stage after cold pressing, grains of the (111) component harmful to magnetic properties are A technique for further improving the magnetic flux density by suppressing recrystallization from the vicinity of the boundary has been disclosed (for example, JP-A-57-35627). However, if these elements are segregated uniformly on the grain boundaries in the thickness direction of the hot-rolled sheet, the ferrite grain growth property in the post-cold-pressure annealing step is suppressed, and the decrease in iron loss is suppressed. There is.

一方、最終焼鈍時の雰囲気ガスに窒素が存在する場
合、鋼板表面から窒素が拡散浸透し、Al等の鋼中の窒化
物形成元素との反応により鋼板表面近傍部にAlN等の窒
化物が析出する。このような窒化物は鋼板表面近傍のフ
ェライト粒成長性を著しく低下させ、磁気特性の向上を
阻害する。従来、このような焼鈍時の窒化による磁気特
性の劣化を防止するために、スラブ段階で窒化防止剤を
塗布し、拡散浸透させる技術(特開昭51−48707号)、
また冷圧後、最終焼鈍前にSe等の窒化防止剤を塗布する
技術(特公昭56−48567号)が提案されている。
On the other hand, when nitrogen is present in the atmosphere gas at the time of final annealing, nitrogen diffuses and permeates from the steel plate surface, and nitrides such as AlN precipitate in the vicinity of the steel plate surface due to reaction with nitride forming elements in the steel such as Al. To do. Such a nitride significantly reduces the ferrite grain growth property in the vicinity of the steel sheet surface and hinders the improvement of magnetic properties. Conventionally, in order to prevent deterioration of magnetic properties due to nitriding during such annealing, a technique of applying a nitriding inhibitor at the slab stage and diffusing and permeating (JP-A-51-48707),
In addition, a technology (Japanese Patent Publication No. 56-48567) of applying a nitriding inhibitor such as Se after cold pressing and before final annealing has been proposed.

しかし、これらのうち前者の方法では、窒化防止元素
の拡散層がスラブ加熱中或いは熱延中に酸化されてしま
うため、酸化防止剤と混合して使用しなければならない
不利があるだけでなく、磁気特性(鉄損、磁束密度)の
改善も十分ではない。一方、後者の方法では、最終焼鈍
段階での窒化防止という面ではそれなりの効果は得られ
るものの、最終焼鈍時に窒化防止剤中のSe、Sn、Sb等の
元素が鋼板表面より急激に拡散浸透するため、フェライ
ト粒の粒成長性が著しく低下し、却って磁気特性(鉄
損、磁束密度)の劣化を招いてしまう。
However, of these, in the former method, since the diffusion layer of the nitriding preventing element is oxidized during slab heating or hot rolling, not only is there a disadvantage that it must be used as a mixture with an antioxidant, Magnetic properties (iron loss, magnetic flux density) are not sufficiently improved. On the other hand, in the latter method, although some effect can be obtained in terms of nitriding prevention in the final annealing stage, elements such as Se, Sn, and Sb in the nitriding inhibitor during final annealing rapidly diffuse and penetrate from the steel sheet surface. Therefore, the grain growth property of the ferrite grains is remarkably reduced, and rather the magnetic properties (iron loss, magnetic flux density) are deteriorated.

このように、Se,Sb,Sn等を鋼中添加元素とし或いは窒
化防止剤として用いる従来の技術は、無方向性電磁鋼板
の低鉄損化と高磁束密度化を同時に満足させ得るもので
なかった。
As described above, the conventional technology using Se, Sb, Sn, etc. as an additive element in steel or as a nitriding inhibitor cannot satisfy both low iron loss and high magnetic flux density of a non-oriented electrical steel sheet at the same time. It was

したがって本発明の目的は、このような従来技術の問
題を解決し、低鉄損でしかも高い磁束密度を有する無方
向性電磁鋼板およびその製造方法を提供することにあ
る。
Therefore, an object of the present invention is to solve the problems of the prior art and to provide a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, and a manufacturing method thereof.

〔問題を解決するための手段〕[Means for solving problems]

このような課題を解決するため本発明は、熱間圧延及
び酸洗後、冷間圧延前に鋼板表層部にSe,Te,Sb,Bi,Pb,S
n,Asのうち1種または2種以上の元素を拡散浸透させ、
且つ鋼板表層部における上記Se〜Asの浸透深さ及び濃度
を特定の条件とした多層構造の珪素鋼板とすることによ
り、低鉄損化と高磁束密度化を同時に達成できることを
見出し、本発明を完成させたものである。
In order to solve such a problem, the present invention, after hot rolling and pickling, Se, Te, Sb, Bi, Pb, S on the steel sheet surface layer portion before cold rolling.
One or more elements of n and As are diffused and permeated,
And by using a silicon steel sheet having a multilayer structure in which the penetration depth and concentration of the above Se to As in the steel sheet surface layer part are specified conditions, it is found that low iron loss and high magnetic flux density can be achieved at the same time, It has been completed.

即ち、本発明の無方向性電磁鋼板は、熱間圧延及び酸
洗後、冷間圧延前に鋼板表層部にSe、Te、Sb、Bi、Pb、
Sn、Asのうち1種または2種以上の元素を拡散浸透させ
た鋼板であって、厚さが鋼板の全厚さに対して鋼板両面
の合計で20%以下、片面にて2μm以上である限定され
た表層部における合金組成が、C≦0.0050wt%、Si:1.0
〜4.0wt%、Al:0.1〜2.0wt%、N≦0.0030wt%、Se、T
e、Sb、Bi、Pb、Sn、Asのうち1種または2種以上の元
素が合計で0.02wt%以上、残部Feおよび不可避的不純物
で構成され、板厚方向残部の内層部における合金組成
が、C≦0.0050wt%、Si:1.0〜4.0wt%、Al:0.1〜2.0wt
%、N≦0.0030wt%、Se、Te、Sb、Bi、Pb、Sn、Asのう
ち1種または2種以上の元素が合計で0.003wt%以下、
残部Feおよび不可避的不純物で構成される多層構造とし
たことをその基本的特徴とする。
That is, the non-oriented electrical steel sheet of the present invention, after hot rolling and pickling, Se, Te, Sb, Bi, Pb, in the steel sheet surface layer portion before cold rolling,
Steel sheet in which one or more elements of Sn and As are diffused and permeated, and the total thickness of the steel sheet is 20% or less in total on both sides and 2 μm or more on one side. The alloy composition in the limited surface layer portion is C ≦ 0.0050 wt%, Si: 1.0
~ 4.0wt%, Al: 0.1 ~ 2.0wt%, N≤0.0030wt%, Se, T
One or two or more of e, Sb, Bi, Pb, Sn, and As are added in a total amount of 0.02 wt% or more, the balance Fe and inevitable impurities, and the alloy composition in the inner layer portion of the balance thickness direction , C ≦ 0.0050 wt%, Si: 1.0 to 4.0 wt%, Al: 0.1 to 2.0 wt
%, N ≦ 0.0030 wt%, one or more of Se, Te, Sb, Bi, Pb, Sn and As elements total 0.003 wt% or less,
The basic feature is that it has a multi-layer structure composed of the balance Fe and unavoidable impurities.

また、本発明はこのような無方向性電磁鋼板を好適に
製造するため、C≦0.0050wt%、Si:1.0〜4.0wt%、Al:
0.1〜2.0wt%、N≦0.0030wt%、Se、Te、Sb、Bi、Pb、
Sn、Asのうち1種または2種以上の元素が合計で0.003w
t%以下、残部Feおよび不可避的不純物からなる電磁鋼
スラブを熱間圧延した後、700℃以下で巻取り、該熱延
板を酸洗後、Se、Te、Sb、Bi、Pb、Sn、Asのうち1種ま
たは2種以上を含む化合物の水溶液または懸濁液を塗布
して乾燥させた後、非酸化雰囲気中にて熱延板焼鈍する
ことにより、前記Se、Te、Sb、Bi、Pb、Sn、Asのうち1
種または2種以上の元素を鋼板表層部に拡散浸透させ、
さらに冷間圧延により最終板厚とした後、最終焼鈍を行
うようにしたことを他の基本的特徴とする。
Further, in order to preferably manufacture such a non-oriented electrical steel sheet according to the present invention, C ≦ 0.0050 wt%, Si: 1.0 to 4.0 wt%, Al:
0.1 ~ 2.0wt%, N≤0.0030wt%, Se, Te, Sb, Bi, Pb,
0.003w in total of one or more elements of Sn and As
After hot rolling an electromagnetic steel slab consisting of t% or less and the balance Fe and unavoidable impurities, it is wound at 700 ° C. or less, pickled the hot rolled sheet, and then Se, Te, Sb, Bi, Pb, Sn, An aqueous solution or suspension of a compound containing one or more of As is applied and dried, and then hot-rolled sheet annealing is performed in a non-oxidizing atmosphere to obtain the above Se, Te, Sb, Bi, 1 out of Pb, Sn, As
Or two or more elements are diffused and permeated into the surface layer of the steel plate,
Another basic feature is that final annealing is performed after the final thickness is obtained by cold rolling.

以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.

本発明の無方向性電磁鋼板は、鋼板の特定の厚さの表
層部におけるSe等の合金成分(Se,Te,Sb,Bi,Pb,Sn,Asの
うち1種または2種以上の元素)を内層部に比べてリッ
チな状態とすることを条件とするが、この表層部のSe等
の合金成分は、熱間圧延及び酸洗後、冷間圧延前に鋼板
表層部に拡散浸透させたものであること、つまり最終焼
鈍前において既にSe等の合金成分が鋼板表層部に拡散し
たものでなければならない。従来技術のように冷圧後最
終焼鈍前にSe等の窒化防止剤を塗布して得られた鋼板で
は、最終焼鈍時にSe等が鋼板表層部に拡散浸透するた
め、後述する理由により本発明が目的とするような優れ
た磁気特性(低鉄損、高磁束密度)が得られない。
The non-oriented electrical steel sheet of the present invention is an alloy component such as Se in the surface layer portion having a specific thickness of the steel sheet (one or more elements among Se, Te, Sb, Bi, Pb, Sn and As). The condition is to be richer than the inner layer portion, alloy components such as Se of the surface layer portion, after hot rolling and pickling, diffused and permeated into the steel sheet surface layer portion before cold rolling. That is, the alloy components such as Se must have diffused into the surface layer of the steel sheet before the final annealing. In a steel sheet obtained by applying a nitriding inhibitor such as Se after cold pressing and before final annealing as in the prior art, since Se and the like diffusely permeate into the steel sheet surface layer portion during final annealing, the present invention is based on the reason described below. The desired excellent magnetic properties (low iron loss, high magnetic flux density) cannot be obtained.

さらに本発明では、その合金組成をC≦0.0050wt%、
Si:1.0〜4.0wt%、Al:0.1〜2.0wt%、N0.0030wt%と
し、且つSe,Te,Sb,Bi,Pb,Sn,Asのうちの1種または2種
以上の元素の合計を、厚さが鋼板全厚さに対して鋼板両
面の合計で20%以下、片面で2μm以上の表層部で0.02
wt%以上、板厚方向残部の内層部で0.003wt%以下と規
定する。
Further, in the present invention, the alloy composition is C ≦ 0.0050 wt%,
Si: 1.0-4.0wt%, Al: 0.1-2.0wt%, N0.0030wt%, and the total of one or more elements of Se, Te, Sb, Bi, Pb, Sn, As. The total thickness of the steel sheet is 20% or less on both sides of the steel sheet, and 0.02 on the surface layer of 2 μm or more on one side.
It is specified to be not less than wt% and not more than 0.003 wt% in the remaining inner layer portion in the plate thickness direction.

まず、上記表層部の厚みおよびSb,Te等の合金元素の
限定理由について説明する。
First, the reasons for limiting the thickness of the surface layer and alloy elements such as Sb and Te will be described.

酸洗後の熱延板に、拡散させるべき元素を含んだ化合
物を塗布後焼鈍し、その後、冷圧し最終焼鈍した場合の
鋼板板厚方向における拡散元素の濃度プロファイルは第
1図のように模式的に示される。ここで、拡散領域の拡
散元素の濃度Cは、鋼板表面の元素濃度および板厚中心
部の元素濃度をC1,C0とすると、 とする。一方、元素の拡散領域は、元素の濃度プロファ
イルにおいてCとなる部分の鋼板表面からの距離lとす
る。
The hot-rolled sheet after pickling is coated with a compound containing an element to be diffused, then annealed, then cold pressed and finally annealed, and the concentration profile of the diffusing element in the steel sheet thickness direction is as shown in Fig. 1. Indicated. Here, the concentration C of the diffusion element of the diffusion region, when the elemental concentration and the concentration of element thickness center portion of the steel sheet surface and C 1, C 0, And On the other hand, the diffusion region of the element is the distance l from the surface of the steel sheet at the portion that becomes C in the concentration profile of the element.

第1表のSteel Aの組成からなる板厚2mmの熱延板を酸
洗により脱スケールした後、鋼板表面にSbCl3の懸濁液
を塗布し、これを850℃で熱延板焼鈍した後、0.5mmに冷
圧し、さらに950℃で最終焼鈍を行って得られた鋼板に
ついて、そのSbの拡散領域および濃度と、同一プロセス
においてSbCl3を塗布しないで得られた鋼板との磁気特
性値の差を第2図に示す。同図によればSb拡散領域(鋼
板表層部)の範囲(厚さ)およびそのSb濃度と磁気特性
とは次のような関係を有している。
After descaling a hot-rolled steel sheet having a composition of Steel A shown in Table 1 and having a thickness of 2 mm by pickling, a suspension of SbCl 3 was applied to the surface of the steel sheet, and the hot-rolled steel sheet was annealed at 850 ° C. , 0.5 mm, and further subjected to final annealing at 950 ° C. for the steel sheet obtained, the diffusion region and concentration of Sb and the magnetic property values of the steel sheet obtained without applying SbCl 3 in the same process The difference is shown in FIG. According to this figure, the range (thickness) of the Sb diffusion region (steel plate surface layer portion) and its Sb concentration and the magnetic properties have the following relationship.

(A) Sbの拡散領域における濃度がSb<0.02wt%の場
合 製造段階の各焼鈍工程における窒化を防止できないた
め、表層部に窒化物が析出し、この結果最終焼鈍段階で
フェライト粒の粒成長性が抑制され、鉄損値の低下量が
小さい。また、Sb濃度が低いため、集合組織に大きな変
化がなく、磁束密度もほとんど変わらない。
(A) When the concentration of Sb in the diffusion region is Sb <0.02 wt% Since nitriding cannot be prevented in each annealing step in the manufacturing stage, nitride precipitates on the surface layer, resulting in grain growth of ferrite grains in the final annealing stage. Property is suppressed, and the amount of decrease in iron loss value is small. Moreover, since the Sb concentration is low, the texture does not change significantly, and the magnetic flux density hardly changes.

(B) Sbの拡散領域における濃度がSb0.02wt%で、
且つSbの拡散領域<2μmの場合 表層部のSb濃度が高いため各焼鈍工程における窒化を
抑制でき、このため表層部の微細フェライト粒がなくな
り、これに伴って鉄損値が低下する。しかし、磁束密度
はほとんど変化しない。
(B) The concentration of Sb in the diffusion region is 0.02 wt% Sb,
In the case of Sb diffusion region <2 μm, the Sb concentration in the surface layer portion is high, so that nitriding in each annealing step can be suppressed, so that fine ferrite grains in the surface layer portion are eliminated, and the iron loss value is reduced accordingly. However, the magnetic flux density hardly changes.

(C) Sb拡散領域における濃度がSb0.02wt%で、且
つSbの拡散領域μmの場合 磁束密度が向上する。磁束密度と集合組織の間には密
接な関係があり、磁化容易軸を含む(100)あるいは(1
10)成分の集積度を上げることが高磁束密化につなが
る。上述したようにSn,Sb等の元素が鋼中に存在する場
合、これらの元素は冷圧後、最終焼鈍段階において、磁
束密度に対して有害な(111)成分の核発生を抑制し、
(100)および(110)成分を優先的に核発生させる効果
がある。また、最終焼鈍段階での再結晶反応において
は、板厚方向でみると、鋼板表面近傍部が最も早く核発
生し、粒成長する場所である。したがって、鋼板表面近
傍部にSn,Sbが0.02wt%以上存在することにより、表層
部の(100),(110)成分の核発生に伴い磁束密度が向
上する。
(C) When the concentration in the Sb diffusion region is Sb 0.02 wt% and the Sb diffusion region is μm, the magnetic flux density is improved. There is a close relationship between the magnetic flux density and the texture, including the (100) or (1
10) Increasing the degree of component integration leads to higher magnetic flux density. As described above, when elements such as Sn and Sb are present in the steel, these elements suppress the nucleation of the (111) component harmful to the magnetic flux density in the final annealing stage after cold pressing,
It has the effect of preferentially nucleating the (100) and (110) components. Further, in the recrystallization reaction in the final annealing stage, when viewed in the plate thickness direction, the vicinity of the surface of the steel sheet is the location where nucleation occurs first and grain growth occurs. Therefore, the presence of 0.02 wt% or more of Sn and Sb near the surface of the steel sheet improves the magnetic flux density with the nucleation of the (100) and (110) components in the surface layer.

(D) Sbの拡散領域におけるSb濃度>0.1wt%で且つS
bの拡散領域≧2μmの場合、またはSbの拡散領域にお
けるSb濃度≧0.02wt%で且つSbの拡散領域>50μm(鋼
板両面の合計で板厚の20%超)の場合 Sb等の元素は、フェライト粒成長時に粒界上に偏析す
ることにより、粒界移動を抑制する効果がある。これ
は、鉄損の低下に対しては不利であり、表層近傍部の限
定された領域に低濃度で存在している場合、その効果は
無視できるほど小さく、逆に集合組織改善に伴うヒステ
リシス損の低下により鉄損は低下する。しかし、拡散領
域の濃度が高かったり、拡散領域が広くなったりする
と、これらの元素による粒成長抑制効果が現れ、鉄損が
低下しなくなる。したがって、元素の拡散領域は製品板
厚の20%以下でなければならない。また、鉄損値を最低
にするための最適粒径はSi量によって異なるが、おおよ
そ、1%Si鋼で約60μm、3%Si鋼で100μm以上であ
ることが望ましい。
(D) Sb concentration in the Sb diffusion region> 0.1 wt% and S
When b diffusion region ≧ 2 μm, or when Sb concentration ≧ 0.02 wt% in Sb diffusion region and Sb diffusion region> 50 μm (over 20% of the total thickness of both sides of the steel plate), elements such as Sb are Segregation on the grain boundaries during ferrite grain growth has the effect of suppressing grain boundary movement. This is disadvantageous for the reduction of iron loss, and when it is present at a low concentration in a limited area near the surface layer, its effect is negligibly small, and conversely the hysteresis loss associated with texture improvement is The iron loss decreases due to the decrease of. However, if the concentration of the diffusion region is high or the diffusion region is wide, the effect of suppressing grain growth by these elements appears, and iron loss does not decrease. Therefore, the diffusion area of elements must be 20% or less of the product plate thickness. The optimum grain size for minimizing the iron loss value depends on the amount of Si, but it is desirable that it is approximately 60 μm for 1% Si steel and 100 μm or more for 3% Si steel.

このような効果は、他のTe,Se,Bi,Pb,Sn,Asの元素で
も同様であり、また、Sbを含むこれらの元素を2種以上
用いた場合も同様である。
Such an effect is the same with other elements such as Te, Se, Bi, Pb, Sn, and As, and also when two or more of these elements containing Sb are used.

そして、以上の理由から本発明では、表層部の厚さを
鋼板の全厚さに対して鋼板両面の合計で20%以下、片面
にて2μm以上と規定し、且つ表層部に含まれるSe,Te,
Sb,Bi,Pb,Sn,Asの1種または2種の元素の合計を0.02wt
%以上と規定する。
And for the above reasons, in the present invention, the thickness of the surface layer portion is specified to be 20% or less in total on both sides of the steel sheet with respect to the total thickness of the steel sheet, 2 μm or more on one side, and Se contained in the surface layer portion, Te,
0.02wt of the total of one or two elements of Sb, Bi, Pb, Sn, As
Specify as% or more.

一方、内層部においてSe,Te,Sb,Bi,Pb,Sn,Asのうち1
種または2種以上の元素が合計で0.003wt%を超える
と、粒成長性が低下して鉄損が劣化してしまい、このた
め内層部については、上記合金元素は合計で0.003wt%
以下とする。
On the other hand, in the inner layer, one of Se, Te, Sb, Bi, Pb, Sn, As
If the total amount of one kind or two or more kinds of elements exceeds 0.003 wt%, the grain growth property deteriorates and the iron loss deteriorates. Therefore, in the inner layer portion, the total amount of the above alloy elements is 0.003 wt%.
The following is assumed.

また、他の成分の限定理由は以下の通りである。 The reasons for limiting the other components are as follows.

C:0.0050wt%を超えると磁気特性が劣化し、 また磁気時効も問題を生じる。If the C content exceeds 0.0050 wt%, the magnetic properties deteriorate and the magnetic aging also causes a problem.

N:0.0030wt%を超えると鋼中のAlと反応して微細なAlN
が大量に析出し、このため、粒成長性が低下して鉄損が
劣化する。
N: When it exceeds 0.0030wt%, it reacts with Al in steel and becomes fine AlN.
Are deposited in large amounts, which reduces the grain growth property and deteriorates the iron loss.

Si:1.0wt%未満になると固有抵抗の減少により渦流損が
増加し、鉄損値の向上が少ない。一方、40wt%を超える
と冷延性が悪くなる。
When Si is less than 1.0 wt%, the eddy current loss increases due to the decrease in specific resistance, and the improvement in iron loss value is small. On the other hand, if it exceeds 40 wt%, cold rolling property deteriorates.

Al:0.1wt%未満では鋼中のNと反応してAlNが微細に析
出し、このためフェライト粒成長性が低下して磁気特性
が劣化する。一方、AlはSiと同様、固有抵抗を下げ鉄損
を低下させるが、2wt%を超えると冷延性が悪くなる。
If Al: less than 0.1 wt%, AlN finely precipitates by reacting with N in the steel, and thus ferrite grain growth property is deteriorated and magnetic properties are deteriorated. On the other hand, Al, like Si, lowers the specific resistance and iron loss, but if it exceeds 2 wt%, the cold rolling property deteriorates.

次に、本発明の製造法について説明する。 Next, the manufacturing method of the present invention is described.

本発明法では、C0.005wt%、Si:1.0〜4.0wt%、A
l:0.1〜2.0wt%、N0.0030wt%、Sb,Se,Te,Bi,Pb,Sn,
Asのうちの1種または2種以上の元素が合計で0.003wt
%以下、残部Feおよび不可避的不純物からなる電磁鋼ス
ラブを熱間圧延した後700℃以下で巻取り、その後、該
熱延板を酸洗する。
In the method of the present invention, C 0.005 wt%, Si: 1.0 to 4.0 wt%, A
l: 0.1-2.0wt%, N0.0030wt%, Sb, Se, Te, Bi, Pb, Sn,
One or more elements of As are 0.003wt in total
%, The magnetic steel slab consisting of the balance Fe and unavoidable impurities is hot-rolled and then wound at 700 ° C. or less, and then the hot-rolled sheet is pickled.

鋼板表面にスケールがある状態でSe〜As等の化合物を
塗布し焼鈍すると、窒化を防止することはできるが、ス
ケールにより鋼中への元素の拡散浸透が抑制されてしま
う。このため本発明では熱延板の酸洗は必須である。ま
た、熱延後の巻取温度が700℃を超えると表層スケール
が厚く生成するため酸洗性が低下し、脱スケールが難し
くなる。
When a compound such as Se to As is applied and annealed while a scale is present on the surface of the steel sheet, nitriding can be prevented, but the scale suppresses diffusion and penetration of elements into the steel. Therefore, pickling of the hot rolled sheet is essential in the present invention. Further, if the winding temperature after hot rolling exceeds 700 ° C., the surface layer scale is thickly formed, so that the pickling property is deteriorated and descaling becomes difficult.

上記酸洗後、Se,Te,Sb,Bi,Pb,Sn,Asのうち1種または
2種以上を含む化合物の水溶液または懸濁液を塗布して
乾燥させる。
After the above pickling, an aqueous solution or suspension of a compound containing one or more of Se, Te, Sb, Bi, Pb, Sn and As is applied and dried.

最終焼鈍時の集合組織を上記Se〜As等の元素で磁気特
性に良好なものとするためには、最終焼鈍前においてす
でにSe〜As等の元素が鋼板表層部に拡散した状態でなけ
ればならない。すなわち、冷圧後Se〜As等の化合物を塗
布し、焼鈍した場合、最終焼鈍段階において、Se〜As等
の元素の鋼板内部への拡散とフェライトの再結晶反応が
同時に進行するため、磁気特性に良好な集合組織を形成
させることが難しく、本発明が目的とするような低鉄損
化と高磁束密度化は達成できない。したがって、Se〜As
等の化合物は熱延板の酸洗後に塗布し、その後の焼鈍に
より鋼板表層部に拡散させなければならない。これら元
素の懸濁液または水溶液の塗布方法は、これらの元素の
表面拡散層が均一に生成する方法であれば、スプレイ、
浸漬、その他いかなる方法でもよく、酸洗ライン後段の
水洗槽で浸漬する方法は効果的である。また、熱延板を
スキンパスし、鋼板表面に歪を導入いた後塗布すれば、
短時間で拡散させることができる。
In order to make the texture at the time of final annealing excellent in magnetic properties with the elements such as Se to As, the elements such as Se to As must already be diffused in the surface layer of the steel sheet before the final annealing. . That is, when a compound such as Se to As is applied after cold pressing and annealed, in the final annealing stage, diffusion of elements such as Se to As into the steel sheet and recrystallization reaction of ferrite simultaneously proceed, so that magnetic properties It is difficult to form a good texture, and it is not possible to achieve the low iron loss and high magnetic flux density that are the objectives of the present invention. Therefore, Se ~ As
Such compounds must be applied after pickling the hot rolled sheet and diffused to the surface layer of the steel sheet by subsequent annealing. The method for applying the suspension or the aqueous solution of these elements is spraying, as long as the surface diffusion layer of these elements is uniformly formed.
Immersion or any other method may be used, and the method of dipping in a water washing tank after the pickling line is effective. In addition, if the hot-rolled sheet is skin-passed and applied after introducing strain on the surface of the steel sheet,
It can be diffused in a short time.

Se〜Asの化合物としては、例えばK2SeO3,KeTeO3,SbCl
3,BiCl3,PbCl2,SnCl2,AsCl3等があり、これらの1種ま
たは2種以上を含む水溶液または懸濁液が用いられる。
Examples of Se to As compounds include K 2 SeO 3 , KeTeO 3 , and SbCl.
3 , BiCl 3 , PbCl 2 , SnCl 2 , AsCl 3 and the like, and an aqueous solution or suspension containing one or more of these is used.

上記化合物は懸濁液等の塗布、乾燥後、熱延板を熱延
板焼鈍する。磁気特性に良好な集合組織とするために
は、冷圧前の熱延板のフェライト組織が完全に再結して
いなければならない。Siを1wt%以上含有する珪素鋼板
の場合、熱延巻取り時の再結晶は著しく低下するため、
熱延板を焼鈍し、フェライト組織を完全に再結晶させな
ければならない。また、最終焼鈍時において、Se〜As等
の表層拡散領域での磁気特性と良好な集合組織を形成さ
せるためには、Se〜As等の化合物を塗布後、拡散処理し
なければならない。このような効果を発揮させるために
は750℃以上の焼鈍が望ましい。また、Se〜As等の元素
の拡散反応を有効に反応させるためには、熱延板焼鈍時
の雰囲気を非酸化雰囲気にし、これらの化合物の酸化反
応を防止しなければならない。望ましくは、5%H2以上
のN2−H2混合ガスあるいはAr−H2混合ガス雰囲気がよ
い。
After the above compound is applied with a suspension or the like and dried, the hot rolled sheet is annealed. In order to obtain a texture with good magnetic properties, the ferrite structure of the hot-rolled sheet before cold pressing must be completely recombined. In the case of a silicon steel sheet containing 1 wt% or more of Si, recrystallization during hot rolling is significantly reduced,
The hot rolled sheet must be annealed to completely recrystallize the ferrite structure. Further, in the final annealing, in order to form a magnetic texture and a good texture in the surface diffusion region of Se to As or the like, the compound such as Se to As must be diffused after being applied. In order to exert such an effect, annealing at 750 ° C or higher is desirable. Further, in order to effectively react the diffusion reaction of elements such as Se to As, the atmosphere during hot-rolled sheet annealing must be set to a non-oxidizing atmosphere to prevent the oxidation reaction of these compounds. Desirably, an atmosphere of N 2 —H 2 mixed gas or Ar—H 2 mixed gas of 5% H 2 or more is preferable.

本発明が規定する鋼板表層部におけるSe等の浸透深さ
及び濃度は、酸洗後の熱延鋼板表面上への前記化合物の
塗布量及び熱延板焼鈍条件(焼鈍温度、時間、雰囲気
等)等を選択することにより調整される。通常、前記化
合物の塗布量は0.5〜2.0g/m2程度、熱延板焼鈍条件とし
ては焼鈍温度710℃(好ましくは、上記のように750℃)
〜850℃程度、焼鈍時間はバッチ焼鈍の場合で3〜10時
間程度とされ、これらの範囲において前記化合物の塗布
量及び熱延板焼鈍条件を適宜調整することで、Se等の所
望の浸透深さと濃度を得ることができる。
The penetration depth and concentration of Se and the like in the steel sheet surface layer portion defined by the present invention are the coating amount of the compound on the hot rolled steel sheet surface after pickling and the hot rolled sheet annealing conditions (annealing temperature, time, atmosphere, etc.) And the like are adjusted. Usually, the coating amount of the compound is about 0.5 to 2.0 g / m 2 , and the annealing condition for hot-rolled sheet is an annealing temperature of 710 ° C (preferably 750 ° C as described above).
Approximately 850 ℃, the annealing time is about 3 to 10 hours in the case of batch annealing, and by adjusting the coating amount of the compound and the annealing conditions of the hot-rolled sheet within these ranges, the desired penetration depth of Se etc. And concentration can be obtained.

熱延板焼鈍された鋼板は、次いで最終板厚まで冷間圧
延された後、最終焼鈍が施される。
The hot-rolled sheet annealed steel sheet is then cold-rolled to the final sheet thickness and then subjected to the final annealing.

なお、本発明鋼板を得る方法としては、上述したよう
に熱延板に化合物を塗布する以外に、例えば熱延板を酸
洗後、CVD(化学気相蒸着)法によりSe〜As等の元素を
付着させることもでき、この場合には元素そのものが鋼
板面に蒸着される。
As a method of obtaining the steel sheet of the present invention, other than applying the compound to the hot-rolled sheet as described above, for example, after pickling the hot-rolled sheet, elements such as Se ~ As by the CVD (chemical vapor deposition) method Can also be attached, in which case the element itself is deposited on the steel plate surface.

〔実施例〕〔Example〕

実施例1 第1表中、Steel Aの組成を有するスラブから以下の
ような工程及び条件で無方向性電磁鋼板を製造した。得
られた鋼板の構成および磁気特性をその製造条件ととも
に第2表に示す。
Example 1 In Table 1, a non-oriented electrical steel sheet was manufactured from a slab having a composition of Steel A by the following steps and conditions. Table 2 shows the composition and magnetic properties of the obtained steel sheet together with the manufacturing conditions.

実施例2 第1表中、Steel BおよびSteel Cの組成を有するスラ
ブから以下のような工程および条件で無方向性電磁鋼板
を製造した。得られた鋼板の構成および磁気特性を第3
表に示す。
Example 2 In Table 1, a non-oriented electrical steel sheet was manufactured from a slab having a composition of Steel B and Steel C by the following steps and conditions. The composition and magnetic properties of the obtained steel sheet are
Shown in the table.

Steel B B1: 熱延板→酸洗→SbCl3塗布→熱延板焼鈍→冷圧→焼鈍 (0.8g/m2) B2:スラブにSbCl3塗布10g/m2(220mm t) 熱延板→酸洗→熱延板焼鈍→冷延→焼鈍 B3: 熱延板→酸洗→熱延板焼鈍→冷圧→SbCl3塗布→焼鈍 (0.8g/m2) B4: 熱延板→酸洗→冷圧→SbCl3塗布→焼鈍 (0.8g/m2) B5: 熱延板→酸洗→熱延板焼鈍→冷圧→焼鈍 B6: 熱延板→酸洗→冷圧→焼鈍 Steel C C1: 熱延板→酸洗→熱延板焼鈍→冷圧→焼鈍 ・ 熱延条件: 1120℃加熱、830℃仕上げ、650℃巻取り、 2.0mm t ・ 熱延板焼鈍条件: 800℃×10h、炉冷、75%H2−25%N2 ・ 最終焼鈍条件: 900℃×2min、空冷、25%H2−75%N2、板厚0.5mmt Steel B B1: Hot rolled sheet → Pickling → SbCl 3 coating → Hot rolled sheet annealing → Cold pressure → Annealing (0.8g / m 2 ) B2: SbCl 3 coating on slab 10g / m 2 (220mm t) Hot rolled sheet → Pickling → hot rolled sheet annealing → cold rolling → annealing B3: hot rolled sheet → pickling → hot rolled sheet annealing → cold pressure → SbCl 3 coating → annealed (0.8g / m 2 ) B4: hot rolled sheet → pickled → Cold pressure → SbCl 3 coating → Annealing (0.8g / m 2 ) B5: Hot rolled sheet → Pickling → Hot rolled sheet annealing → Cold pressure → Annealing B6: Hot rolled sheet → Pickling → Cold pressure → Annealing Steel C C1: Hot rolled sheet → Pickling → Hot rolled sheet annealing → Cold pressure → Annealing ・ Hot rolling condition: 1120 ℃ heating, 830 ℃ finish, 650 ℃ winding, 2.0mm t ・ Hot rolled sheet annealing condition: 800 ℃ × 10h, furnace Cold, 75% H 2 -25% N 2・ Final annealing condition: 900 ℃ × 2min, Air cooling, 25% H 2 −75% N 2 , Sheet thickness 0.5mmt

【図面の簡単な説明】[Brief description of drawings]

第1図は、酸洗後の熱延板に、拡散させるべき元素を含
んだ化合物を塗布後焼鈍し、その後冷圧した後最終焼鈍
した場合の鋼板板厚方向における拡散元素の濃度プロフ
ァイルを示したものである。第2図は、酸洗により脱ス
ケールした熱延板表面にSbCl3の懸濁液を塗布した後、
熱延板焼鈍、冷圧および最終焼鈍を行って得られた鋼板
のSb拡散領域およびそのSb濃度と、同一のプロセスにお
いてSbCl3を塗布しないで得られた鋼板との磁気特性値
の差を示したものである。
FIG. 1 shows a concentration profile of diffusing elements in the steel sheet thickness direction when a hot rolled sheet after pickling is coated with a compound containing an element to be diffused, annealed, then cold pressed and finally annealed. It is a thing. Fig. 2 shows that after applying a suspension of SbCl 3 to the surface of hot-rolled sheet descaled by pickling,
Shows the difference between the Sb diffusion region and the Sb concentration of the steel sheet obtained by hot-rolled sheet annealing, cold pressing and final annealing, and the magnetic property values of the steel sheet obtained without applying SbCl 3 in the same process. It is a thing.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱間圧延及び酸洗後、冷間圧延前に鋼板表
層部にSe,Te,Sb,Bi,Pb,Sn,Asのうち1種または2種以上
の元素を拡散浸透させた鋼板であって、厚さが鋼板の全
厚さに対して鋼板両面の合計で20%以下、片面にて2μ
m以上である限定された表層部における合金組成が、C
≦0.0050wt%、Si:1.0〜4.0wt%、Al:0.1〜2.0wt%、N
≦0.0030wt%、Se、Te、Sb、Bi、Pb、Sn、Asのうち1種
または2種以上の元素が合計で0.02wt%以上、残部Feお
よび不可避的不純物で構成され、板厚方向残部の内層部
における合金組成が、C≦0.0050wt%、Si:1.0〜4.0wt
%、Al:0.1〜2.0wt%、N≦0.0030wt%、Se、Te、Sb、B
i、Pb、Sn、Asのうち1種または2種以上の元素が合計
で0.003wt%以下、残部Feおよび不可避的不純物で構成
される多層構造の磁気特性に優れた無方向性電磁鋼板。
1. After hot rolling and pickling, before cold rolling, one or more elements selected from Se, Te, Sb, Bi, Pb, Sn and As are diffused and permeated into the surface layer of the steel sheet. Steel plate, the total thickness of the steel plate is 20% or less in total on both sides, 2μ on one side
The alloy composition in the limited surface layer portion of m or more is C
≤0.0050wt%, Si: 1.0-4.0wt%, Al: 0.1-2.0wt%, N
≤ 0.0030 wt%, one or more of Se, Te, Sb, Bi, Pb, Sn, and As elements in total is 0.02 wt% or more, the balance is Fe and inevitable impurities, and the balance in the plate thickness direction The alloy composition in the inner layer part of C is 0.0050wt%, Si: 1.0-4.0wt
%, Al: 0.1 to 2.0 wt%, N ≦ 0.0030 wt%, Se, Te, Sb, B
A non-oriented electrical steel sheet excellent in magnetic properties of a multi-layer structure composed of 0.003 wt% or less of one or more elements out of i, Pb, Sn, and As in total, and the balance Fe and inevitable impurities.
【請求項2】C≦0.0050wt%、Si:1.0〜4.0wt%、Al:0.
1〜2.0wt%、N≦0.0030wt%、Se、Te、Sb、Bi、Pb、S
n、Asのうち1種または2種以上の元素が合計で0.003wt
%以下、残部Feおよび不可避的不純物からなる電磁鋼ス
ラブを熱間圧延した後、700℃以下で巻取り、該熱延板
を酸洗後、Se、Te、Sb、Bi、Pb、Sn、Asのうち1種また
は2種以上を含む化合物の水溶液または懸濁液を塗布し
て乾燥させた後、非酸化雰囲気中にて熱延板焼鈍するこ
とにより、前記Se、Te、Sb、Bi、Pb、Sn、Asのうち1種
または2種以上の元素を鋼板表層部に拡散浸透させ、さ
らに冷間圧延により最終板厚とした後最終焼鈍を行い、
厚さが鋼板の全厚さに対して鋼板両面の合計で20%以
下、片面にて2μm以上である限定された表層部におけ
る合金組成が、C≦0.0050wt%、Si:1.0〜4.0wt%、Al:
0.1〜2.0wt%、N≦0.0030wt%、Se、Te、Sb、Bi、Pb、
Sn、Asのうち1種または2種以上の元素が合計で0.02wt
%以上、残部Feおよび不可避的不純物で構成され、板厚
方向残部の内層部における合金組成が、C≦0.0050wt
%、Si:1.0〜4.0wt%、Al:0.1〜2.0wt%、N≦0.0030wt
%、Se、Te、Sb、Bi、Pb、Sn、Asのうち1種または2種
以上の元素が合計で0.003wt%以下、残部Feおよび不可
避的不純物で構成される多層構造の無方向性電磁鋼板を
製造することを特徴とする磁気特性に優れた無方向性電
磁鋼板の製造方法。
2. C≤0.0050 wt%, Si: 1.0-4.0 wt%, Al: 0.
1 ~ 2.0wt%, N≤0.0030wt%, Se, Te, Sb, Bi, Pb, S
One or more of n and As are 0.003wt in total
% Or less, hot rolling an electromagnetic steel slab consisting of balance Fe and unavoidable impurities, winding at 700 ° C. or less, pickling the hot rolled sheet, Se, Te, Sb, Bi, Pb, Sn, As Among these, Se, Te, Sb, Bi and Pb are prepared by applying an aqueous solution or suspension of a compound containing one or more of the above, drying it, and annealing it in a non-oxidizing atmosphere. , Sn, As, one or more elements are diffused and permeated into the surface layer of the steel sheet, and further cold-rolled to a final thickness, and then final annealing is performed.
The total thickness of the steel sheet is 20% or less in total on both sides of the steel sheet, and the alloy composition in the limited surface layer portion is 2 μm or more on one side, C ≦ 0.0050 wt%, Si: 1.0 to 4.0 wt% , Al:
0.1 ~ 2.0wt%, N≤0.0030wt%, Se, Te, Sb, Bi, Pb,
One or more of Sn and As elements total 0.02wt
% Or more, the balance is Fe and inevitable impurities, and the alloy composition in the inner layer part in the balance thickness direction is C ≦ 0.0050 wt.
%, Si: 1.0 to 4.0 wt%, Al: 0.1 to 2.0 wt%, N ≦ 0.0030 wt
%, Se, Te, Sb, Bi, Pb, Sn, As, one or more elements in total 0.003 wt% or less, the balance Fe and unavoidable impurities multilayer non-directional electromagnetic A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, which comprises producing a steel sheet.
JP1166523A 1989-06-30 1989-06-30 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same Expired - Fee Related JP2540946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166523A JP2540946B2 (en) 1989-06-30 1989-06-30 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166523A JP2540946B2 (en) 1989-06-30 1989-06-30 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0336242A JPH0336242A (en) 1991-02-15
JP2540946B2 true JP2540946B2 (en) 1996-10-09

Family

ID=15832896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166523A Expired - Fee Related JP2540946B2 (en) 1989-06-30 1989-06-30 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2540946B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482312B1 (en) 2012-09-05 2015-01-13 주식회사 포스코 Non-oriented electric steel plate having excellent magnetism and method for manufacturing the same
US11111557B2 (en) 2016-12-19 2021-09-07 Posco Non-oriented electrical steel sheet and manufacturing method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264987B2 (en) * 1997-06-27 2009-05-20 Jfeスチール株式会社 Non-oriented electrical steel sheet
JP5186989B2 (en) * 2008-04-21 2013-04-24 新日鐵住金株式会社 Soft magnetic steel sheet for core and core member
EP2495345B1 (en) 2009-10-28 2020-08-26 Nippon Steel Corporation Ferrous metal sheet and manufacturing method therefor
JP5533958B2 (en) 2012-08-21 2014-06-25 Jfeスチール株式会社 Non-oriented electrical steel sheet with low iron loss degradation by punching
JP2014177684A (en) * 2013-03-15 2014-09-25 Jfe Steel Corp Nonoriented electromagnetic steel sheet excellent in high frequency iron loss property
JP2014185365A (en) * 2013-03-22 2014-10-02 Jfe Steel Corp Non-oriented electromagnetic steel sheet excellent in high frequency iron loss property

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648567B2 (en) * 1971-10-11 1981-11-17
JPS5468717A (en) * 1977-11-11 1979-06-02 Kawasaki Steel Co Production of unidirectional silicon steel plate with excellent electromagnetic property
JPS583027B2 (en) * 1979-05-30 1983-01-19 川崎製鉄株式会社 Cold rolled non-oriented electrical steel sheet with low iron loss
JPS5648567A (en) * 1979-09-28 1981-05-01 Matsushita Electric Ind Co Ltd Acoustic device
JPH01132718A (en) * 1987-11-18 1989-05-25 Sumitomo Metal Ind Ltd Production of non-oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482312B1 (en) 2012-09-05 2015-01-13 주식회사 포스코 Non-oriented electric steel plate having excellent magnetism and method for manufacturing the same
US11111557B2 (en) 2016-12-19 2021-09-07 Posco Non-oriented electrical steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0336242A (en) 1991-02-15

Similar Documents

Publication Publication Date Title
US5512110A (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
JP4321120B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP2540946B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same
JP4280004B2 (en) Semi-processed non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
EP4273277A1 (en) Grain-oriented electromagnetic steel sheet production method and annealing separator used for same
JP2541383B2 (en) High silicon steel sheet with excellent soft magnetic properties
JP3846064B2 (en) Oriented electrical steel sheet
JP4206665B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JP3508436B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JPH11234971A (en) Core manufacture and low iron-loss core
JP3993689B2 (en) Strain relief annealing method for laminated core
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JPH11256242A (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP2853552B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method
EP4474493A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP3019600B2 (en) Method for producing high silicon steel sheet having excellent magnetic and mechanical properties by diffusion infiltration treatment
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JPH0949027A (en) Annealing agent for grain-oriented electrical steel sheets not having a glass coating with excellent surface properties, and method for producing grain-oriented electrical steel sheet using the same
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH07188759A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3952711B2 (en) Method for producing grain-oriented electrical steel sheet
EP4317471A1 (en) Production method for grain-oriented electrical steel sheet
JP3846019B2 (en) Method for producing non-oriented electrical steel sheet
JPH02240214A (en) Method for hot-rolling and annealing non-grain oriented electrical steel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees