JP2539473B2 - Nuclear power plant building basic structure - Google Patents
Nuclear power plant building basic structureInfo
- Publication number
- JP2539473B2 JP2539473B2 JP62327025A JP32702587A JP2539473B2 JP 2539473 B2 JP2539473 B2 JP 2539473B2 JP 62327025 A JP62327025 A JP 62327025A JP 32702587 A JP32702587 A JP 32702587A JP 2539473 B2 JP2539473 B2 JP 2539473B2
- Authority
- JP
- Japan
- Prior art keywords
- building
- foundation
- power plant
- nuclear power
- construction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010276 construction Methods 0.000 description 28
- 238000009434 installation Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 10
- 239000013535 sea water Substances 0.000 description 10
- 238000004904 shortening Methods 0.000 description 7
- 238000007667 floating Methods 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Foundations (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は洋上式原子力発電所建屋基礎構造に係り、特
に、建屋基礎とコンクリートケーソンを一体化し、建屋
基礎に中空部を設置することにより建屋曳航・据付けを
容易とし、供用期間後廃炉時移送を容易にした建屋基礎
構造に関する。TECHNICAL FIELD The present invention relates to an offshore nuclear power plant building foundation structure, and in particular, a building by integrating a building foundation and a concrete caisson and installing a hollow portion in the building foundation. The present invention relates to a building foundation structure that facilitates towing and installation, and facilitates transfer during decommissioning after the service period.
原子力発電プラントでは、敷地造成等の土木工事が完
了した段階で、建屋の掘削および建築工事が開始され、
建築工事がある段階に達した時点、一般には、建屋基礎
工事が完了した時点でプラント設備の据付けが開始され
る。At the nuclear power plant, when the civil works such as site preparation are completed, building excavation and construction work are started.
When the construction work reaches a certain stage, generally, the installation of the plant equipment is started when the building foundation work is completed.
この建設工事の短縮化を図るためには、敷地造成工事
等の現地工事とプラント設備工事とを並行して実施する
ことが一つの有効な手段となる。In order to shorten the construction work, one effective means is to carry out on-site work such as site preparation work and plant equipment work in parallel.
第3図は従来技術における建設工事の短縮化を目的と
した原子力発電所の建設方法を示す。1は機器設備を搭
載した原子力発電所建屋、2は発電所敷地、3は基礎岩
盤、4は1及び建屋基礎版5を搭載し、浮力を与えるた
めの中空となつた浮体ケーソンを示す。第4図は同様に
建屋基礎版5の巾を拡大することにより、建屋の洋上輸
送時に浮力を与える方法を示す。FIG. 3 shows a method of constructing a nuclear power plant for the purpose of shortening the construction work in the prior art. Reference numeral 1 denotes a nuclear power plant building on which equipment is installed, 2 is a power plant site, 3 is foundation rock, 4 is 1 and a building foundation plate 5 is a hollow caisson for providing buoyancy. FIG. 4 shows a method of giving buoyancy to the building by transporting it over sea by expanding the width of the building base plate 5 in the same manner.
ここで原子力発電プラントの建屋躯体構造物及び機器
設備1は工場、あるいは、洋上のドツクで据付け後、洋
上輸送される。一方、これと並行して発電所敷地2では
建屋躯体構造物設置のための敷地の掘削を行ない、建屋
設置位置まで導くため、水路等を使用して、設置位置を
海水6が満水になる状態にしておく。輸送された建屋は
所定の位置まで導いた後、浮体ケーソンの内部に、又、
建屋基礎版で輸送する方法では、基礎版上に、海水6を
注入した後、コンクリートを充てんする等の方法により
発電所建屋を基礎岩盤上に沈設・固定する。従つて、こ
の浮体ケーソン及び拡張された建屋基礎は建屋の浮力を
確保し、且つ、沈設・固定時には、海水及びコンクリー
ト注入によるおもりとしての役目を負つている。尚、建
屋を支持する基礎は最終時に岩盤上に固定させるため、
耐震設計上から既設の原子力発電所建屋基礎と同等の強
度、及び、重量となり、又、建屋躯体についても既設の
原子力発電所と同等となる。従つて工場、あるいは、洋
上のドツクにおけるプラント設備の据付範囲を広げるに
は、建屋の平面寸法を広げるか、又は、建屋自体の軽量
化を図り輸送時の浮力対策を行なう必要があるが従来技
術では、この点考慮されていなかつた。Here, the building structure and the equipment 1 of the nuclear power plant are installed at a factory or at an offshore dock, and then transported offshore. On the other hand, in parallel with this, at the power station site 2, the site for building building structure construction is excavated and the installation position is filled with seawater 6 by using a waterway etc. to lead to the building installation position. Leave. After the transported building is guided to a predetermined position, inside the floating caisson,
In the method of transporting with the building base slab, after pouring seawater 6 on the base slab, the power plant building is sunk and fixed on the base rock by a method such as filling concrete. Therefore, the floating caisson and the expanded building foundation secure the buoyancy of the building, and also serve as a weight by pouring seawater and concrete when sunk and fixed. In addition, since the foundation that supports the building is fixed on the bedrock at the end,
Due to the seismic design, the strength and weight are the same as the existing nuclear power plant building foundation, and the building frame is also the same as the existing nuclear power plant. Therefore, in order to expand the installation range of plant equipment in factories or offshore docks, it is necessary to widen the plane dimensions of the building, or to reduce the weight of the building itself and take buoyancy measures during transportation. Then, this point was not taken into consideration.
従来の原子力発電所建屋構造では、洋上のドツクで建
設された建屋躯体及び機器設備を海上輸送するため、建
屋下部にコンクリートあるいは鋼製のケーソンを設置す
るか又はこのケーソン設置に代えて建屋基礎版自体の寸
法を大きくすることによつて海上輸送のための浮力をも
たせ、現地への輸送航路及び発電所建設地点の拡大化を
考慮する必要がある。一方、建設工期短縮の観点から
は、ドツクにおける建屋躯体及び機器設備の据付範囲を
可能な限り広げておくことが現地建設期間の短縮化につ
ながり、全体としての建設工期の短縮化が図れる。但
し、この建屋躯体及び機器設備の据付範囲を広げること
は、海上輸送時の搭載重量を増加させることにつながる
ため、従来、ケーソンを設置する方法では、ケーソン寸
法が過大となると共に、後者の建屋基礎版自体の寸法を
大きくする方法では、基礎版寸法が増大することにより
基礎版の応力が増加するため、強度上の対策を行なうた
め、基礎版の鉄筋量が増加し、更に、基礎版自体が重く
なるという矛盾を生じていた。建屋基礎に加わる応力と
基礎寸法lとの関連式を下式に示す。本式によつても建
屋基礎寸法を小さくすることが応力の低減、且つ、基礎
版の計量化につながることがわかる。In the conventional nuclear power plant building structure, a concrete or steel caisson is installed in the lower part of the building to replace the building frame and equipment that were constructed offshore at sea, or the building foundation version is used instead of this caisson installation. By increasing the size of itself, it is necessary to provide buoyancy for sea transportation and consider expansion of transportation routes to the site and power station construction points. On the other hand, from the viewpoint of shortening the construction period, widening the range of installation of the building frame and equipment in Dotsk leads to shortening the local construction period and shortening the overall construction period. However, expanding the installation range of this building structure and equipment will increase the loading weight during sea transportation.Therefore, in the conventional method of installing caisson, the size of caisson is too large and the latter building In the method of increasing the size of the base plate itself, the stress of the base plate increases as the size of the base plate increases, and therefore the reinforcing bars of the base plate increase in order to take measures for strength. There was a contradiction that heavier. The relational expression between the stress applied to the building foundation and the basic dimension 1 is shown below. According to this formula, it can be seen that reducing the building base size leads to a reduction in stress and a quantification of the foundation plate.
l:建屋基礎寸法 Hmax:海上輸送時の最大波高 ρ:海水の密度 Mmax:最大曲げモーメント Qmax:最大せん断力 また、従来の建屋の建設工法では、建屋を岩盤上に沈
設・固定させるため、ケーソン内部、あるいは、建屋基
礎上にコンクリートを注入する等の煩雑な作業を必要と
し、一度固定された建屋は、建設、供用期間中、及び、
供用期間後を通じて既設の原子力発電所と同一の位地条
件となり、建設時点での建屋輸送概念の特徴を生かして
いない。 l: Building basic dimensions Hmax: Maximum wave height during sea transportation ρ: Seawater density Mmax: Maximum bending moment Qmax: Maximum shearing force In the conventional construction method of a building, the building is sunk / fixed on the bedrock, so it is inside the caisson or the building. It requires complicated work such as pouring concrete on the foundation, and once fixed, the building is under construction, in service, and
Throughout the service period, the condition of the site is the same as that of the existing nuclear power plant, and the characteristics of the building transportation concept at the time of construction are not utilized.
本発明の目的は、建屋の海上輸送時における建屋躯体
も計量化を図り、建屋上部への機器設備の据付範囲を広
げることによる建設工期のより一層の短縮化が可能とな
る原子力短電所建屋基礎構造を提供すると共に、発電所
現地建設工事における好適な建設工事施工法を可能と
し、且つ、供用期間中の建屋安定性、及び、供用期間後
の廃炉時輸送段階でも建設時の建屋輸送概念を生かした
原子力発電所建屋基礎構造を提供することにある。An object of the present invention is to quantify the building frame at the time of sea transportation of the building, and to further shorten the construction period by expanding the range of installation of equipment on the upper part of the building. In addition to providing the basic structure, it enables a suitable construction work method for local construction work of the power plant, and also stabilizes the building during the service period, and transports the building at the time of construction even during the decommissioning stage after the service period. It is to provide a nuclear power plant building basic structure that makes use of the concept.
上記目的は、岩盤へ沈設・固定して据付られる原子力
発電所建屋基礎に中空部を設けた原子力発電所建屋基礎
構造によって達成される。The above-mentioned object is achieved by a nuclear power plant building foundation structure in which a hollow portion is provided in a nuclear power plant building foundation that is installed by being submerged and fixed to bedrock.
その際には、中空部が基礎に一体化された浮体として
のケーソンの機能を果すものである。At that time, the caisson functions as a floating body in which the hollow portion is integrated with the foundation.
原子力発電所における建屋基礎版は、例えば、原子炉
建屋で5〜7m、タービン建屋で2〜3m厚の内部がコンク
リート、及び鉄筋で充てんされたべた基礎となつてい
る。この建屋基礎版厚さは主として地震時の建屋強度か
ら決められているが、従として地震時の建屋転倒モーメ
ントに対するカウンタウエイ(おもり)としての役割も
果している。一方、建屋の海上輸送時には、前述した式
に示されるように、建屋基礎寸法及び海上輸送時の最大
波高に応じた、曲げモーメント、及び、せん断力が加わ
るが、これらの応力に対しては、建屋固定後の地震時に
おける建屋強度を確保するための鉄筋、具体的には建屋
基礎内に設置する上端筋及び下端筋によつて受け持つこ
とが出来る。従つて、建屋基礎版の主たる目的は、建屋
の耐地震設計によつて決められる。基礎版断面力、及
び、鉄筋の引張り強度によつて達成することができ、し
かも、建屋輸送時には輸送時の最大波高、及び、建屋基
礎寸法に応じた応力については、耐震設計によつて決定
された基礎版構造によつて受持つことが出来る。又、従
としての建屋基礎版の役割は、主として原子力発電所供
用期間中のものであり、これについては、従来使用され
ているコンクリートに限らず基礎版のカウンタウエイト
としての効果を高めるものであれば充分である。The building foundation version in a nuclear power plant is, for example, a solid foundation whose inside is 5 to 7 m thick in a reactor building and 2 to 3 m thick in a turbine building and which is filled with concrete and reinforcing bars. The thickness of this building foundation is determined mainly by the strength of the building during an earthquake, but it also plays a role as a counterway against the falling moment of the building during an earthquake. On the other hand, when the building is transported by sea, a bending moment and a shearing force are applied according to the building foundation dimensions and the maximum wave height during shipping, as shown in the above formula, but for these stresses, Reinforcing bars for securing the strength of the building after an earthquake after fixing the building, specifically, the upper and lower reinforcing bars installed in the building foundation, can be used for bearing. Therefore, the main purpose of the basic building version is determined by the seismic design of the building. It can be achieved by the cross-sectional force of the foundation plate and the tensile strength of the reinforcing bar.In addition, the maximum wave height during transportation of the building and the stress according to the building foundation dimensions are determined by the seismic design. It can be handled by the basic version structure. In addition, the role of the building foundation slab as a subordinate is mainly during the operation period of the nuclear power plant, and this is not limited to the concrete that has been conventionally used, and it should enhance the effect as the counterweight of the foundation slab. Is enough.
建屋の海水輸送を容易にし、又、建屋上に建設工程短
縮の目的から可能な限り、多くの設備を搭載し、且つ、
建屋基礎寸法の増加を極力低減させるためには、建屋躯
体自体の計量化を図ることが重要となる。このため、建
屋躯体と建屋に浮力を与えるためのケーソンとを一体と
した建屋基礎構造とし、この建屋基礎部に中空部を設置
することにより、建屋基礎自体がバラストとしての役割
を果たすことが出来る。尚、この建屋基礎は既に耐震設
計が施こされているため、建屋建設時に配筋工事等の新
たな施工工事を施こすことはない。又、建屋を建設地点
へ輸送した後の本建屋の沈設・固定作業は、前述した建
屋基礎版内に設置した中空部に海水等を注入することに
よつて建屋の重量を浮力以上のものとして容易に建設作
業を進めることが出来る。建屋の沈設・固定後は、工場
及びドツクでの据付範囲外にあつた建屋躯体及び機器設
備の一部を建設、又は、場合によつては、工場及びドツ
クですべての据付が完了しているものについては、試運
転後に商業運転に入る。尚、原子力発電所の供用期間後
には、建設時と逆の手順によつて建屋の輸送が可能とな
り、しかも、発電所内には主要構築物である高屋及び基
礎版が残存しない状態となるため、廃炉後の跡地再利用
として新たな発電設備を構築することができる。Easily transport seawater in the building, and install as much equipment as possible on the building for the purpose of shortening the construction process, and
In order to reduce the increase in building basic dimensions as much as possible, it is important to measure the building frame itself. Therefore, the building foundation itself can function as a ballast by providing a building foundation structure that integrates the building skeleton and the caisson for giving buoyancy to the building, and installing a hollow part in this building foundation. . Since this building foundation has already been designed for earthquake resistance, no new construction work such as bar arrangement work will be performed at the time of building construction. In addition, the work of submerging / fixing the main building after transporting the building to the construction site should be done by injecting seawater, etc. into the hollow part installed in the building foundation plate to make the weight of the building more than buoyancy. You can easily proceed with the construction work. After the building has been sunk and fixed, some of the building skeleton and equipment / equipment outside the installation range at the factory and dock have been constructed, or in some cases, all installation has been completed at the factory and dock. For the products, commercial operation will be started after trial operation. After the nuclear power plant is in service, the building can be transported in the reverse order of construction, and the main structure, Takaya and the foundation plate will not remain, so it will be abandoned. A new power generation facility can be constructed to reuse the site after the furnace.
以下、本発明の一実施例として原子炉建屋を例にとり
第1図及び第2図により説明する。A reactor building will be described below as an embodiment of the present invention with reference to FIGS. 1 and 2.
第1図は原子炉建屋輸送時の荷姿を示す。5は原子炉
建屋基礎版、7は基礎版中に設置した中空部を9は原子
炉建屋上部構造を示し、第2図は原子炉建屋の沈設・固
定及び建設が完了した段階の断面図を示す。Figure 1 shows the packaging of the reactor building during transportation. 5 is the reactor building base plate, 7 is the hollow part installed in the base plate, 9 is the reactor building upper structure, and Fig. 2 is a cross-sectional view of the stage where the reactor building is sunk, fixed and constructed. Show.
原子炉建屋基礎版5は発電所敷地2とは別のドツク内
で建設する。この際、基礎版5には中空部6を設置し、
全体としての重量軽減策を講じる。重量を軽減すること
により、建設工期短縮及び建設性の向上が可能となる原
子炉一次格納器8、原子炉圧力容器ペデスタル11、仮設
鉄骨10等が基礎上に搭載可能となる。これらの設備を搭
載した基礎版はドツクから洋上輸送を経て発電所敷地2
内の建屋設置位置まで導く。設置位置まで導入された建
屋は第2図に示す様に、基礎中空部7中に海水を注入
し、建屋全体の重量を重くして建屋を沈設・固定する。
又、本工事終了後は建屋週辺部を埋立土で埋立て、従来
の発電所と全く同じ敷地条件とする。海水は供用期間中
も基礎版中空部7に満たしておき、基礎版のカウンタウ
エイトとしての役割を果させる。又、供用期間後の廃炉
時には、上部建屋の一部を解体した青、基礎版中空部7
中の海水を排出する等、上述した建設シーケンスと全く
逆の手順により、廃炉時の建屋輸送が容易に達成され
る。The reactor building foundation version 5 will be constructed in a dock different from the site 2 of the power plant. At this time, the hollow part 6 is installed in the foundation plate 5,
Take measures to reduce overall weight. By reducing the weight, the reactor primary containment vessel 8, the reactor pressure vessel pedestal 11, the temporary steel frame 10, etc., which can shorten the construction period and improve the construction efficiency, can be mounted on the foundation. The basic version equipped with these facilities is transported from the dock to the ocean and transferred to the power plant site 2
Guide to the building installation position inside. As shown in FIG. 2, the building that has been installed to the installation position is filled with seawater into the hollow foundation 7 to increase the weight of the entire building and to sunk and fix the building.
Also, after the completion of this construction, the building's weekside will be filled with landfill soil, and the site conditions will be exactly the same as the conventional power plant. Seawater is filled in the hollow portion 7 of the foundation plate even during the service period so that the foundation plate can serve as a counterweight. In addition, at the time of decommissioning after the service period, a part of the upper building was dismantled in blue
The building transportation during decommissioning can be easily achieved by the procedure completely reverse to the construction sequence described above, such as discharging the seawater inside.
本実施例によれば、建屋基礎版と浮体ケーソンとを兼
用するため、建屋輸送時の建屋躯体自身の重量軽減化が
可能となり、基礎版上部には建設工程の一層の短縮が可
能となる機器設備が搭載出来る。又、現地建設段階に
は、基礎版中空部に海水を注入することにより、容易に
建屋の沈設・固定作業が達成され、この基礎版はそのま
ま発電所供用期間中の建屋基礎版として使用出来る。更
に、発電所供用期間後には、建設シーケンスと逆の手順
を踏むことにより供用期間後の廃炉時移送が容易に達成
される。According to the present embodiment, since the building base plate and the floating caisson are also used, it is possible to reduce the weight of the building skeleton itself during transportation of the building, and at the upper part of the base plate, a device capable of further shortening the construction process. Equipment can be installed. In addition, at the local construction stage, by injecting seawater into the hollow part of the foundation plate, the work of sinking and fixing the building can be easily achieved, and this foundation plate can be used as it is as the building foundation plate during the service period of the power plant. Further, after the power plant is in service, the procedure at the reverse of the construction sequence can be performed to easily achieve the decommissioning transfer after the service period.
本発明によれば、沈設・固定される基礎に浮力を助長
する機能を持たせて基礎上に搭載する機器設備を多くし
て一括水上輸送物量と一括据付物量とを増大させる事が
出来るから、原子力発電プラントの据付工程期間が短縮
できる効果、及び基礎が浮体を兼ねるので浮体を別扱い
することなく容易且つ迅速に基礎の沈設・固定作業が可
能となる効果が得られる。According to the present invention, since it is possible to increase the amount of packaged water transport and the amount of packaged installation by increasing the equipment installed on the foundation by giving the function of promoting buoyancy to the foundation to be sunk and fixed, The effect of shortening the installation process period of the nuclear power plant and the effect that the foundation doubles as a floating body can easily and quickly lay down and fix the foundation without separately treating the floating body.
第1図,第2図は本発明の一実施例の建屋断面図、第3
図,第4図は従来技術による建屋の洋上輸送図である。 1……原子力発電所建屋。1 and 2 are sectional views of a building according to an embodiment of the present invention, FIG.
Fig. 4 and Fig. 4 are offshore transportation diagrams of a building according to the prior art. 1 ... Nuclear power plant building.
フロントページの続き (72)発明者 鹿島 遼一 千葉県柏市豊住4―3―8 (72)発明者 平子 静 茨城県日立市幸町3丁目2番1号 日立 エンジニアリング株式会社内 (56)参考文献 特開 昭57−135394(JP,A)Front Page Continuation (72) Inventor Ryoichi Kashima 4-3-8 Toyosumi, Kashiwa City, Chiba Prefecture (72) Inventor Shizuka Hirako 3-2-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Engineering Co., Ltd. (56) References JP 57-135394 (JP, A)
Claims (1)
電所建屋基礎に中空部を設けた原子力発電所建屋基礎構
造。1. A nuclear power plant building foundation structure in which a hollow portion is provided in a nuclear power plant building foundation which is installed by being submerged and fixed on a bedrock.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62327025A JP2539473B2 (en) | 1987-12-25 | 1987-12-25 | Nuclear power plant building basic structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62327025A JP2539473B2 (en) | 1987-12-25 | 1987-12-25 | Nuclear power plant building basic structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01169397A JPH01169397A (en) | 1989-07-04 |
JP2539473B2 true JP2539473B2 (en) | 1996-10-02 |
Family
ID=18194467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62327025A Expired - Lifetime JP2539473B2 (en) | 1987-12-25 | 1987-12-25 | Nuclear power plant building basic structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2539473B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240684A (en) * | 1995-03-02 | 1996-09-17 | Ishikawajima Harima Heavy Ind Co Ltd | Nuclear power plant construction method |
JP2019078149A (en) * | 2017-10-24 | 2019-05-23 | 敏博 坂上 | Full-scale hydraulic power generation method using seawater |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57135394A (en) * | 1981-02-16 | 1982-08-20 | Hitachi Ltd | Floating type reactor joint structure |
-
1987
- 1987-12-25 JP JP62327025A patent/JP2539473B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01169397A (en) | 1989-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109487807B (en) | Steel pipe pile cofferdam hole leading and replacement construction method | |
CN215594046U (en) | Asynchronous construction roof of depth foundation ditch trades and props structure | |
CN111851567A (en) | Newly built or expanded wind power foundation on shallow cover layer of weak foundation and its construction method | |
CN107882055A (en) | A kind of construction method of blower fan cushion cap | |
CN111851588A (en) | Pipe jacking well structure and construction method thereof | |
CN212294747U (en) | Pipe jacking well structure | |
CN216041201U (en) | Earlier prop and dig double-deck diagonal bracing foundation ditch enclosure system afterwards | |
JP2539473B2 (en) | Nuclear power plant building basic structure | |
CN210395407U (en) | Anchor rod gravity type offshore wind power foundation | |
CN206143801U (en) | Photovoltaic case contravariant basis that adapts to multiple ambient condition | |
CN111395353A (en) | Foundation pit supporting device and method based on combination of steel sheet piles and vertical inclined struts | |
CN111549789A (en) | Reinforcing structure for foundation pit support and construction method thereof | |
CN214738306U (en) | Open cut tunnel anti-floating structure suitable for pile anchor supporting construction | |
CN114411819A (en) | Method for replacing anti-floating measure by permanently and temporarily combining supporting system and main body structure | |
CN217460599U (en) | Support device permanently combined with main structure | |
JPS5934318A (en) | Construction work of atomic power station building | |
CN222227341U (en) | A deep-water foundation combined steel sheet pile cofferdam construction device | |
JPS59233025A (en) | Construction of wastes-incinerating plant | |
CN218263972U (en) | Foundation pit operation pipeline protection device | |
CN218757521U (en) | PC construction method pile and inclined strut combined supporting structure | |
CN115162412B (en) | Construction method of long-distance multifunctional cross-sea combined immersed tunnel main span | |
CN118911155A (en) | Deep foundation pit supporting device and construction method | |
JP2581602B2 (en) | Waste treatment method | |
CN118166767A (en) | A static pressure anchor pile combination pile for underground space expansion and construction method thereof | |
CN114703762A (en) | Foundation construction method of steel-concrete composite beam |