JP2540834B2 - MOS image sensor - Google Patents
MOS image sensorInfo
- Publication number
- JP2540834B2 JP2540834B2 JP62026123A JP2612387A JP2540834B2 JP 2540834 B2 JP2540834 B2 JP 2540834B2 JP 62026123 A JP62026123 A JP 62026123A JP 2612387 A JP2612387 A JP 2612387A JP 2540834 B2 JP2540834 B2 JP 2540834B2
- Authority
- JP
- Japan
- Prior art keywords
- well
- type
- light receiving
- mos
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はMOS型イメージセンサに関するものである。The present invention relates to a MOS type image sensor.
(従来の技術) 従来のMOS型イメージセンサ(面センサ、ラインセン
サ)では、シリコン基板に拡散層を形成して2層構造と
したものと、2回の拡散工程により3層構造としたもの
とがある。(Prior Art) Conventional MOS image sensors (surface sensor, line sensor) have a two-layer structure in which a diffusion layer is formed on a silicon substrate and a three-layer structure by two diffusion steps. There is.
第3図は前記2回の拡散工程により3層構造としたMO
S型ラインセンサの両端の受光部分の断面図を示す。第
3図に於いて25は一導電型であるN型半導体よりなる基
板、23は該基板25中に全画素共通に設けられる前記基板
とは逆導電型であるP型半導体による電位井戸(以下P
−we11と称す)、21、26は前記P−well中に設けられた
各画素を確定する前記基板と同一導電型であるN+型半導
体であり、以上の3層よりなる。この3層はいずれも中
性領域である。22、24、27は上記3層の各P−N接合部
の空乏層である。FIG. 3 shows an MO having a three-layer structure formed by the two diffusion steps.
The sectional view of the light-receiving part of both ends of an S type line sensor is shown. In FIG. 3, reference numeral 25 is a substrate made of an N-type semiconductor of one conductivity type, and 23 is a potential well made of a P-type semiconductor having an opposite conductivity type to the substrate provided in the substrate 25 in common for all pixels (hereinafter referred to as a potential well). P
-We11), 21 and 26 are N + type semiconductors having the same conductivity type as the substrate that defines each pixel provided in the P-well, and are composed of the above three layers. All of these three layers are neutral regions. Reference numerals 22, 24, and 27 are depletion layers of the P-N junction portions of the above three layers.
この例では、N型半導体基板にP型半導体の拡散層を
全画素共通に形成してP−wellを構成し、そのP−well
の中に複数のN+型半導体の拡散層を独立して列状に整列
する如く形成する。該N+型半導体とP−wellとの接合容
量が受光部を構成する。尚、該N+半導体に図示しないゲ
ート酸化膜と金属ゲート及び配線が形成されて各画素毎
にMOSスイッチを構成している。このMOSスイッチを1画
素ずつ導通制御して充電電流を検出するものである。In this example, a P-well is formed by forming a P-type semiconductor diffusion layer on an N-type semiconductor substrate in common for all pixels, and the P-well is formed.
A plurality of N + -type semiconductor diffusion layers are formed in the column so as to be independently arranged in columns. The junction capacitance between the N + type semiconductor and the P-well constitutes a light receiving section. A gate oxide film, a metal gate, and a wiring (not shown) are formed on the N + semiconductor to form a MOS switch for each pixel. The MOS switch is conductively controlled pixel by pixel to detect the charging current.
第3図に示す如き従来の3層構造のものでは各画素へ
の入射光P1、P2に対してN+型半導体21、26の層でその光
強度に応じた数の電子・正孔対が発生する。空乏層22、
27には予め一定電圧に充電されており、入射光により発
生した電子・正孔対と再結合する。一定時間後に該空乏
層22、27を再充電する際の充電電流を信号として検出す
る。この時波長の長い入射光はN+型半導体21、26の層よ
り更に深層のP−well23や更に深部の基板25に至り、ス
メアの原因となる。しかし第3図に示す如き3層構造の
ものでは、基板25に於いて発生した電子・正孔対は空乏
層24によって各画素間即ちN+型半導体21と26とは隔離さ
れており、該電子・正孔対のN+半導体21、26への拡散を
阻止する様な構成となっている。従って各画素間の信号
の混合がなく、クロストークが低減できるという特徴が
ある。In the conventional three-layer structure as shown in FIG. 3, the number of electron-hole pairs corresponding to the light intensity is increased in the layers of the N + type semiconductors 21 and 26 for the incident light P1 and P2 to each pixel. appear. Depletion layer 22,
27 is previously charged to a constant voltage and recombines with electron-hole pairs generated by incident light. The charge current at the time of recharging the depletion layers 22 and 27 after a fixed time is detected as a signal. At this time, the incident light having a long wavelength reaches the P-well 23 which is deeper than the layers of the N + type semiconductors 21 and 26 and the substrate 25 which is deeper, and causes smear. However, in the three-layer structure shown in FIG. 3, the electron-hole pairs generated in the substrate 25 are isolated from each pixel by the depletion layer 24, that is, the N + type semiconductors 21 and 26. It is configured to prevent the diffusion of electron-hole pairs into the N + semiconductors 21 and 26. Therefore, there is a feature that signals are not mixed between pixels and crosstalk can be reduced.
しかし、上述の如き従来の3層構造のものではP−we
ll23で発生した電子・正孔対に対しては2つの画素の間
には電位障壁や接合等のキャリアを捕獲するものが介在
しない事から、該電子・正孔対は隣の画素に容易に拡散
していく。その為従来の2層構造のものと比べてクロス
トークは減少するが完全にはなくならないという問題点
があった。即ちN型半導体基板25(深層)で発生した電
子・正孔対は各画素間で混合しないが、P−well23で発
生した電子・正孔対は各画素間で混合する。その為スメ
アが完全に除去出来ず、画像の濃淡のエッジ部分でのに
じみを完全に除去出来ず画質を低下していた。これはP,
Nが第3図に示すものと全く逆のもの即ちP型半導体基
板にN−wellを形成し、該N−wellにP型半導体(P+拡
散)の受光部を形成したものでも全く同様である。However, in the conventional three-layer structure as described above, P-we
For the electron-hole pair generated in ll23, there is no potential barrier or junction that traps carriers between the two pixels, so the electron-hole pair can be easily transferred to the adjacent pixel. Spread. Therefore, there is a problem that crosstalk is reduced but not completely eliminated as compared with the conventional two-layer structure. That is, the electron-hole pairs generated in the N-type semiconductor substrate 25 (deep layer) are not mixed between the pixels, but the electron-hole pairs generated in the P-well 23 are mixed between the pixels. As a result, smears could not be completely removed, and bleeding at the edge portions of the shade of the image could not be completely removed, degrading image quality. This is P,
The same applies to the case where N is completely opposite to that shown in FIG. 3, that is, the N-well is formed on the P-type semiconductor substrate and the P-type semiconductor (P + diffusion) light receiving portion is formed on the N-well. is there.
本発明はこれらの欠点を解決し、深層(基板)中に発
生した電子・正孔対は勿論、電位井戸(ウェル)中に発
生した電子・正孔対も各画素を越えて拡散しない様にし
て各画素間で信号が混合しない即ちクロストークの無い
MOS型ラインセンサーの構造を提案することを目的とす
る。The present invention solves these drawbacks and prevents electron-hole pairs generated in a deep layer (substrate) as well as electron-hole pairs generated in a potential well from diffusing beyond each pixel. Signals do not mix between pixels, that is, there is no crosstalk
The purpose is to propose the structure of a MOS type line sensor.
上記問題点の解決の為に本発明では画素ごとにウェル
を分離する様構成した。In order to solve the above problems, the present invention is configured to separate wells for each pixel.
本発明では基板、ウェルが画素毎に電位的に完全に分
離しているので各画素間の信号の混合が無く、クロスト
ークを防止する事が出来る。In the present invention, since the substrate and the well are completely separated in potential for each pixel, there is no mixing of signals between pixels, and crosstalk can be prevented.
第1図は本発明のMOS型ラインセンサの実施例の2画
素分の平面図であって、第1図に於いて、3はゲート、
4は読出し線、5は配線でP−well13、18に一定の電圧
を与える。尚、P−wellの場合はグランド電位である。
6は素子の厚さ方向に重ねて形成された層相互を電気的
に接続する為のコンタクトホール、7はゲート酸化膜、
8はMOSスイッチのドレインを形成するN+型半導体の拡
散である。受光部11、16、ゲート酸化膜7、ゲート3、
ドレイン8、読み出し線4は受光部11、16をソースとす
るMOS型FETのスイッチング素子を形成する。ウェル13、
18が、半導体基板上に各画素毎に独立して設けられてい
る。FIG. 1 is a plan view of two pixels of an embodiment of a MOS type line sensor of the present invention. In FIG. 1, 3 is a gate,
Reference numeral 4 is a read line, and 5 is a wiring for applying a constant voltage to the P-wells 13 and 18. In the case of P-well, it is at ground potential.
Reference numeral 6 is a contact hole for electrically connecting layers formed in the thickness direction of the device, 7 is a gate oxide film,
Reference numeral 8 is a diffusion of N + type semiconductor forming the drain of the MOS switch. Light receiving portions 11 and 16, gate oxide film 7, gate 3,
The drain 8 and the read line 4 form a switching element of a MOS type FET whose sources are the light receiving portions 11 and 16. Well 13,
18 are provided on the semiconductor substrate independently for each pixel.
以上の如く構成したMOS型ラインセンサの受光部11を
含む1画素についての1サイクルの動作を順を追って説
明する。The operation of one cycle for one pixel including the light receiving portion 11 of the MOS line sensor configured as described above will be described step by step.
先ずゲート3の電位を高くし、MOS型FETのスイッチを
ONにし、読み出し線4を通して、受光部であるN+型半導
体拡散11とP−well13との接合容量を一定電圧に充電す
る。充電が終わればMOS型FETのスイッチをOFFにする。
受光部11に入射した光に応じて発生した電子と正孔は、
受光部11の接合容量に予め一定電圧に充電された電荷を
放電する。一定時間後にゲート3をONして読み出し線4
から再び一定電圧に充電し、その充電電流から放電した
電荷量を検出する。First, raise the potential of the gate 3 and switch on the MOS type FET.
After turning on, the junction capacitance between the N + type semiconductor diffusion 11 and the P-well 13, which is the light receiving portion, is charged to a constant voltage through the read line 4. When charging is complete, turn off the MOS FET switch.
Electrons and holes generated according to the light incident on the light receiving unit 11 are
The charge previously charged to a constant voltage in the junction capacitance of the light receiving unit 11 is discharged. After a certain period of time, the gate 3 is turned on and the readout line 4
Then, the battery is charged again to a constant voltage, and the amount of charge discharged from the charging current is detected.
第2図は第1図の9−10矢視断面図である。 FIG. 2 is a sectional view taken along the line 9-10 of FIG.
入射光P1によって、受光領域であるN+型半導体中性領
域11、空乏層12、P−well13で発生した電子・正孔対の
うちP−well13で発生したものの少数キャリア(電子)
の一部は上方へ移動して接合容量即ち前述の如くN+型半
導体11、P−well13間の接合容量12に蓄積された電荷を
放電する。一方他の一部は下方へ移動して空乏層14、N
型半導体基板15で発生した電子・正孔対と共に、第1図
の配線5から流れ出る電流になり、隣の受光部21のN+拡
散に充電されている電荷を放電しない。よってクロスト
ークは発生しない。Minority carriers (electrons) of those generated in the P-well 13 among electron-hole pairs generated in the N + type semiconductor neutral region 11, the depletion layer 12, and the P-well 13 which are the light receiving regions by the incident light P1.
Part of it moves upward to discharge the electric charge accumulated in the junction capacitance, that is, the junction capacitance 12 between the N + type semiconductor 11 and the P-well 13 as described above. On the other hand, the other part moves downward and depletion layer 14, N
Along with the electron-hole pairs generated in the mold semiconductor substrate 15, a current flows out from the wiring 5 in FIG. 1, and the electric charge charged in the N + diffusion of the adjacent light receiving portion 21 is not discharged. Therefore, crosstalk does not occur.
尚、第1図にはスキャナ回路は省略されている。 The scanner circuit is omitted in FIG.
この様な構成即ちP−wellを各画素毎に分離して構成
する為にはP−wellを形成する際従来使用していたフォ
トマスクを、各画素毎に分離したフォトマスクに変更す
れば良い。In order to form such a structure, that is, the P-well is separated for each pixel, the photomask conventionally used when forming the P-well may be changed to a photomask separated for each pixel. .
このようにすれば、製造工程を増大させること無く、
すべてのウエルは、同一の拡散工程によって形成され
る。即ち、すべてのウエルは、その拡散深さ及び拡散濃
度が同一になる。よって、各受光部やMOSトランジスタ
は、従来同様同一の拡散深さ、拡散濃度のウエル上に配
置される。このため、受光特性を従来と変化させること
なく、クロストークの発生を防止することができる。In this way, without increasing the manufacturing process,
All wells are formed by the same diffusion process. That is, all wells have the same diffusion depth and concentration. Therefore, each light receiving portion and the MOS transistor are arranged on the well having the same diffusion depth and diffusion concentration as in the conventional case. Therefore, it is possible to prevent the occurrence of crosstalk without changing the light receiving characteristic from the conventional one.
尚、実施例では一導電型にN型、逆導電性をP型とし
て、N型半導体よりなる基板にP−wellを形成し、該P
−wellにN+型半導体を形成する例によって説明したが、
これに限らずPとNの逆転した構成つまり、P型半導体
よりなる基板にN−wellを形成し、該N−wellにP+拡散
の受光部を構成したものにも本発明に適用出来る事は勿
論である。又、実施例ではラインセンサの2画素分を示
したが本発明は多数画素のラインセンサは勿論、2次元
のMOS型エリアセンサにも適用出来る。In the embodiment, the N-type is used for one conductivity type and the P-type is used for the opposite conductivity, and a P-well is formed on a substrate made of an N-type semiconductor.
Although explained by the example of forming the N + type semiconductor in the −well,
The present invention is not limited to this, but can be applied to the present invention in a configuration in which P and N are reversed, that is, an N-well is formed on a substrate made of a P-type semiconductor and a P + diffusion light receiving portion is formed in the N-well. Of course. Further, although two pixels of the line sensor are shown in the embodiment, the present invention can be applied to a two-dimensional MOS type area sensor as well as a multi-pixel line sensor.
(発明の効果) 以上のように本発明によれば、素子の厚み方向に積層
された各層の何れに於いても、正孔、電子何れに対して
も各画素の間に電位障壁或いは接合等の捕獲するものを
有する構造であり、各層が各画素毎に完全に分離するも
ので各層に発生した正孔、電子対が他画素に拡散する事
が無く、クロストークも無くなり、スメアのないMOS型
イメージセンサが得られる。(Effects of the Invention) As described above, according to the present invention, in any of the layers stacked in the thickness direction of the device, a potential barrier or a junction or the like is generated between pixels for holes and electrons. It has a structure that captures all of the pixels, and each layer is completely separated for each pixel. The holes and electron pairs generated in each layer do not diffuse to other pixels, crosstalk is eliminated, and there is no smear. Type image sensor is obtained.
第1図は本発明による装置の平面図、第2図は第1図の
断面図、第3図は従来の装置の断面図。 (主要部分の符号の説明) 3……ゲート 4……読出し線 5……ウエルの端子 6……コンタクトホール 7……ゲート酸化膜 8……MOS型FETのドレイン 11、16、21、26……N+の中性領域(受光部) 13、18、23……ウエルの中性領域(P−well) 15、25……半導体基板の中性領域 14、17、19、21、24、27……空乏層1 is a plan view of an apparatus according to the present invention, FIG. 2 is a sectional view of FIG. 1, and FIG. 3 is a sectional view of a conventional apparatus. (Explanation of symbols of main parts) 3 ... Gate 4 ... Readout line 5 ... Well terminal 6 ... Contact hole 7 ... Gate oxide film 8 ... MOS type FET drain 11, 16, 21, 26 ... ... N + neutral region (light receiving portion) 13, 18, 23 ... well neutral region (P-well) 15, 25 ... semiconductor substrate neutral region 14, 17, 19, 21, 24, 27 ...... Depletion layer
Claims (1)
逆導電型である複数の互いに電気的に分離されたウエル
拡散を備え、該ウエル拡散の各々には前記半導体基板と
同一導電型の一つの受光部と、該受光部をソースとする
一つのMOSスイッチを備えたことを特徴とするMOS型イメ
ージセンサ。1. A semiconductor substrate of one conductivity type is provided with a plurality of well diffusions of a conductivity type opposite to that of the semiconductor substrate, the well diffusions being electrically separated from each other, and each of the well diffusions is of the same conductivity type as the semiconductor substrate. 1. A MOS type image sensor, comprising: one light receiving part of the above, and one MOS switch using the light receiving part as a source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62026123A JP2540834B2 (en) | 1987-02-06 | 1987-02-06 | MOS image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62026123A JP2540834B2 (en) | 1987-02-06 | 1987-02-06 | MOS image sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63193559A JPS63193559A (en) | 1988-08-10 |
JP2540834B2 true JP2540834B2 (en) | 1996-10-09 |
Family
ID=12184788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62026123A Expired - Lifetime JP2540834B2 (en) | 1987-02-06 | 1987-02-06 | MOS image sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2540834B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4627402B2 (en) * | 2003-11-28 | 2011-02-09 | 浜松ホトニクス株式会社 | Spectrometer using photodetector |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5612784A (en) * | 1979-07-11 | 1981-02-07 | Hitachi Denshi Ltd | Solid image pickup element |
-
1987
- 1987-02-06 JP JP62026123A patent/JP2540834B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63193559A (en) | 1988-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210368120A1 (en) | Solid-state imaging device and manufacturing method therefor | |
JP3177514B2 (en) | Solid-state image sensor | |
EP1004140B1 (en) | A well to substrate photodiode for use in a cmos sensor on a salicide process | |
US6211509B1 (en) | Solid-state image sensor | |
US10854647B2 (en) | Photo diode with dual backside deep trench isolation depth | |
US4873561A (en) | High dynamic range charge-coupled device | |
US12328518B2 (en) | Light detector | |
US20210335862A1 (en) | Image sensor | |
US5122850A (en) | Blooming control and reduced image lag in interline transfer CCD area image sensors | |
US6380568B1 (en) | CMOS image sensor and method for fabricating the same | |
US6653164B2 (en) | Solid state imaging device, manufacturing method thereof, and solid state imaging apparatus | |
KR100296142B1 (en) | CMOS image sensor with deep field stop layer | |
US7271375B2 (en) | Photodetectors array with isolated pixels and storage grid, hybridized on a readout circuit | |
US6806522B2 (en) | CMOS image sensor and manufacturing method for the same | |
US6287886B1 (en) | Method of forming a CMOS image sensor | |
EP0118568B1 (en) | Semiconductor image pickup device | |
JPH09275201A (en) | Solid-state image pick up device | |
JP2540834B2 (en) | MOS image sensor | |
JP3284986B2 (en) | Photoelectric conversion element and solid-state imaging device using the same | |
WO2021131372A1 (en) | Multiplying image sensor | |
JPH02278874A (en) | Solid-state image sensor and its manufacturing method | |
JP3105781B2 (en) | Solid-state imaging device | |
WO1989005039A1 (en) | Blooming control in ccd image sensors | |
KR100730470B1 (en) | Manufacturing Method of Image Sensor | |
KR20010028859A (en) | Solid state image pickup device and method of fabricating the same |