JP2540402B2 - Moving object detection method - Google Patents
Moving object detection methodInfo
- Publication number
- JP2540402B2 JP2540402B2 JP3322273A JP32227391A JP2540402B2 JP 2540402 B2 JP2540402 B2 JP 2540402B2 JP 3322273 A JP3322273 A JP 3322273A JP 32227391 A JP32227391 A JP 32227391A JP 2540402 B2 JP2540402 B2 JP 2540402B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light receiving
- signal
- component
- detection area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 title claims description 59
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 description 19
- 230000035945 sensitivity Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
Landscapes
- Switches Operated By Changes In Physical Conditions (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は移動する物体を光学的
に検出する技術に係わり、とくに投光部を有さず被検出
物体からの光を捕らえることにより移動する物体を検出
する技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for optically detecting a moving object, and more particularly to a technique for detecting a moving object by capturing light from a detected object without a light projecting portion.
【0002】[0002]
【従来の技術】従来この種の技術として広角レンズを使
用する方式がある。すなわち投光部を持たずレンズ系を
介して受光面に被検出物体を結像させる方式は、被検出
物体が発光物体であるばあいを除けば、一般に、環境光
が被検出物体に反射して検出器に入射する。被検出物体
が動かないばあいは、環境光の強度が一定であれば、検
出器に入射する光量は時間に関して一定である。被検出
物体が動くと、被検出物体が無限に大きい無地の平板な
どの特殊なばあいを除き、検出器に入射する光の量が時
間的に変化するので、光量検出素子を受光面に配する
と、光量の時間的な変化により移動体を検出できること
になる。この方法は極めて簡単であるが、光学的なノイ
ズが大きく実用とはなっていない。つまり、被検出物体
が動くことにより起こる受光面上の光量変化がきわめて
少なく、被検出物体が動く以外の受光面上の光量変化と
比べ区別ができない。もっとも大きな光学的なノイズの
1つが、螢光灯などの交流光ノイズである。2. Description of the Related Art Conventionally, there is a system using a wide-angle lens as this kind of technique. That is, in the method of forming an image of the detected object on the light receiving surface through the lens system without a light projecting portion, generally, ambient light is reflected on the detected object except when the detected object is a light emitting object. Incident on the detector. When the detected object does not move, if the intensity of ambient light is constant, the amount of light incident on the detector is constant with time. When the object to be detected moves, the amount of light incident on the detector changes with time, except in special cases such as a plain plate where the object to be detected is infinitely large. Then, the moving body can be detected by the temporal change of the light amount. This method is extremely simple, but it is not practical because of large optical noise. That is, the change in the amount of light on the light-receiving surface caused by the movement of the detected object is extremely small, and cannot be distinguished from the change in the amount of light on the light-receiving surface except when the detected object moves. One of the largest optical noises is AC light noise from fluorescent lamps.
【0003】これに対して、たとえば、受光面上に2N
個に分割された受光素子を配し、これを交互にプラス端
子、マイナス端子に接続し、プラス端子、マイナス端子
に集められた信号の差の信号を作り、この差の信号のう
ち、商用周波数たとえば50Hzあるいは60Hzより
十分低い周波数成分を取り出すことにより、螢光灯など
の交流光の影響を取り除く方法がある。この方法によれ
ば、たとえば、所定の明るさの場所の歩行者を検出する
ことは可能である。すなわち、均等に入射する光が時間
的に変化しても、2つの信号には差が生じない。被検出
物体が移動すると、受光面上の被検出物体の像が動き、
2つの信号に差が生じるので、2つの信号の差により移
動体が検出できる。この方式は、受光面上に明るさが移
動するときだけ信号変化が起こるので、光ノイズが前記
方法に比べかなり改善でき、それだけ高感度にすること
ができる。On the other hand, for example, 2N on the light receiving surface
The light receiving element divided into pieces is arranged, and these are alternately connected to the plus terminal and the minus terminal, and the difference signal of the signals collected at the plus terminal and the minus terminal is made. For example, there is a method of removing the influence of AC light of a fluorescent lamp or the like by extracting a frequency component sufficiently lower than 50 Hz or 60 Hz. According to this method, for example, it is possible to detect a pedestrian in a place with a predetermined brightness. That is, even if the uniformly incident light changes with time, there is no difference between the two signals. When the detected object moves, the image of the detected object on the light receiving surface moves,
Since a difference occurs between the two signals, the moving body can be detected by the difference between the two signals. In this method, a signal change occurs only when the brightness moves on the light receiving surface, so that the optical noise can be considerably improved as compared with the above method, and the sensitivity can be increased accordingly.
【0004】この方法において検出範囲を広くするため
には、受光素子の分割数を多くし、図1に示すように、
受光レンズ4を広い角度θを有するレンズすなわち広角
レンズにする方法が考えられる。この方法によれば、1
つの検出器である程度の広い領域を検出範囲とすること
はできるが、通常この目的のために設計作成された専用
の受光素子5が必要となる。また、広角レンズにすれば
受光面9の像はそれだけ縮小されるので被検出領域の像
に解像度が要求され、今度は精密なレンズ系が必要とな
る問題点が生ずる。In order to widen the detection range in this method, the number of divisions of the light receiving element is increased, and as shown in FIG.
A method is conceivable in which the light receiving lens 4 is a lens having a wide angle θ, that is, a wide angle lens. According to this method, 1
Although it is possible to set the detection range to a certain extent with one detector, a dedicated light receiving element 5 designed and created for this purpose is usually required. Further, if a wide-angle lens is used, the image on the light-receiving surface 9 is reduced by that amount, so that resolution is required for the image of the detection area, and this causes a problem that a precise lens system is required.
【0005】このような問題に鑑み、発明者は先に特願
平1−221798号すなわち図2に示す方法を発明し
た。この発明の要旨は、レンズ4と受光素子5の間に鏡
8を設け、受光素子5の虚像をつくることにより、受光
素子5を受光面9に複数配列したのと等価となるので、
少ない分割数の1つの受光素子5で広い検出範囲を有
し、センサー2のサイズが小さい移動体検出器が実現で
きる。In view of such a problem, the inventor previously invented the method shown in Japanese Patent Application No. 1-2221798, that is, FIG. The gist of the present invention is equivalent to arranging a plurality of light receiving elements 5 on the light receiving surface 9 by providing the mirror 8 between the lens 4 and the light receiving element 5 and forming a virtual image of the light receiving element 5.
A moving object detector having a wide detection range and a small sensor 2 size can be realized with one light receiving element 5 having a small number of divisions.
【0006】しかし、従来例として示した方法による
と、センサー2の正面に対し斜め方向の検出をするばあ
い、その角度が大きくなると角度とともに感度が急速に
落ちるという問題があった。すなわち、センサーの軸心
線に対し45度方向のばあい、入射光量そのものがCo
s45=0.7倍になること以外に、レンズ系の収差な
どが大きくなりたとえば、1枚のレンズでは実際上結像
レンズ系として機能しなくなり、このための感度の低下
は入射光量の影響より遥かに大きい。また高価で精密な
組レンズ系を使用すれば収差が低減できるが、センサー
全体が大きくなり、かつ、高価となってしまう。このよ
うに、従来の検出方法では、視野角を極端に広くすると
斜め方向の感度が著しく低下してしまうという問題があ
った。However, according to the method shown as the conventional example, when the sensor 2 is detected in an oblique direction with respect to the front, there is a problem that the sensitivity rapidly decreases with the angle when the angle becomes large. That is, in the case of 45 degrees with respect to the axis of the sensor, the incident light amount itself is
In addition to s45 = 0.7 times, the aberration of the lens system becomes large and, for example, one lens does not actually function as an imaging lens system. Much larger. Aberration can be reduced by using an expensive and precise lens group, but the entire sensor becomes large and expensive. As described above, the conventional detection method has a problem that the sensitivity in the oblique direction is significantly reduced when the viewing angle is extremely widened.
【0007】[0007]
【発明が解決しようとする課題】この発明が解決しよう
とする課題はセンサーの正面に対し斜め方向の検出をす
るばあい、その角度が大きくなるにしたがってその角度
とともに感度が急速に落ちることである。すなわち、視
野角を極端に広くすると斜め方向の感度が著しく低下し
てしまうことである。SUMMARY OF THE INVENTION The problem to be solved by the present invention is that, when the sensor is detected in an oblique direction with respect to the front, the sensitivity decreases rapidly with the angle as the angle increases. . That is, if the viewing angle is made extremely wide, the sensitivity in the oblique direction is significantly reduced.
【0008】[0008]
【課題を解決するための手段】第1の発明は、検出領域
を複数の小領域に分け、各小領域の中心より受光面の中
心点とを結ぶ線が受光面と検出領域の間の遮光面を通過
するところに孔を設けた遮光板を配し、2N個のエレメ
ントに分割された受光素子を受光面の中心点に配し、遮
光板の複数の孔を通して入射する光により受光素子の2
N個のエレメントに生ずる光電流のうち、所定のN個の
各エレメントの出力の合計Aと残りのN個の各エレメン
トの出力の合計Bとの差信号(A−B)の交流成分と、
和信号(A+B)の直流成分とにより検出領域内の移動
体を検知するようにした。第2の発明は、検出領域を複
数の小領域に分け、各小領域の中心より受光面の中心点
とを結ぶ線が受光面と検出領域の間の遮光面を通過する
ところに孔を設けた遮光板を配し、2N個のエレメント
に分割された受光素子を受光面の中心点に配し、遮光板
の複数の孔を通して入射する光により受光素子の2N個
のエレメントに生ずる光電流のうち、所定のN個の各エ
レメントの出力の合計Aと残りのN個の各エレメントの
出力の合計Bとを1対のトランジスタで電流増幅率β倍
し、この差信号β(A−B)の交流成分と、信号βAの
直流成分、信号βBの直流成分、または和信号β(A+
B)の直流成分とにより検出領域内の移動体を検知する
ようにした。According to a first aspect of the present invention, a detection area is divided into a plurality of small areas, and a line connecting the center of each small area to the center point of the light receiving surface shields light between the light receiving surface and the detection area. A light-shielding plate having a hole is arranged at a position passing through the surface, a light-receiving element divided into 2N elements is arranged at the center point of the light-receiving surface, and light incident on the light-receiving plate through a plurality of holes of the light-shielding plate Two
An AC component of a difference signal (AB) between a total A of outputs of predetermined N elements and a total B of outputs of the remaining N elements of the photocurrents generated in the N elements,
The moving object in the detection area is detected by the DC component of the sum signal (A + B). According to a second aspect of the present invention, the detection area is divided into a plurality of small areas, and a hole is provided where a line connecting the center of each small area and the center point of the light receiving surface passes through the light shielding surface between the light receiving surface and the detection area. A light-shielding plate is arranged, and the light-receiving element divided into 2N elements is arranged at the center point of the light-receiving surface, and the photocurrent generated in the 2N elements of the light-receiving element by the light incident through the plurality of holes of the light-shielding plate Among them, the total A of the outputs of the predetermined N elements and the total B of the outputs of the remaining N elements are multiplied by a current amplification factor β by a pair of transistors, and this difference signal β (AB) AC component and the DC component of the signal βA, the DC component of the signal βB, or the sum signal β (A +
The moving body in the detection area is detected by the DC component of B).
【0009】これによって、遮光板の複数の孔の各孔と
受光素子とを結ぶ方向に移動体があると受光素子に入射
する光が位置的に変化する。受光面上の位置的な入射光
の変化は差信号(A−B)の時間的な変化として現われ
る。すなわち、差信号(A−B)に交流成分が現われ
る。差信号(A−B)の交流成分の振幅は、被検出物体
の移動に依存するが、これに加えて、環境照度に比例す
る。環境照度は和信号(A+B)の直流成分で検出でき
るので、第1の発明は、和信号(A+B)の直流成分と
差信号(A−B)の交流成分の振幅とを比較することで
移動体を検知する。第2の発明は、和信号β(A+B)
の直流成分と差信号β(A−B)の交流成分の振幅とを
比較することで移動体を検知する。Thus, when a moving body is present in the direction connecting the holes of the light shielding plate and the light receiving element, the light incident on the light receiving element changes in position. A positional change of the incident light on the light receiving surface appears as a temporal change of the difference signal (AB). That is, an AC component appears in the difference signal (A-B). The amplitude of the AC component of the difference signal (A-B) depends on the movement of the detected object, but in addition to this, it is proportional to the ambient illuminance. Since the environmental illuminance can be detected by the DC component of the sum signal (A + B), the first invention moves by comparing the amplitude of the DC component of the sum signal (A + B) and the amplitude of the AC component of the difference signal (AB). To detect the body. The second invention is the sum signal β (A + B)
The moving object is detected by comparing the DC component of the signal with the amplitude of the AC component of the difference signal β (A-B).
【0010】[0010]
【実施例】以下図によってこの発明の一実施例について
説明する。すなわち被検出物体1を検出するセンサー2
は図3に示すようにシリコン基板3上に4分割受光素子
5が形成され、この受光素子5の前面には遮光板7が設
けられる。そしてこのセンサーはその4分割受光素子5
が受光面9上に位置するように配設される。図4に示す
ようにこの遮光板には複数の孔10が設けられ、この各
孔は図5に示すように受光素子の中心から検出領域Wの
各小領域wsの中心に向けた線が遮光板7と交わるとこ
ろに位置する。遮光板7の孔10から入射した光信号L
の処理回路の第1の発明の構成ブロック図を図6に示
す。図6において、入射した光を検出する4分割受光素
子5と、4分割受光素子5の各エレメントを2つのグル
ープに分け、各グループの信号をA、Bとすると、この
差信号(A−B)を作り増幅する差動増幅器11とその
和信号(A+B)を取り出す加算部12とを有す。差信
号(A−B)を増幅する差動増幅器11と所定の周波数
成分をとりだすバンドパスフィルター13、ハイカット
帯域増幅器14、バンドバスフィルター15および、ウ
インドコンパレーター16が順次接続される。加算部1
2で加算された和信号(A+B)はローパスフィルター
17を介して増幅器18で増幅した後直流成分をウイン
ドコンパレーター16の参照入力側に接続される。この
ような構成によると、レンズなどの集光系を持たないの
で光電流が極めて小さい。BRIEF DESCRIPTION OF THE DRAWINGS FIG. That is, the sensor 2 that detects the detected object 1
As shown in FIG. 3, a four-divided light receiving element 5 is formed on a silicon substrate 3, and a light shielding plate 7 is provided on the front surface of the light receiving element 5. And this sensor is the four-division light receiving element 5
Are arranged on the light receiving surface 9. As shown in FIG. 4, a plurality of holes 10 are provided in the light shielding plate, and each hole has a line from the center of the light receiving element to the center of each small region ws of the detection region W as shown in FIG. It is located where it intersects with the board 7. Optical signal L incident from the hole 10 of the light shielding plate 7
FIG. 6 shows a configuration block diagram of the first invention of the processing circuit of FIG. In FIG. 6, assuming that the four-division light-receiving element 5 for detecting incident light and each element of the four-division light-receiving element 5 are divided into two groups and the signals of each group are A and B, this difference signal (A-B ) Is added to the differential amplifier 11 and the sum signal (A + B) thereof is taken out. A differential amplifier 11 that amplifies the difference signal (A-B), a bandpass filter 13 that extracts a predetermined frequency component, a high-cut band amplifier 14, a bandpass filter 15, and a window comparator 16 are sequentially connected. Adder 1
The sum signal (A + B) added in 2 is amplified by the amplifier 18 via the low-pass filter 17, and the DC component is connected to the reference input side of the window comparator 16. According to such a configuration, since the condenser system such as a lens is not provided, the photocurrent is extremely small.
【0011】この点を考慮して、図7に示す回路構成を
取ってもよい。図7の構成は図6の構成と比べ、図6の
波線で囲まれた部分を図7に示すように構成したもので
ある。これによる相違は、信号A、信号Bの代わりに信
号βA、信号βBを処理するもので、4分割受光素子5
と差動増幅器11および加算回路12間に増幅器20を
接続したものある。In consideration of this point, the circuit configuration shown in FIG. 7 may be adopted. The configuration of FIG. 7 is different from the configuration of FIG. 6 in that the portion surrounded by the broken line in FIG. 6 is configured as shown in FIG. The difference is that the signal βA and the signal βB are processed instead of the signal A and the signal B.
An amplifier 20 is connected between the differential amplifier 11 and the adder circuit 12.
【0012】図7の波線で囲まれた部分をより具体的に
示すと図8のようになる。図8において、4分割受光素
子5の各エレメント出力を2つのグループに分けて結線
することにより光信号電流A、Bを作る。光信号電流
A、BはペアトランジスタQ1の各々のベースにつな
ぐ。ペアトランジスタQ1のエミッタは互いに結合され
抵抗R1によりグランドに接続される。ペアトランジス
タQ1の各コレクタはカレントミラー回路を構成してい
るペアトランジスタQ2の各コレクタに接続される。Q
2のカレントミラー出力側に電流電圧変換用の抵抗R3
が接続される。コンデンサーC1は所定の周波数フィル
ター特性を与え、コンデンサーC2は結合コンデンサー
である。R2、D2〜D4により、中間電位を与えてい
る。More specifically, the portion surrounded by the broken line in FIG. 7 is shown in FIG. In FIG. 8, the optical signal currents A and B are created by dividing the respective element outputs of the four-division light receiving element 5 into two groups and connecting them. The optical signal currents A and B are connected to the bases of the pair transistors Q1. The emitters of the pair transistor Q1 are coupled to each other and connected to the ground by the resistor R1. Each collector of the pair transistor Q1 is connected to each collector of the pair transistor Q2 forming a current mirror circuit. Q
A resistor R3 for current-voltage conversion on the output side of the current mirror 2
Is connected. The capacitor C1 provides a predetermined frequency filter characteristic, and the capacitor C2 is a coupling capacitor. An intermediate potential is given by R2 and D2 to D4.
【0013】次に図6における動作について説明する。
まず、遮光板7と受光素子5の距離に対し、遮光板7か
ら被検出物体1までの距離が十分に大きいばあいを考え
る。このばあい、被検出物体1から遮光板7の孔10に
到達する光は平行光とみなせる。このばあい、ピンホー
ルカメラと同様に遮光板7の1つの孔10に対して1つ
の像が受光面9上に写る。4分割受光素子5の上に写る
像は遮光板7の各孔10の中心と4分割受光素子5の中
心とを結んだ線が検出領域Wと交わる点を中心とした小
領域wsである。この小領域の大きさは受光素子と遮光
板7の距離L1と遮光板7と検出領域Wとの距離L2の
比により決まる。遮光板7の孔10の数だけ小領域ws
の像が4分割受光素子5上に重なることになる。検出領
域Wが蛍光灯などの交流成分を持った光を受けていて
も、4分割受光素子5上に均等に光が入射していれば受
光素子の2つのグループの信号A、信号Bの差信号(A
−B)には交流成分は現われない。検出領域Wの小領域
wsに移動体があると4分割受光素子5上の像が位置的
に動く。よって、4分割受光素子5の各エレメントの出
力の2つのグループの差信号(A−B)に交流成分が生
じる。差信号(A−B)の交流成分は微小であるので所
定の増幅K1を行ないウインドコンパレーターの判定入
力に入力される。このときの信号を差信号K1(A−
B)とする。差信号(A−B)の交流成分の大きさは移
動体の移動状態に依存するだけでなく移動体が存在する
検出領域Wの照度にも比例する。たとえば、検出領域W
の照度が半分になると差信号(A−B)も半分になる。
よって、差信号(A−B)の大きさを判断するときに一
定値と比較するのではなく、検出領域Wの照度に対応す
る信号と比較すると検出領域Wの照度の影響を受けにく
くすることができる。和信号(A+B)の直流成分は検
出領域Wの照度に対応する信号となるのでこれを所定の
倍率だけ増幅した後ウインドコンパレーターの参照入力
とする。このときの信号を和信号K2(A+B)とす
る。ウインドコンパレーターは差信号K1(A−B)信
号の交流成分の絶対値が和信号K2(A+B)の値を越
えたばあい移動体検出信号を発する。Next, the operation in FIG. 6 will be described.
First, consider a case where the distance from the light shield plate 7 to the detected object 1 is sufficiently large with respect to the distance between the light shield plate 7 and the light receiving element 5. In this case, the light reaching the hole 10 of the light shielding plate 7 from the detected object 1 can be regarded as parallel light. In this case, like the pinhole camera, one image is captured on the light receiving surface 9 for one hole 10 of the light shielding plate 7. The image projected on the four-division light-receiving element 5 is a small area ws centered on the point where the line connecting the center of each hole 10 of the light-shielding plate 7 and the center of the four-division light-receiving element 5 intersects the detection area W. The size of this small region is determined by the ratio of the distance L1 between the light receiving element and the light shielding plate 7 and the distance L2 between the light shielding plate 7 and the detection region W. Small area ws corresponding to the number of holes 10 of the light shielding plate 7
Image is superimposed on the four-division light receiving element 5. Even if the detection area W receives light having an AC component such as a fluorescent lamp, if the light is evenly incident on the four-division light receiving element 5, the difference between the signals A and B of the two groups of the light receiving elements is detected. Signal (A
No AC component appears in -B). When a moving object is present in the small area ws of the detection area W, the image on the four-division light receiving element 5 moves in position. Therefore, an AC component is generated in the difference signal (AB) of the two groups of the outputs of the respective elements of the four-division light receiving element 5. Since the AC component of the difference signal (A-B) is minute, a predetermined amplification K1 is performed and the result is input to the determination input of the window comparator. The signal at this time is the difference signal K1 (A-
B). The magnitude of the AC component of the difference signal (AB) depends not only on the moving state of the moving body but also on the illuminance of the detection area W in which the moving body exists. For example, the detection area W
When the illuminance of is halved, the difference signal (A-B) is also halved.
Therefore, when the magnitude of the difference signal (A-B) is judged, it is less likely to be affected by the illuminance of the detection area W when compared with a signal corresponding to the illuminance of the detection area W, instead of being compared with a constant value. You can Since the DC component of the sum signal (A + B) becomes a signal corresponding to the illuminance of the detection area W, this is amplified by a predetermined magnification and then used as the reference input of the window comparator. The signal at this time is the sum signal K2 (A + B). The window comparator issues a moving object detection signal when the absolute value of the AC component of the difference signal K1 (A-B) signal exceeds the value of the sum signal K2 (A + B).
【0014】図7の動作は、検出領域Wが蛍光灯などの
交流成分を持った光を受けていても、4分割受光素子5
上に均等に光が入射していれば受光素子の2つのグルー
プの信号A、信号Bの差信号(A−B)には交流成分は
現われないので差信号β(A−B)にも交流成分は現わ
れない。検出領域Wの小領域wsに移動体があると4分
割受光素子5上の像が位置的に動く。よって、4分割受
光素子5の各エレメントの出力の2つのグループの差信
号(A−B)に交流成分が生じるのでβ倍された差信号
β(A−B)にも交流成分が現われる。差信号β(A−
B)の交流成分を所定の増幅M1倍を行ないウインドコ
ンパレーターの判定入力に入力される。このときの信号
を差信号βM1(A−B)とする。差信号(A−B)の
交流成分の大きさは移動体の移動状態に依存するだけで
なく移動体が存在する検出領域Wの照度にも比例する。
すなわち、たとえば、検出領域Wの照度が半分になると
差信号(A−B)も半分になる。よって、差信号(A−
B)の大きさを判断するときに一定値と比較するのでは
なく、検出領域Wの照度に対応する信号と比較すると、
検出領域Wの照度の影響を受けにくくなる。和信号(A
+B)の直流成分は検出領域Wの照度に対応する信号と
なるのでこちらの信号もトランジスタの電流増幅率β倍
した後所定の倍率だけ増幅した後ウインドコンパレータ
ーの参照入力とする。このときの信号を和信号βM2
(A+B)とする。ウインドコンパレーターは差信号β
M1(A−B)の交流成分の絶対値が和信号βM2(A
+B)の値を越えたばあい移動体検出信号を発する。β
が温度変化などで変動すると、差信号(A−B)と和信
号(A+B)の信号増幅率はβM1、βM2であるから
変動はするが、環境照度の変化の影響と全く同様であ
る。すなわち、たとえば、環境の照度が1/2になった
ばあいと、βが何らかの理由で1/2になったばあい
は、上記コンパレータの入力信号状態は同一である。こ
のようにトランジスタの電流増幅率βの値の温度変動、
製品間の個体差などが影響を及ぼさない方法であり、極
めて大きな増幅率を簡単な方法で得ることが出来る。In the operation of FIG. 7, even if the detection region W receives light having an AC component such as a fluorescent lamp, the four-division light receiving element 5
If the light is evenly incident on the upper portion, no AC component appears in the difference signal (AB) between the signals A and B of the two groups of light receiving elements, and therefore the difference signal β (AB) is also AC. No ingredients appear. When a moving object is present in the small area ws of the detection area W, the image on the four-division light receiving element 5 moves in position. Therefore, since an AC component is generated in the difference signal (AB) of the two groups of the outputs of the respective elements of the four-division light receiving element 5, an AC component also appears in the difference signal β (AB) multiplied by β. Difference signal β (A-
The AC component of B) is amplified by a predetermined amount M1 and input to the judgment input of the window comparator. The signal at this time is defined as the difference signal βM1 (AB). The magnitude of the AC component of the difference signal (AB) depends not only on the moving state of the moving body but also on the illuminance of the detection area W in which the moving body exists.
That is, for example, when the illuminance of the detection area W becomes half, the difference signal (A-B) also becomes half. Therefore, the difference signal (A-
When comparing the magnitude of B) with a signal corresponding to the illuminance of the detection region W, instead of comparing with a constant value,
It is less likely to be affected by the illuminance of the detection area W. Sum signal (A
Since the DC component of + B) becomes a signal corresponding to the illuminance of the detection area W, this signal is also multiplied by the current amplification factor β of the transistor and then amplified by a predetermined factor before being used as the reference input of the window comparator. The signal at this time is the sum signal βM2
(A + B). Wind comparator is the difference signal β
The absolute value of the AC component of M1 (A-B) is the sum signal βM2 (A
If the value of + B) is exceeded, a moving body detection signal is issued. β
Changes due to temperature changes and the like, the signal amplification factors of the difference signal (A−B) and the sum signal (A + B) are βM1 and βM2, but they change, but they are exactly the same as the influence of the change of the environmental illuminance. That is, for example, when the illuminance of the environment becomes 1/2 and when β becomes 1/2 for some reason, the input signal state of the comparator is the same. Thus, the temperature variation of the value of the current amplification factor β of the transistor,
This is a method in which individual differences among products do not affect, and an extremely large amplification factor can be obtained by a simple method.
【0015】図8の動作は、4分割受光素子5に光電流
信号A、Bが生じると、この電流はペアトランジスタQ
1の各ベースに流れるので各エミッタには(β+1)
A、(β+1)Bの電流が流れ、R1には(β+1)
(A+B)×R1の値の電圧降下が生じる。一方、トラ
ンジスタのコレクタには電流βA、βBが流れる。ペア
トランジスタQ2により一方のコレクタ電流が他方のコ
レクタ電流が減算された電流が抵抗R3に流れるので、
抵抗R3には電流β(A−B)が流れ、この抵抗R3に
はβ(A−B)×R3の値の電圧降下が生じる。βが1
に比べて非常に大きいばあいは、β倍と(β+1)倍を
β倍とみなすことが出来る。このように、差信号β(A
+B)と和信号β(A+B)とが、各々所定の倍率係数
をもって取り出すことが出来る。よって、レンズなどの
集光系を持たないために信号A、信号Bが微弱であって
もこのように簡単な方法で信号の増幅が行なえる。In the operation shown in FIG. 8, when photocurrent signals A and B are generated in the four-division light receiving element 5, this current is transferred to the pair transistor Q.
(Β + 1) to each emitter because it flows to each base of 1
The current of A and (β + 1) B flows, and (β + 1) flows to R1.
A voltage drop of the value of (A + B) × R1 occurs. On the other hand, currents βA and βB flow through the collector of the transistor. Since a current obtained by subtracting one collector current from the other collector current by the pair transistor Q2 flows through the resistor R3,
A current β (A-B) flows through the resistor R3, and a voltage drop having a value of β (A-B) × R3 occurs in the resistor R3. β is 1
If it is much larger than, then β times and (β + 1) times can be regarded as β times. Thus, the difference signal β (A
+ B) and the sum signal β (A + B) can be taken out with respective predetermined scaling factors. Therefore, even if the signal A and the signal B are weak because the light collecting system such as a lens is not provided, the signal can be amplified by such a simple method.
【0016】差信号(A−B)と和信号(A+B)とを
比較して移動体検出を行なうばあい、ならびに、差信号
β(A−B)と和信号β(A+B)とを比較して移動体
検出を行なうばあいを説明したが、信号A、信号Bの直
流成分はほとんど等しいので、このばあい和信号(A+
B)の代わりに2倍のAまたは2倍のBを使用する、あ
るいは、和信号β(A+B)の代わりに2倍のβAまた
は2倍のβBを使用も同様の結果が得られる。When the moving object is detected by comparing the difference signal (AB) and the sum signal (A + B), the difference signal β (A-B) and the sum signal β (A + B) are compared. The case where the moving object is detected has been described above, but since the DC components of the signals A and B are almost the same, the sum signal (A +
Similar results are obtained by using double A or double B instead of B), or double βA or double βB instead of the sum signal β (A + B).
【0017】検出領域Wの照度がゼロに近いばあい、和
信号(A+B)の直流成分、および、和信号β(A+
B)の直流成分がゼロに近くなり、差信号(A−B)に
わずかなノイズがあっても上記差信号K1(A−B)の
交流成分の絶対値が上記和信号K2(A+B)の値を越
える、または、上記差信号βM1(A−B)の交流成分
の絶対値が上記和信号βM2(A+B)の値を越え上記
ウインドコンパレータから出力を出すという誤動作を起
こす危険性がある。この問題に対して、和信号(A+
B)がゼロであってもウインドコンパレーターの参照入
力値が完全にゼロとならないようにK2(A+B)+d
とする、または、βM2(A+B)+dとすると効果が
ある。dの値は、検出領域Wの照度がゼロのばあいのウ
インドコンパレーターの判定入力信号部に現われている
ノイズ振幅より大きくすれば上記のような誤動作を防ぐ
ことが出きる。When the illuminance of the detection area W is close to zero, the DC component of the sum signal (A + B) and the sum signal β (A +
The DC component of B) becomes close to zero, and the absolute value of the AC component of the difference signal K1 (A−B) is the same as that of the sum signal K2 (A + B) even if the difference signal (A−B) has a slight noise. There is a risk of causing a malfunction that the value exceeds the value or the absolute value of the AC component of the difference signal βM1 (A−B) exceeds the value of the sum signal βM2 (A + B) to output from the window comparator. For this problem, the sum signal (A +
Even if B) is zero, the reference input value of the window comparator will not be completely zero K2 (A + B) + d
Or βM2 (A + B) + d is effective. If the value of d is made larger than the noise amplitude appearing in the determination input signal section of the window comparator when the illuminance of the detection area W is zero, the above malfunction can be prevented.
【0018】以上の説明は図9(a)に示す4分割受光
素子5のばあいについて説明したが、より多くの数2n
個に分割された受光素子を使用してもよい。このばあ
い、+または−のエレメントの分布を2次元的に規則的
に並べてもよいし、図9(b)に示すように不規則に並
べてもよい。Although the above description has been given for the case of the four-divided light receiving element 5 shown in FIG.
You may use the light receiving element divided into pieces. In this case, the distribution of + or − elements may be two-dimensionally arranged regularly, or may be arranged irregularly as shown in FIG. 9B.
【0019】受光素子の分割方向は図9(c)に示すよ
う1次元方向であってもよい。このばあい、エレメント
の数は2個であってもよい。このばあい、移動体の分割
方向の移動成分が信号として検出される。The dividing direction of the light receiving element may be a one-dimensional direction as shown in FIG. 9 (c). In this case, the number of elements may be two. In this case, the moving component in the dividing direction of the moving body is detected as a signal.
【0020】遮光板7は平板であってもよいし、湾曲し
ていても良い。The light shield plate 7 may be a flat plate or may be curved.
【0021】この発明の移動体検出方法によると、たと
えば、図10に示すように孔8をロの字状に設けた遮光
板7を使用すると、図11に示すように検出領域Wもロ
の字状となり、窓の保安等に適用することができる。According to the moving object detecting method of the present invention, for example, when the light shielding plate 7 having the holes 8 formed in a square shape as shown in FIG. 10 is used, the detection area W also becomes hollow as shown in FIG. It has a letter shape and can be applied to window security.
【0022】[0022]
【発明の効果】この発明は上述のように遮光板の複数の
孔を通して入射する光により受光素子の2N個のエレメ
ントに生ずる光電流のうち、所定のN個の各エレメント
の出力の合計Aと残りのN個の各エレメントの出力の合
計Bとの差信号(A−B)の交流成分と、和信号(A+
B)の直流成分とにより検出領域W内の移動物体を検知
するようにしており、とくにレンズを使用しないので、
結像系では避けられなかった収差に起因する斜め方向の
感度の低下がなく、かつ斜め方向の感度の低下が少ない
効果がある。また検出領域Wの形状は遮光板7の孔10
の位置で極めて簡単に変えることが出来る。さらに遮光
板7の1つの孔10が1つの小領域wsに相当し、小領
域wsの集まりが検出領域Wを形成するので、検出領域
Wがたとえば、円形、四角形、3角形、コの字型、ロの
字型等の検出領域Wを簡単に形成することが出来る。As described above, according to the present invention, among the photocurrents generated in the 2N elements of the light receiving element by the light incident through the plurality of holes of the light shielding plate, the total A of the outputs of the predetermined N elements and The AC component of the difference signal (A−B) from the total B of the outputs of the remaining N elements and the sum signal (A +
A moving object in the detection area W is detected by the DC component of B), and since no lens is used,
There is an effect that there is no decrease in sensitivity in the oblique direction due to aberrations that cannot be avoided in the imaging system, and there is little decrease in sensitivity in the oblique direction. In addition, the shape of the detection region W is the hole 10
Can be changed very easily at the position. Further, one hole 10 of the light shielding plate 7 corresponds to one small area ws, and a collection of the small areas ws forms the detection area W. Therefore, the detection area W is, for example, a circle, a quadrangle, a triangle, or a U-shape. It is possible to easily form the detection region W having a square shape or a square shape.
【図1】従来の広角レンズを使用する移動体検出装置を
示す構成図である。FIG. 1 is a configuration diagram showing a moving body detection device using a conventional wide-angle lens.
【図2】従来の鏡を使用して広角化を計る移動体検出装
置を示す構成図である。FIG. 2 is a configuration diagram showing a moving body detection device that measures a wide angle by using a conventional mirror.
【図3】この発明のセンサーの構成を説明する縦断面図
である。FIG. 3 is a vertical cross-sectional view illustrating the configuration of the sensor of the present invention.
【図4】この発明の4分割受光素子と入射光との関係を
説明する斜視図である。FIG. 4 is a perspective view illustrating a relationship between a four-division light receiving element of the present invention and incident light.
【図5】この発明の検出領域と小領域の関係を説明する
透視図である。FIG. 5 is a perspective view for explaining the relationship between the detection area and the small area according to the present invention.
【図6】この発明の移動体検出方法における一実施例を
示すブロック図である。FIG. 6 is a block diagram showing an embodiment of a moving body detection method of the present invention.
【図7】この発明の移動体検出方法における第2の実施
例を示すブロック図である。FIG. 7 is a block diagram showing a second embodiment of the moving body detection method of the present invention.
【図8】この発明の移動体検出方法における受光素子の
出力前置増幅回路図である。FIG. 8 is an output preamplifier circuit diagram of a light receiving element in the moving body detection method of the present invention.
【図9】この発明の移動体検出方法における受光素子の
配列と素子の数との関係を示す平面図である。FIG. 9 is a plan view showing the relationship between the array of light receiving elements and the number of elements in the moving body detecting method of the present invention.
【図10】この発明の移動体検出方法における検出領域
をロの字型としたときの遮光板の平面図である。FIG. 10 is a plan view of a light shielding plate when the detection area in the moving body detection method of the present invention is square-shaped.
【図11】図10に示す遮光板を用いたばあいの検出領
域を示す斜視図である。11 is a perspective view showing a detection region in the case where the light shielding plate shown in FIG. 10 is used.
1 被検出物体 2 センサー 3 シリコン基板 5 4分割受光素子 7 遮光板 9 受光面 10 孔 11 差動増幅器 12 加算部 13 バンドパスフィルター 14 ハイカット帯域増幅器 15 バンドパスフィルター 16 ウインドコンパレーター 17 ローパスフィルター 18 増幅器 20 増幅器 Q1 ペアトランジスタ R1 抵抗 Q2 ペアトランジスタ R3 抵抗 C1 コンデンサー C2 コンデンサー W 検出領域 ws 小領域 1 Object to be detected 2 Sensor 3 Silicon substrate 5 4-division light receiving element 7 Light-shielding plate 9 Light receiving surface 10 Hole 11 Differential amplifier 12 Addition section 13 Bandpass filter 14 High-cut bandpass amplifier 15 Bandpass filter 16 Wind comparator 17 Lowpass filter 18 Amplifier 20 Amplifier Q1 Pair Transistor R1 Resistor Q2 Pair Transistor R3 Resistor C1 Capacitor C2 Capacitor W Detection Area ws Small Area
Claims (2)
検出領域を複数の小領域に分け、各小領域の中心より受
光面の中心点とを結ぶ線が受光面と検出領域の間の遮光
板を通過するところに孔を設け、2N個のエレメントに
分割された受光素子を上記受光面の中心点に配し、上記
遮光板の複数の孔を通して入射する光により受光素子の
2N個のエレメントに生ずる光電流のうち、所定のN個
の各エレメントの出力の合計Aと残りのN個の各エレメ
ントの出力の合計Bとの差信号(A−B)の交流成分
と、信号Aの直流成分、信号Bの直流成分、または和信
号(A+B)の直流成分とにより上記検出領域内の移動
体を検知することを特徴とする移動体検出方法。1. A light shielding plate is arranged between the light receiving surface and the detection region,
The detection area is divided into a plurality of small areas, and a hole is provided in the place where the line connecting the center of each small area and the center point of the light receiving surface passes through the light shield plate between the light receiving surface and the detection area. The divided light receiving element is arranged at the center point of the light receiving surface, and among the photocurrent generated in the 2N elements of the light receiving element by the light incident through the plurality of holes of the light shielding plate, the predetermined N elements The AC component of the difference signal (A−B) between the total output A and the output B of each of the remaining N elements, the DC component of the signal A, the DC component of the signal B, or the sum signal (A + B). A moving body detection method, which detects a moving body within the detection area based on a DC component.
検出領域を複数の小領域に分け、各小領域の中心より受
光面の中心点とを結ぶ線が受光面と検出領域の間の遮光
板を通過するところに孔を設け、2N個のエレメントに
分割された受光素子を上記受光面の中心点に配し、上記
遮光板の複数の孔を通して入射する光により受光素子の
2N個のエレメントに生ずる光電流のうち、所定のN個
の各エレメントの出力の合計Aと残りのN個の各エレメ
ントの出力の合計Bとを1対のトランジスタの電流増幅
率β倍し、この差信号β(A−B)の交流成分と、信号
βAの直流成分、信号βBの直流成分、または和信号β
(A+B)の直流成分とにより上記検出領域内の移動体
を検知することを特徴とする移動体検出方法。2. A light shielding plate is arranged between the light receiving surface and the detection area,
The detection area is divided into a plurality of small areas, and a hole is provided in the place where the line connecting the center of each small area and the center point of the light receiving surface passes through the light shield plate between the light receiving surface and the detection area. The divided light receiving element is arranged at the center point of the light receiving surface, and among the photocurrent generated in the 2N elements of the light receiving element by the light incident through the plurality of holes of the light shielding plate, the predetermined N elements The total output A and the total output B of each of the remaining N elements are multiplied by the current amplification factor β of the pair of transistors, and the AC component of the difference signal β (AB) and the DC component of the signal βA. , DC component of signal βB, or sum signal β
A moving body detection method, wherein a moving body in the detection area is detected by the (A + B) DC component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3322273A JP2540402B2 (en) | 1991-10-03 | 1991-10-03 | Moving object detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3322273A JP2540402B2 (en) | 1991-10-03 | 1991-10-03 | Moving object detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05100024A JPH05100024A (en) | 1993-04-23 |
JP2540402B2 true JP2540402B2 (en) | 1996-10-02 |
Family
ID=18141805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3322273A Expired - Lifetime JP2540402B2 (en) | 1991-10-03 | 1991-10-03 | Moving object detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2540402B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104937438B (en) * | 2013-01-25 | 2017-03-08 | 夏普株式会社 | Optical sensor and electronic equipment |
-
1991
- 1991-10-03 JP JP3322273A patent/JP2540402B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05100024A (en) | 1993-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5106734B2 (en) | Ultrasensitive photodetector with integrated pinhole for confocal microscopy | |
US4077488A (en) | Guidance assist system for agricultural machines | |
US4984889A (en) | Particle size measuring system with coincidence detection | |
US3786261A (en) | Optical scanning device | |
CA1068371A (en) | Circuit arrangements for controlling detector signals in surface inspection systems | |
JP2540402B2 (en) | Moving object detection method | |
US3946224A (en) | Method and device for detecting the passage of objects | |
US6528788B1 (en) | Detection of position and motion of sub-pixel images | |
JP3669454B2 (en) | Human body detection sensor | |
JPS63277973A (en) | Velocity measuring instrument for moving body using spatial filter | |
JP2868097B2 (en) | Mobile sensor | |
JP2843054B2 (en) | Human body detection device | |
US5068523A (en) | Scanner detector array and light diffuser | |
JP3256764B2 (en) | Wide range position detector | |
WO2003069570A2 (en) | Dual-mirror two-fingered lookdown optical detector assembly | |
JPH04104080A (en) | Traveling body sensor | |
JPH05203762A (en) | Signal processor | |
JPS6134411A (en) | Thickness measuring method | |
JP3023157B2 (en) | Light incident position detector for sun sensor | |
JPH0493661A (en) | Speed detecting spatial filter | |
JPH08122447A (en) | Infrared human body detector | |
JPH04220505A (en) | Displacement detector | |
JP2812991B2 (en) | Particle counter | |
JPH0665992B2 (en) | Optical speed detector | |
JPH07253309A (en) | Method of focusing lime sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080708 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080708 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100708 Year of fee payment: 14 |