[go: up one dir, main page]

JP2533596B2 - Hydrogen peroxide production method - Google Patents

Hydrogen peroxide production method

Info

Publication number
JP2533596B2
JP2533596B2 JP63013600A JP1360088A JP2533596B2 JP 2533596 B2 JP2533596 B2 JP 2533596B2 JP 63013600 A JP63013600 A JP 63013600A JP 1360088 A JP1360088 A JP 1360088A JP 2533596 B2 JP2533596 B2 JP 2533596B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
catalyst
oxygen
water
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63013600A
Other languages
Japanese (ja)
Other versions
JPH01192710A (en
Inventor
忠光 清浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63013600A priority Critical patent/JP2533596B2/en
Publication of JPH01192710A publication Critical patent/JPH01192710A/en
Application granted granted Critical
Publication of JP2533596B2 publication Critical patent/JP2533596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、溶媒中で触媒の存在下に、水素と酸素とを
反応せしめる、過酸化水素の製造法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing hydrogen peroxide, which comprises reacting hydrogen and oxygen in a solvent in the presence of a catalyst.

従来の技術および発明が解決しようとする課題 現在工業的に実施されている過酸化水素の主要の製造
方法は、アントラキノン類を媒体として酸化と還元とを
継続的に行う方法である。
Problems to be Solved by the Related Art and Invention Presently, the main method of industrially producing hydrogen peroxide is a method of continuously performing oxidation and reduction using anthraquinones as a medium.

この方法の欠点としては以下の点が挙げられる。 The drawbacks of this method are as follows.

還元、酸化、抽出等の多数の反応装置が必要であ
る。
Numerous reactors for reduction, oxidation, extraction etc. are required.

多量のアントラキノン類の溶液を循環させる必要が
ある。
It is necessary to circulate a large amount of anthraquinone solution.

アントラキノン類が分解して失われる。 Anthraquinones are decomposed and lost.

従って水素と酸素とを直接反応せしめて効率よく過酸
化水素を製造することができれば、アントラキノン類を
媒体として使用する必要がなくなり、上記のような現行
過酸化水素製造法上の問題点もなくなる。
Therefore, if hydrogen and oxygen can be directly reacted to efficiently produce hydrogen peroxide, it is not necessary to use anthraquinones as a medium, and the above-mentioned problems with the existing hydrogen peroxide production method are eliminated.

白金族触媒の存在下水素と酸素とから直接過酸化水素
を製造する方法についてはすでにいくつかの提案がある
(特開昭50−14539号、特開昭51−4097号、特開昭51−1
24698号、特開昭52−109493号)。これらの提案は過酸
化水素の蓄積速度、生成速度の点から見て、工業的な操
業に耐えうる水準には達していない。
Some proposals have already been made for a method for directly producing hydrogen peroxide from hydrogen and oxygen in the presence of a platinum group catalyst (Japanese Patent Laid-Open Nos. 14539/50, 4097/51, and 51/97/95). 1
24698, JP-A-52-109493). These proposals have not reached a level that can withstand industrial operation in terms of the accumulation rate and production rate of hydrogen peroxide.

本発明の目的は、水素と酸素とを直接反応せしめて効
率よく過酸化水素を製造する方法を提供することにあ
る。
An object of the present invention is to provide a method for efficiently producing hydrogen peroxide by directly reacting hydrogen and oxygen.

課題を解決するための手段および作用 本発明者は、水素と酸素とから直接過酸化水素を製造
する方法について鋭意検討した結果、特定の溶媒中で特
定の触媒を使用することにより本発明の目的が達成され
ることを見出し、本発明を完成させるに至った。
Means and Actions for Solving the Problems The present inventor has conducted extensive studies on a method for directly producing hydrogen peroxide from hydrogen and oxygen, and as a result, the object of the present invention was achieved by using a specific catalyst in a specific solvent. The present invention has been completed and the present invention has been completed.

すなわち、本発明は、 (1) 水と二液相を形成する含フッ素化合物からなる
溶媒中で、疎水性担体上に金属を担持した触媒の存在下
に、水素と酸素とを反応せしめる、過酸化水素の製造法
であり、 (2) 水と二液相を形成する含フッ素化合物と水とか
らなる溶媒中で、疎水性担体上に金属を担持した触媒の
存在下に、水素と酸素とを反応させ、水相中に過酸化水
素を濃縮分離せしめる、過酸化水素の製造法である。
That is, the present invention comprises: (1) reacting hydrogen and oxygen in the presence of a catalyst having a metal supported on a hydrophobic carrier in a solvent composed of a fluorine-containing compound that forms a two-liquid phase with water; A method of producing hydrogen oxide, comprising: (2) hydrogen and oxygen in the presence of a catalyst having a metal supported on a hydrophobic carrier in a solvent consisting of water and a fluorine-containing compound forming a two-liquid phase. Is a method for producing hydrogen peroxide, in which hydrogen peroxide is allowed to react and the hydrogen peroxide is concentrated and separated in the aqueous phase.

本発明の方法において使用される水と二液相を形成す
る含フッ素化合物は、通常、水に比較して、酸素または
水素等の気体の溶解度が大きい。従って含フッ素化合物
を溶媒として用いて行う水素と酸素との反応の場合は、
通常の水溶媒を用いて行う水素と酸素との反応の場合に
比較して反応速度を高く保つことができる。
The fluorine-containing compound that forms a two-liquid phase with water used in the method of the present invention usually has a higher solubility of gas such as oxygen or hydrogen than water. Therefore, in the case of the reaction of hydrogen and oxygen using a fluorine-containing compound as a solvent,
The reaction rate can be kept high as compared with the case of the reaction between hydrogen and oxygen which is carried out using an ordinary water solvent.

含フッ素化合物の種類には特に制限はないが、C2F4Cl
2、C2F4Br2、C5F11OH、C6F14、C5F10O、C10F18、(C
4F93N等が多用される。
The type of fluorine-containing compound is not particularly limited, but C 2 F 4 Cl
2 , C 2 F 4 Br 2 , C 5 F 11 OH, C 6 F 14 , C 5 F 10 O, C 10 F 18 , and (C
4 F 9 ) 3 N etc. are often used.

本発明の方法において使用される触媒は疎水性触媒で
あって、疎水性の担体に金属成分を担持したものが多用
される。疎水性の担体として、ポリテトラフルオロエチ
レン、ポリエチレン、ポリスチレン、含珪素樹脂もしく
はフッ化黒鉛等のそれ自体が疎水性を示すもの、また
は、シリカ、アルミナ、活性炭等それ自体は親水性であ
って、その表面をテフロン(商品名)もしくはフッ化黒
鉛等の被覆剤で処理して疎水性を付与したものが用いら
れる。同様にして親水性の担体上に金属が担持された触
媒の表面をテフロン(商品名)もしくはフッ化黒鉛等の
被覆剤で処理して疎水性を付与したものも用いられる。
The catalyst used in the method of the present invention is a hydrophobic catalyst, and a hydrophobic carrier on which a metal component is supported is often used. As a hydrophobic carrier, polytetrafluoroethylene, polyethylene, polystyrene, a resin such as silicon-containing resin or fluorinated graphite that itself exhibits hydrophobicity, or silica, alumina, activated carbon itself such as hydrophilic, The one whose surface is treated with a coating agent such as Teflon (trade name) or fluorinated graphite to make it hydrophobic is used. Similarly, a catalyst obtained by treating the surface of a catalyst in which a metal is supported on a hydrophilic carrier with a coating agent such as Teflon (trade name) or fluorinated graphite to impart hydrophobicity can also be used.

担体上に担持する触媒金属として酸素および/または
水素を活性化する能力のあるものが使用される。具体的
に例示すれば、白金族元素またはニッケル等が多用さ
れ、通常はパラジウムが適している。金属成分の担持量
は0.1〜5wt%の範囲である。
As the catalytic metal supported on the support, a metal capable of activating oxygen and / or hydrogen is used. As a specific example, platinum group elements, nickel, and the like are frequently used, and palladium is usually suitable. The amount of metal component supported is in the range of 0.1 to 5 wt%.

触媒の調整条件は特に限定されるものではなく、通常
多用される条件で充分である。特には疎水性を付与する
ためのものが必要な条件である。
The conditions for adjusting the catalyst are not particularly limited, and the conditions frequently used are sufficient. Especially, the condition for imparting hydrophobicity is a necessary condition.

反応に際しては水素と酸素との組成比は任意に選ぶこ
とができる。反応は大気圧以下の圧力から加圧までの広
い範囲で実施できるが、大気圧〜20kg/cm2の範囲が適し
ている。
In the reaction, the composition ratio of hydrogen and oxygen can be arbitrarily selected. The reaction can be carried out in a wide range from a pressure lower than atmospheric pressure to a pressure, but a range of atmospheric pressure to 20 kg / cm 2 is suitable.

反応温度は60℃以下、特に40℃以下が好ましく、通常
は0〜30℃で反応を実施する。
The reaction temperature is preferably 60 ° C or lower, particularly preferably 40 ° C or lower, and the reaction is usually carried out at 0 to 30 ° C.

水と二液相を形成する含フッ素化合物と水とを混合ま
たは懸濁せしめて使用する場合の含フッ素化合物と水と
の混合割合は特に制限はないが、含フッ素化合物と水の
容量は100:50〜1の範囲である。
The mixing ratio of the fluorine-containing compound and water when used by mixing or suspending the fluorine-containing compound and water forming a two-liquid phase with water is not particularly limited, but the volume of the fluorine-containing compound and water is 100. : It is in the range of 50 to 1.

反応をバッチ式で行う場合を例として説明すれば、含
フッ素化合物中に0.5〜10wt%の触媒を添加し、水素と
酸素とを吹き込み反応させる。
Explaining the case where the reaction is carried out in a batch system as an example, 0.5 to 10 wt% of a catalyst is added to a fluorine-containing compound, and hydrogen and oxygen are blown to react.

反応に要する時間は、0.5〜10時間である。 The time required for the reaction is 0.5 to 10 hours.

含フッ素化合物と水との混合物を溶媒とする際には反
応後に二相に分離させ、水相中に濃縮分離した過酸化水
素を取得し、必要があれば、更に蒸留等の常法により濃
縮する。この場合、水相中に濃縮された過酸化水素は触
媒に接触する確率が低いために、濃縮過酸化水素の接触
分解を防止できるものと考えられる。
When a mixture of a fluorine-containing compound and water is used as a solvent, it is separated into two phases after the reaction, concentrated hydrogen peroxide is obtained in the aqueous phase, and if necessary, further concentrated by a conventional method such as distillation. To do. In this case, since the hydrogen peroxide concentrated in the aqueous phase has a low probability of coming into contact with the catalyst, it is considered that catalytic decomposition of the concentrated hydrogen peroxide can be prevented.

実施例 以下、実施例により本発明を説明する。Examples Hereinafter, the present invention will be described with reference to examples.

実施例1 溶媒として含フッ素化合物〔C2F10O〕100gを、内面を
テフロンで被覆した1インチのステンレス円塔に仕込
み、下部から水素ガス100ml/min、酸素ガス600ml/minを
吹き込み、反応圧6kg/cm2で反応せしめた。
Example 1 100 g of a fluorine-containing compound [C 2 F 10 O] as a solvent was charged into a 1-inch stainless steel column having an inner surface coated with Teflon, and hydrogen gas of 100 ml / min and oxygen gas of 600 ml / min were blown from the bottom to carry out the reaction. The reaction was carried out at a pressure of 6 kg / cm 2 .

溶媒中には、テフロン(商品名)担体(粒径100〜500
μ)にPdを0.8wt%担持した触媒5gを懸濁させてあり、
反応温度は円塔外部を水冷して15〜18℃に保持した。反
応開始後6時間後に過酸化水素が溶媒中に7.5wt%生成
した。
In the solvent, Teflon (trade name) carrier (particle size 100 to 500
μ) was suspended 5 g of a catalyst carrying 0.8 wt% of Pd,
The reaction temperature was maintained at 15 to 18 ° C by cooling the outside of the column with water. After 6 hours from the start of the reaction, 7.5 wt% of hydrogen peroxide was produced in the solvent.

実施例2 溶媒としてパーフルオロデカリン〔C10F18〕100gを用
い、実施例1の装置を用い反応を実施した。触媒として
デュポン社製ナフイオン(商品名、粒径0.1〜0.5mm)上
にPdを0.5wt%担持した触媒8gを仕込んだ。実施例1と
同様にして反応させた結果、過酸化水素が溶媒中に8.7w
t%生成した。
Example 2 100 g of perfluorodecalin [C 10 F 18 ] was used as a solvent, and the reaction was carried out using the apparatus of Example 1. As a catalyst, 8 g of a catalyst in which 0.5 wt% of Pd was carried on Nafion (trade name, particle diameter 0.1 to 0.5 mm) manufactured by DuPont was charged. As a result of reacting in the same manner as in Example 1, hydrogen peroxide was 8.7 w in the solvent.
t% produced.

実施例3 溶媒としてパーフルオロトリブチルアミン〔(C4F9
3N〕100gおよび水30gを混合懸濁させた。シリカゲル上
に1wt%のPdを担持した触媒表面を、ポリテトラフルオ
ロエチレンエマルジョンで処理し疎水性とした触媒6g
(粒径100〜300μ)を仕込み、実施例1と同様に反応さ
せた。5時間反応後、反応液を分液し、水相に抽出濃縮
された過酸化水素濃度は15wt%であった。
Example 3 Perfluorotributylamine [(C 4 F 9 ) as a solvent
3 N] 100 g and water 30 g were mixed and suspended. 6g of catalyst that made 1wt% Pd supported on silica gel a hydrophobic surface by treating with polytetrafluoroethylene emulsion
(Particle size 100 to 300 μ) was charged and reacted in the same manner as in Example 1. After reacting for 5 hours, the reaction solution was separated, and the concentration of hydrogen peroxide extracted and concentrated in the aqueous phase was 15 wt%.

比較例1 溶媒としてパーフルオロトリブチルアミン〔C4F9
3N〕100gおよび水30gを混合懸濁させ、シリカゲル粉末
に1wt%のPdを担持した触媒(疎水性処理を実施してい
ないもの)6gを仕込み、実施例3と同様の反応条件で過
酸化水素の合成を実施した。触媒を濾別した後に反応液
を分液し、水相に抽出濃縮された過酸化水素の濃度を分
析した結果は2.1wt%であった。
Comparative Example 1 Perfluorotributylamine [C 4 F 9 ) as a solvent
3 N] 100 g and 30 g of water were mixed and suspended, and 6 g of a catalyst supporting Pd on 1 wt% of Pd (not subjected to hydrophobic treatment) was charged in silica gel powder, and peroxidized under the same reaction conditions as in Example 3. Hydrogen synthesis was performed. After the catalyst was filtered off, the reaction solution was separated, and the concentration of the hydrogen peroxide extracted and concentrated in the aqueous phase was analyzed and the result was 2.1 wt%.

すなわち、親水性の触媒を使用すると、過酸化水素の
生成量は疎水性触媒の場合に比較して大幅に低い。
That is, when a hydrophilic catalyst is used, the amount of hydrogen peroxide produced is significantly lower than when a hydrophobic catalyst is used.

発明の効果 本発明の方法により、水素と酸素とを接触的に反応さ
せることができ、一段の反応操作で効率よく過酸化水素
を製造することができる。
Effects of the Invention According to the method of the present invention, hydrogen and oxygen can be catalytically reacted, and hydrogen peroxide can be efficiently produced by a single-step reaction operation.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水と二液相を形成する含フッ素化合物から
なる溶媒中で、疎水性担体上に金属を担持した触媒の存
在下に、水素と酸素とを反応せしめる、過酸化水素の製
造法。
1. A method for producing hydrogen peroxide, which comprises reacting hydrogen with oxygen in the presence of a catalyst comprising a metal and a hydrophobic carrier supported in a solvent comprising a fluorine-containing compound forming a two-liquid phase with water. Law.
【請求項2】水と二液相を形成する含フッ素化合物と水
とからなる溶媒中で、疎水性担体上に金属を担持した触
媒の存在下に、水素と酸素とを反応させ、水相中に過酸
化水素を濃縮分離せしめる、過酸化水素の製造法。
2. Hydrogen and oxygen are reacted in the presence of a catalyst having a metal supported on a hydrophobic carrier in a solvent consisting of water and a fluorine-containing compound that forms a two-liquid phase with water, and an aqueous phase is obtained. A method for producing hydrogen peroxide in which hydrogen peroxide is concentrated and separated.
【請求項3】触媒が親水性触媒を疎水性化合物で処理し
て得られたものである、請求項第1項または第2項に記
載の過酸化水素の製造法。
3. The method for producing hydrogen peroxide according to claim 1 or 2, wherein the catalyst is obtained by treating a hydrophilic catalyst with a hydrophobic compound.
JP63013600A 1988-01-26 1988-01-26 Hydrogen peroxide production method Expired - Lifetime JP2533596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63013600A JP2533596B2 (en) 1988-01-26 1988-01-26 Hydrogen peroxide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63013600A JP2533596B2 (en) 1988-01-26 1988-01-26 Hydrogen peroxide production method

Publications (2)

Publication Number Publication Date
JPH01192710A JPH01192710A (en) 1989-08-02
JP2533596B2 true JP2533596B2 (en) 1996-09-11

Family

ID=11837704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63013600A Expired - Lifetime JP2533596B2 (en) 1988-01-26 1988-01-26 Hydrogen peroxide production method

Country Status (1)

Country Link
JP (1) JP2533596B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69407653T2 (en) * 1993-05-06 1998-05-07 Mitsubishi Gas Chemical Co Process for the production of hydrogen peroxide
US6815390B2 (en) * 2000-07-12 2004-11-09 Merck Patent Gmbh Supported fluorous biphasic catalyst system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2074145B (en) * 1980-04-22 1983-11-09 Air Prod & Chem Hydrogen peroxide production
US4335092A (en) * 1980-10-10 1982-06-15 Air Products And Chemicals, Inc. Synthesis of hydrogen peroxide
US4379778A (en) * 1980-10-10 1983-04-12 Air Products And Chemicals, Inc. Hydrogen peroxide synthesis

Also Published As

Publication number Publication date
JPH01192710A (en) 1989-08-02

Similar Documents

Publication Publication Date Title
TWI229052B (en) Process for the continuous production of hydrogen peroxide
JP5073133B2 (en) Catalyst and method for direct synthesis of hydrogen peroxide
JP5129423B2 (en) Method for producing hydrogen peroxide
US3361533A (en) Process for the production of hydrogen peroxide from its elements
SU482935A3 (en) Method for preparing catalyst for ethylene oxidation
EP0274830A2 (en) Catalytic process for making hydrogen peroxide from hydrogen and oxygen employing a bromide promoter
JP2002029711A5 (en)
JPH02258610A (en) Production of hydrogen peroxide
Laufer et al. Propylene epoxidation with hydrogen peroxide over palladium containing titanium silicalite
TWI238857B (en) Direct synthesis of hydrogen peroxide in a multicomponent solvent system
TW593130B (en) Direct synthesis of hydrogen peroxide in a new multicomponent solvent system
JP2533596B2 (en) Hydrogen peroxide production method
JPH10330103A (en) Method for producing hydrogen peroxide
US2142948A (en) Olefine oxidation and catalyst
JP2764080B2 (en) Method for producing alcohol
US3146243A (en) Decomposition of peracetic acid with platinum or ruthenium catalyst on a carbon powder
JP4599780B2 (en) Catalyst for producing fluorine-containing alcohol compound and method for producing fluorine-containing alcohol
EP0719572B1 (en) A process to remove polychloro-bi-phenyls from mineral oils
JPH01133909A (en) Production of hydrogen peroxide
JP2707626B2 (en) Method for producing catalyst for hydrogenation reaction
JP2512067B2 (en) Manufacturing method of cumyl alcohol
JP3463251B2 (en) Method for producing 4-tert-butylcyclohexanol
Lejemble et al. An improved method to prepare catalysts for the selective decarbonylation of furan-2 carboxaldehyde into furan
JPH0380140B2 (en)
JPH06298680A (en) Method for producing hydrogen-containing organic compound