JP2530657B2 - Copper alloy and method for producing the same - Google Patents
Copper alloy and method for producing the sameInfo
- Publication number
- JP2530657B2 JP2530657B2 JP62159587A JP15958787A JP2530657B2 JP 2530657 B2 JP2530657 B2 JP 2530657B2 JP 62159587 A JP62159587 A JP 62159587A JP 15958787 A JP15958787 A JP 15958787A JP 2530657 B2 JP2530657 B2 JP 2530657B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- copper
- phosphorus
- continuous casting
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Continuous Casting (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Error Detection And Correction (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Chemically Coating (AREA)
- Laminated Bodies (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Metal Extraction Processes (AREA)
Abstract
Description
【発明の詳細な説明】 鋼のような高融点の金属の連続鋳造用の連続鋳型(St
ranggiesskohille)の製造用の工作材料としては、ずつ
と以前から主としてSF−Cu型の銅が使用されており、そ
れは高い熱伝導度のゆえに溶融物からの熱を極めて急速
に導き出すことができる。この鋳型の壁部の厚さは、非
常に厚いものが選ばれるので、それらは予想される機械
的応力を十分に応じる。DETAILED DESCRIPTION OF THE INVENTION A continuous mold for continuous casting of high melting point metals such as steel (St
The material used for the production of ranggiesskohille) has long been used mainly for the first time in the form of copper of the SF-Cu type, which, due to its high thermal conductivity, can transfer heat from the melt very rapidly. The wall thicknesses of this mold are chosen to be very thick so that they adequately meet the expected mechanical stresses.
耐熱性を向上せしめるために、銅少くとも85%および
少くとも1種の他の析出硬化を生ぜしめる合金元素を有
する合金から連続鋳造用鋳型を製造することが提案され
た。合金元素としては、3%までのクロム、ケイ素、銀
およびベリリウムが提案される。この工作材料から製造
された連続鋳造用鋳型もまた十分に満足すべきものであ
るというわけではない。何故ならば、特に合金成分のケ
イ素およびベリリウムは、熱伝導度を著しく低下させる
からである(オーストリア特許第234,930号参照)。In order to improve the heat resistance, it has been proposed to make continuous casting molds from alloys with at least 85% copper and at least one other alloying element which causes precipitation hardening. As alloying elements, up to 3% of chromium, silicon, silver and beryllium are proposed. Continuous casting molds made from this work material are also not entirely satisfactory. This is because, in particular, the alloying components silicon and beryllium significantly reduce the thermal conductivity (see Austrian patent 234,930).
これらすべての解決策は、連続鋳造用鋳型のための工
作材料としてなお未だ完全には満足すべきものではあり
得なかつた。All these solutions could still not be completely satisfactory as a work material for continuous casting moulds.
従つて、本発明には、高い熱伝導度、特に300℃以上
の温度における高い機械的強度および高い高温可撓性を
有する銅合金を提供するという課題があつた。この工作
材料は、連続鋳造用鋳型の製造に殊に使用しうるもので
あるべきである。Therefore, the present invention has a problem to provide a copper alloy having high thermal conductivity, particularly high mechanical strength at a temperature of 300 ° C. or higher and high temperature flexibility. This work material should be particularly applicable to the production of continuous casting molds.
上記の課題は、亜鉛0.05ないし0.4%、マンガン0.02
ないし0.3%、リン0.02ないし0.2%、残りが銅および製
造条件次第の不純物よりなる銅合金によつて解決され
る。The above problems are zinc 0.05 to 0.4%, manganese 0.02
To 0.3%, phosphorus 0.02 to 0.2%, the balance being a copper alloy consisting of copper and impurities depending on the manufacturing conditions.
亜鉛またはマグネシウムの添加が銅の熱伝導度を僅か
しか低下させないが、一方リンの添加は、熱伝導度を非
常に低下させる。機械的強度は、亜鉛、マグネシウムま
たはリンの添加によつて向上する。しかしながら、全部
の3種の元素を本発明において規定する範囲内において
一緒に添加することによつて熱伝導度が市販されている
SF−銅に比較してほとんど低下しないかまたは僅かしか
低下しないかということは、全く驚異的なことである。
固溶体硬化(Mischkristallhrtung)により、またホ
スフィドの形成による追加的な硬化効果(この効果は析
出を起こさせる能力がある)によって、機械的強度はSF
−銅に比較して実質的により高い。特に耐熱性は、SF−
銅に比較してかなり高い値を示す。亜鉛0.1ないし0.25
%、マグネシウム0.05ないし0.15%、リン0.05ないし0.
1%、残りが銅および製造条件次第の不純物よりなる合
金が特に有利であることが立証された。The addition of zinc or magnesium only slightly reduces the thermal conductivity of copper, whereas the addition of phosphorus significantly reduces the thermal conductivity. Mechanical strength is improved by the addition of zinc, magnesium or phosphorus. However, the thermal conductivity is commercially available by adding together all three elements within the ranges specified in this invention.
It is quite surprising that there is little or no reduction compared to SF-copper.
The mechanical strength is SF due to solid solution hardening (Mischkristallhrtung) and due to the additional hardening effect due to the formation of phosphides, which is capable of causing precipitation.
-Substantially higher compared to copper. Especially the heat resistance is SF-
The value is considerably higher than that of copper. Zinc 0.1 to 0.25
%, Magnesium 0.05 to 0.15%, phosphorus 0.05 to 0.
An alloy consisting of 1%, the balance being copper and impurities depending on the manufacturing conditions, proved to be particularly advantageous.
ケイ素を0.2%まで、好ましくは0.1%まで添加するこ
とが、硬度に、そして従つて耐摩耗性によい影響を及ぼ
す。Adding silicon up to 0.2%, preferably up to 0.1%, has a positive effect on the hardness and thus on the wear resistance.
ジルコニウムを0.15%まで添加することは、高温にお
ける可撓性の改善をもたらす。Addition of up to 0.15% zirconium results in improved flexibility at elevated temperatures.
更に、それらは、適切な熱処理と相俟つて軟化特性の
一層の改善を可能にする。両者の添加は、本発明におい
て規定された濃度においては熱伝導度を実質的に低下さ
せるまでには至らない。Moreover, they allow further improvement of the softening properties in combination with a suitable heat treatment. The addition of both does not lead to a substantial decrease in thermal conductivity at the concentrations specified in the present invention.
本発明は、更に上記のような銅合金の製造方法に関す
る。The present invention further relates to a method for producing the above copper alloy.
それによれば、合金は、鋳造後に熱間加工され、300
ないし550℃において1ないし5時間焼なましされそし
て最後に少なくとも10%冷間加工される。According to it, the alloy is hot worked after casting,
Annealed at 1 to 550 ° C. for 1 to 5 hours and finally cold worked by at least 10%.
熱間加工と300ないし550℃における上記時効硬化との
間に少くとも10%の冷間加工を行うと、それは均質化状
態および諸性質の組合わせによい影響を与える。A cold work of at least 10% between hot working and the age hardening at 300 to 550 ° C. has a positive effect on the homogenization state and the combination of properties.
合金を合金成分の最大溶解度の温度より上において熱
間加工しそしてその後で少なくとも750℃から焼入れす
ることが特に有利である。これらの処理によって、付加
的な硬化効果が達成される。しかし、熱間加工とは別
に、溶体化処理を行うことも可能である。It is particularly advantageous to hot work the alloy above the temperature of maximum solubility of the alloy components and then quench from at least 750 ° C. With these treatments an additional hardening effect is achieved. However, it is also possible to perform solution treatment separately from hot working.
強度を高めるためには、最後の時効効果焼なましの後
に、更に少くとも10%の冷間加工を行なうことが有利で
ある。In order to increase the strength, it is advantageous to carry out a cold working of at least 10% after the last aging effect annealing.
実施例の参照の下に本発明を更に詳細に説明する。 The invention will be described in more detail with reference to the examples.
亜鉛0.19%、マグネシウム0.09%、リン0.07%、残り
が銅および製造条件次第の不純物よりなる合金を、鋳造
後に押出しすることによって熱間加工しそしてその後で
引抜き(Ziehen)によって20%、冷間加工した。次いで
この合金を、500℃において5時間焼なましした。次い
で、10%、20%および40%それぞれ冷間加工した試料を
製造した。これらの試料の諸性質がSF−銅および銅−ク
ロム−ジルコニウム合金と比較して表A、BおよびCに
記載されている。An alloy consisting of 0.19% zinc, 0.09% magnesium, 0.07% phosphorus, the balance copper and impurities depending on the manufacturing conditions is hot worked by extrusion after casting and then 20% by drawing (Ziehen), cold working did. The alloy was then annealed at 500 ° C for 5 hours. Then, 10%, 20% and 40% cold worked samples were produced respectively. The properties of these samples are listed in Tables A, B and C as compared to SF-copper and copper-chromium-zirconium alloys.
連続鋳造鋳型用にしばしば使用される工作材料である
SF−銅との比較は、同等の変形度において機械的強度が
概して約50%高いことを明らかに示している。熱伝導度
も同様により高い。しかしながら、高温における軟化特
性が著しく有利であることが是非共必要である。すなわ
ち、本発明による工作材料は、同等の熱伝導度において
500℃以上の温度において始めて軟化する。更に、比較
的高い温度におけるクリープがかなり低く、このことは
改善された非焼ひずみを保証する。一括して、本発明に
よつて開示された銅合金は、連続鋳造用鋳型用の工作材
料として卓越していることが期待できる。同様に、本発
明による合金は、銅−クロム合金に比較して、切削性に
おいて極めてすぐれている。しかしながら、本発明によ
る合金は、かなり簡単に製造でき、そして合金元素が比
較的低廉なので、この新規な工作材料から得られた連続
鋳造用鋳型は、同じ経時特性(Standverhalten)におい
てより低廉である。It is a material often used for continuous casting molds.
A comparison with SF-copper clearly shows that the mechanical strength is generally about 50% higher at the same degree of deformation. The thermal conductivity is also higher. However, it is essential that the softening property at high temperature be extremely advantageous. That is, the work material according to the present invention has the same thermal conductivity.
It begins to soften at temperatures above 500 ° C. Furthermore, the creep at relatively high temperatures is rather low, which guarantees an improved unfired strain. Collectively, it can be expected that the copper alloys disclosed by the present invention will be excellent as a working material for continuous casting molds. Similarly, the alloy according to the present invention is extremely superior in machinability as compared with the copper-chromium alloy. However, because the alloy according to the invention is fairly simple to produce and the alloying elements are relatively inexpensive, the continuous casting molds obtained from this new machining material are less expensive at the same Standverhalten.
本発明による合金の工業的性質は、溶体化処理温度に
おける熱間加工を知りその上で焼入れしそして次いで上
記の操作過程に従うならば、かなり有利なものとなる。
銅マトリックスから介在相を析出させることによつて、
更により有利な機械的強度値および熱伝導度値が得られ
る。The industrial properties of the alloys according to the invention are of considerable advantage if one knows the hot working at the solution treatment temperature and then quenches them and then follows the operating procedure described above.
By precipitating the intervening phase from the copper matrix,
Even more advantageous mechanical strength and thermal conductivity values are obtained.
Claims (13)
ないし0.3%、リン0.02ないし0.2%、残りが銅および製
造条件次第の不純物よりなる連続鋳造鋳型用銅合金。1. Zinc 0.05 to 0.4%, magnesium 0.02
Copper alloy for continuous casting molds, which contains 0.03 to 0.3% of phosphorus, 0.02 to 0.2% of phosphorus, and the balance of copper and impurities depending on manufacturing conditions.
ないし0.15%、リン0.05ないし0.1%、残りが銅および
製造条件次第の不純物よりなる特許請求の範囲第1項記
載の連続鋳造鋳型用銅合金。2. Zinc 0.1 to 0.25%, magnesium 0.05
The copper alloy for a continuous casting mold according to claim 1, wherein the copper alloy is 0.1 to 0.15%, phosphorus is 0.05 to 0.1%, and the balance is copper and impurities depending on manufacturing conditions.
ないし0.3%、リン0.02ないし0.2%、ケイ素0より多い
が0.2%まで、残りが銅および製造条件次第の不純物よ
りなる連続鋳造鋳型用銅合金。3. Zinc 0.05 to 0.4%, magnesium 0.02
To 0.3%, 0.02 to 0.2% phosphorus, more than 0% but not more than 0.2% silicon, the balance copper and impurities depending on the manufacturing conditions.
ないし0.15%、リン0.05ないし0.1%を含む特許請求の
範囲第3項記載の連続鋳造鋳型用銅合金。4. Zinc 0.1 to 0.25%, magnesium 0.05
The copper alloy for a continuous casting mold according to claim 3, wherein the copper alloy contains 0.1 to 0.15% and 0.05 to 0.1% phosphorus.
請求の範囲第3項または第4項記載の連続鋳造鋳型用銅
合金。5. A copper alloy for a continuous casting mold according to claim 3 or 4, which contains more than 0 but not more than 0.1% of silicon.
ないし0.3%、リン0.02ないし0.2%、ジルコニウム0よ
り多いが0.15%まで、残りが銅および製造条件次第の不
純物よりなる連続鋳造鋳型用銅合金。6. Zinc 0.05 to 0.4%, magnesium 0.02
Copper alloy for continuous casting molds, which contains from 0.3% to 0.3%, 0.02 to 0.2% phosphorus, more than 0 but 0.15% zirconium, and the balance copper and impurities depending on manufacturing conditions.
ないし0.15%、リン0.05ないし0.1%を含む特許請求の
範囲第6項記載の連続鋳造鋳型用銅合金。7. Zinc 0.1 to 0.25%, magnesium 0.05
7. The copper alloy for continuous casting molds according to claim 6, containing 0.1 to 0.15% and 0.05 to 0.1% phosphorus.
ないし0.3%、リン0.02ないし0.2%、ケイ素0より多い
が0.2%まで、ジルコニウム0より多いが0.15%まで、
残りが銅および製造条件次第の不純物よりなる連続鋳造
鋳型用銅合金。8. Zinc 0.05 to 0.4%, magnesium 0.02
To 0.3%, phosphorus 0.02 to 0.2%, more than 0 silicon but up to 0.2%, more than 0 zirconium up to 0.15%,
A copper alloy for continuous casting molds, the remainder being copper and impurities depending on the manufacturing conditions.
ないし0.15%、リン0.05ないし0.1%を含む特許請求の
範囲第8項記載の連続鋳造鋳型用銅合金。9. Zinc 0.1 to 0.25%, magnesium 0.05
9. The copper alloy for a continuous casting mold according to claim 8, wherein the copper alloy contains 0.1 to 0.15% and 0.05 to 0.1% phosphorus.
許請求の範囲第8項または第9項記載の連続鋳造鋳型用
銅合金。10. A copper alloy for a continuous casting mold according to claim 8 or 9, which contains more than 0 but not more than 0.1% of silicon.
2ないし0.3%、リン0.02ないし0.2%、残りが銅および
製造条件次第の不純物よりなる連続鋳造鋳型用銅合金の
製造方法において、銅合金を鋳造した後に熱間加工し、
300ないし550℃において1ないし6時間焼なましを行
い、そしてその後で少なくとも10%冷間加工を行うこと
を特徴とする上記銅合金の製造方法。11. Zinc 0.05 to 0.4%, magnesium 0.0
2 to 0.3%, phosphorus 0.02 to 0.2%, the rest is a method for producing a copper alloy for continuous casting molds consisting of copper and impurities depending on the production conditions, hot working after casting the copper alloy,
A method for producing the above copper alloy, which comprises annealing at 300 to 550 ° C. for 1 to 6 hours, and then cold working at least 10%.
2ないし0.3%、リン0.02ないし0.2%、残りが銅および
製造条件次第の不純物よりなる連続鋳造鋳型用銅合金の
製造方法において、銅合金を鋳造した後に熱間加工し、
少なくとも10%冷間変形を行い、300ないし550℃におい
て1ないし6時間焼なましを行い、そしてその後で少な
くとも10%冷間加工を行うことを特徴とする上記銅合金
の製造方法。12. Zinc 0.05 to 0.4%, magnesium 0.0
2 to 0.3%, phosphorus 0.02 to 0.2%, the rest is a method for producing a copper alloy for continuous casting molds consisting of copper and impurities depending on the production conditions, hot working after casting the copper alloy,
A method for producing the above copper alloy, which comprises performing cold deformation at least 10%, annealing at 300 to 550 ° C. for 1 to 6 hours, and then performing cold working at least 10%.
2ないし0.3%、リン0.02ないし0.2%、残りが銅および
製造条件次第の不純物よりなる連続鋳造鋳型用銅合金の
製造方法において、銅合金を鋳造した後に最大溶解度の
温度より上の温度において熱間加工し、少なくとも750
℃から焼き入れし、300ないし550℃において1ないし6
時間焼なましを行い、そしてその後で少なくとも10%冷
間加工を行うことを特徴とする上記銅合金の製造方法。13. Zinc 0.05 to 0.4%, magnesium 0.0
In a method for producing a copper alloy for a continuous casting mold, which comprises 2 to 0.3%, phosphorus 0.02 to 0.2%, and the remainder copper and impurities depending on the production conditions, hot casting is performed at a temperature above the maximum solubility temperature after casting the copper alloy. Processed and at least 750
Quench from ℃, 1 to 6 at 300 to 550 ℃
A method for producing the above copper alloy, which comprises performing time annealing and then performing cold working for at least 10%.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19863620654 DE3620654A1 (en) | 1986-06-20 | 1986-06-20 | COPPER ALLOY |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS648236A JPS648236A (en) | 1989-01-12 |
JP2530657B2 true JP2530657B2 (en) | 1996-09-04 |
Family
ID=6303307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62159587A Expired - Fee Related JP2530657B2 (en) | 1986-06-20 | 1987-06-29 | Copper alloy and method for producing the same |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0250001B1 (en) |
JP (1) | JP2530657B2 (en) |
AT (1) | ATE70858T1 (en) |
CA (1) | CA1308940C (en) |
DE (2) | DE3620654A1 (en) |
ES (1) | ES2038620T3 (en) |
FI (1) | FI88623C (en) |
IN (1) | IN168226B (en) |
ZA (1) | ZA874542B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR910004078B1 (en) * | 1987-08-31 | 1991-06-22 | 미쯔비시마테리알 가부시기가이샤 | Molding member and water-cooled rotary roller member for quench solidification |
DE10032627A1 (en) * | 2000-07-07 | 2002-01-17 | Km Europa Metal Ag | Use of a copper-nickel alloy |
DE102018122574B4 (en) | 2018-09-14 | 2020-11-26 | Kme Special Products Gmbh | Use of a copper alloy |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3778318A (en) * | 1969-02-24 | 1973-12-11 | Cooper Range Co | Copper base composition |
US4202688A (en) * | 1975-02-05 | 1980-05-13 | Olin Corporation | High conductivity high temperature copper alloy |
GB1562870A (en) * | 1977-03-09 | 1980-03-19 | Louyot Comptoir Lyon Alemand | Copper alloys |
JPS5514128A (en) * | 1978-07-13 | 1980-01-31 | Honda Motor Co Ltd | Heat treatment method of in-furnace brazing |
US4305762A (en) * | 1980-05-14 | 1981-12-15 | Olin Corporation | Copper base alloy and method for obtaining same |
JPS5832220A (en) * | 1981-08-19 | 1983-02-25 | Matsushita Electric Ind Co Ltd | Step-up type magnetic head |
US4605532A (en) * | 1984-08-31 | 1986-08-12 | Olin Corporation | Copper alloys having an improved combination of strength and conductivity |
-
1986
- 1986-06-20 DE DE19863620654 patent/DE3620654A1/en not_active Withdrawn
- 1986-06-23 ZA ZA874542A patent/ZA874542B/en unknown
-
1987
- 1987-06-20 AT AT87108853T patent/ATE70858T1/en not_active IP Right Cessation
- 1987-06-20 DE DE8787108853T patent/DE3775474D1/en not_active Expired - Fee Related
- 1987-06-20 ES ES198787108853T patent/ES2038620T3/en not_active Expired - Lifetime
- 1987-06-20 EP EP87108853A patent/EP0250001B1/en not_active Expired - Lifetime
- 1987-06-22 FI FI872760A patent/FI88623C/en not_active IP Right Cessation
- 1987-06-29 JP JP62159587A patent/JP2530657B2/en not_active Expired - Fee Related
- 1987-07-13 IN IN534/CAL/87A patent/IN168226B/en unknown
- 1987-07-21 CA CA000542572A patent/CA1308940C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FI872760A0 (en) | 1987-06-22 |
FI88623B (en) | 1993-02-26 |
FI872760L (en) | 1987-12-21 |
IN168226B (en) | 1991-02-23 |
ES2038620T3 (en) | 1993-08-01 |
FI88623C (en) | 1993-06-10 |
EP0250001A2 (en) | 1987-12-23 |
DE3620654A1 (en) | 1987-12-23 |
JPS648236A (en) | 1989-01-12 |
CA1308940C (en) | 1992-10-20 |
DE3775474D1 (en) | 1992-02-06 |
EP0250001A3 (en) | 1989-06-07 |
ZA874542B (en) | 1988-07-27 |
EP0250001B1 (en) | 1991-12-27 |
ATE70858T1 (en) | 1992-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4142918A (en) | Method for making fine-grained Cu-Ni-Sn alloys | |
CA1099132A (en) | Copper base alloys containing chromium, niobium and zirconium | |
US4047980A (en) | Processing chromium-containing precipitation hardenable copper base alloys | |
KR20010094994A (en) | Copper Base Alloy, and Methods for Producing Casting and Forging Employing Copper Base Alloy | |
US3297497A (en) | Copper base alloy | |
JPS6132386B2 (en) | ||
JP2530657B2 (en) | Copper alloy and method for producing the same | |
JP2534073B2 (en) | Copper alloy for electronic component construction and method for producing the same | |
JPS61119660A (en) | Manufacture of copper alloy having high strength and electric conductivity | |
JPH04198460A (en) | Production of casting mold member for continuous casting | |
US3019102A (en) | Copper-zirconium-hafnium alloys | |
JPS63111151A (en) | Copper alloy for electrical and electronic parts and production thereof | |
JPH04221032A (en) | High strength and high conductivity copper alloy for die for plastic molding and its manufacture | |
KR960001714B1 (en) | Method of casting and mold making | |
JP3763234B2 (en) | Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy | |
US5074921A (en) | Copper alloy and method | |
US3574001A (en) | High conductivity copper alloys | |
KR920007884B1 (en) | Copper alloys for materials of continuous casting molds and methods for producing continuous casting molds | |
JPH0314896B2 (en) | ||
JPH07113133B2 (en) | Cu alloy for continuous casting mold | |
JPH03140444A (en) | Manufacture of beryllium copper alloy member | |
US3376171A (en) | Copper alloy | |
US3753696A (en) | High strength copper alloy having an excellent formability and process for producing the same | |
JPH05339688A (en) | Production of molding material for casting metal | |
JPH0428837A (en) | Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |