JP2529875Y2 - Ultrasonic motor - Google Patents
Ultrasonic motorInfo
- Publication number
- JP2529875Y2 JP2529875Y2 JP1987021458U JP2145887U JP2529875Y2 JP 2529875 Y2 JP2529875 Y2 JP 2529875Y2 JP 1987021458 U JP1987021458 U JP 1987021458U JP 2145887 U JP2145887 U JP 2145887U JP 2529875 Y2 JP2529875 Y2 JP 2529875Y2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric element
- elastic body
- electrodes
- ultrasonic motor
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005684 electric field Effects 0.000 claims description 11
- 230000010287 polarization Effects 0.000 description 7
- 238000005476 soldering Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 244000126211 Hericium coralloides Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Description
【考案の詳細な説明】 [産業上の利用分野] 本考案は、超音波モータ、更に詳しくは、圧電,電
歪,磁歪素子等の伸縮運動を利用した屈曲または板波進
行波タイプの超音波モータに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial application field] The present invention relates to an ultrasonic motor, and more specifically, a bending or plate wave traveling wave type ultrasonic wave utilizing expansion and contraction motion of a piezoelectric, electrostrictive, magnetostrictive element or the like. Motor related.
[従来の技術] 周知のように、近年圧電体素子等を用いて超音波振動
を励起させることにより、回転運動あるいは直線運動を
得るように構成した超音波モータが普及している。この
超音波モータは従来の電磁駆動型モータに比べて、
(1)構造が簡単で小型化,薄型化が可能、(2)発生
トルクが大きく、高トルク駆動が可能、(3)回転数が
低いため減速ギヤー等による効率低下が少ない等の多く
の利点を有しており、アクチュエータとしての利用等に
大きな期待が寄せられている。[Prior Art] As is well known, in recent years, ultrasonic motors configured to obtain rotational motion or linear motion by exciting ultrasonic vibration using a piezoelectric element or the like have become widespread. This ultrasonic motor, compared to the conventional electromagnetic drive motor,
(1) The structure is simple and can be reduced in size and thickness, (2) The generated torque is large, high torque driving is possible, and (3) The number of revolutions is low, so that there is little reduction in efficiency due to reduction gears. Therefore, great expectations are placed on its use as an actuator.
次に、上記屈曲また板波進行波型の超音波モータの駆
動原理を、第6,7図を用いて説明する。第6,7図におい
て、符号21は圧電体素子、22は同圧電体素子21が固着さ
れたリング状の弾性体、23は上記弾性体とほぼ同形状の
移動体をそれぞれ示している。上記弾性体22上に固着さ
れた、分極処理を施した複数個の圧電体素子21は、第7
図(A)に示すように隣り合う圧電体素子21の分極方向
が互いに逆になるように配列されており、更に複数個の
圧電体素子21は2つの組に分けられていて、それぞれの
圧電体素子群21a,21bはλ/4+nλ(λは進行波の波
長、nは整数)だけ空間的に相離れた位置関係にある。
このように配列された圧電体素子群21a,21bの位置関係
にある2点A,Bに、第7図(C)に示す時間的にπ/2
(=90°)位相の異なる同振幅・同周波数の交番電界
を、第7図(B)に示すように電源24,90°移相器25を
介して印加すると、各圧電体素子21の伸縮運動により、
第6図に示すように、弾性体22の表面に進行波の進行方
向uとは逆向きの楕円振動波22aが発生しこの振動して
いる同弾性体22に移動体23を加圧接触させることによ
り、弾性体22と移動体23の摩擦力で移動体23を進行波の
進行方向uとは逆向きの矢印N方向に移動させる。この
ようにして、超音波モータは駆動されるようになってい
る。Next, the driving principle of the bending or traveling wave type ultrasonic motor will be described with reference to FIGS. 6 and 7, reference numeral 21 denotes a piezoelectric element, 22 denotes a ring-shaped elastic body to which the piezoelectric element 21 is fixed, and 23 denotes a moving body having substantially the same shape as the above-mentioned elastic body. The plurality of polarized piezoelectric elements 21 fixed on the elastic body 22 and
As shown in FIG. 1A, the piezoelectric elements 21 adjacent to each other are arranged so that the polarization directions thereof are opposite to each other, and a plurality of piezoelectric elements 21 are further divided into two sets. The body element groups 21a and 21b are spatially separated from each other by λ / 4 + nλ (λ is the wavelength of the traveling wave and n is an integer).
Two points A and B in the positional relationship between the piezoelectric element groups 21a and 21b arranged in this manner are temporally π / 2 shown in FIG. 7 (C).
(= 90 °) When alternating electric fields of the same amplitude and the same frequency having different phases are applied via the power supply 24 and the 90 ° phase shifter 25 as shown in FIG. By exercise
As shown in FIG. 6, an elliptical vibration wave 22a having a direction opposite to the traveling direction u of the traveling wave is generated on the surface of the elastic body 22, and the moving body 23 is brought into pressure contact with the vibrating elastic body 22. Thus, the moving body 23 is moved in the direction of the arrow N opposite to the traveling direction u of the traveling wave by the frictional force between the elastic body 22 and the moving body 23. Thus, the ultrasonic motor is driven.
そして、この従来の超音波モータにおいては、第8図
に示すように圧電体素子21に電源24から交番電界を印加
するのに、端子電極26としてそれぞれリード線28a,28b,
28cを用い、これを圧電体素子21上の電極27および弾性
体22にそれぞれハンダ付けによって接続するようにして
いた。In this conventional ultrasonic motor, as shown in FIG. 8, when an alternating electric field is applied from a power supply 24 to the piezoelectric element 21, lead wires 28a, 28b,
28c was connected to the electrode 27 and the elastic body 22 on the piezoelectric element 21 by soldering.
[考案が解決しようとする問題点] ところが、上記超音波モータの駆動周波数は数10KHz
以上の所謂、超音波帯域の周波数であるため、上記端子
電極26ではその超音波振動により疲労断線の恐れがあ
り、またリード線28a〜28cをハンダ付する際、特に上記
弾性体22にハンダ付するリード線28aの場合は、弾性体2
2の放熱効果により必要充分な熱容量を加えなければハ
ンダ付ができない。更に、上記圧電体素子21の電極27に
熱をかけすぎると接着剤の劣化を招く恐れがあると共
に、圧電体素子21の温度がキュリー点を越すとデポール
現象を招き、超音波モータの効率を低下させることにな
る。更にまた、圧電体素子21の電極27の素材は通常銀が
使用されているため、ハンダ付により銀のクワレや電極
剥離の危険性を有しており、信頼性、生産性、サービス
性の点で問題があった。[Problems to be solved by the invention] However, the driving frequency of the ultrasonic motor is several tens KHz.
Since the frequency is in the so-called ultrasonic band, the terminal electrode 26 may be disconnected due to fatigue due to the ultrasonic vibration.In addition, when the lead wires 28a to 28c are soldered, particularly, the elastic body 22 is soldered. The elastic body 2
Due to the heat radiation effect of 2, soldering cannot be done unless necessary and sufficient heat capacity is added. Furthermore, if too much heat is applied to the electrodes 27 of the piezoelectric element 21, the adhesive may be deteriorated, and if the temperature of the piezoelectric element 21 exceeds the Curie point, a depole phenomenon may occur, thereby reducing the efficiency of the ultrasonic motor. Will be reduced. Furthermore, since silver is usually used as the material of the electrode 27 of the piezoelectric element 21, there is a danger of silver cracking and electrode peeling due to soldering, and reliability, productivity, and serviceability are high. There was a problem.
従って、本考案の目的は、上述したような従来の外部
交番電界印加用接続手段としてハンダ付を必要とするリ
ード線等を一切不要とし、それによって生ずる欠点を見
事に解消し、信頼性、生産性が高く、低コストの超音波
モータを提供するにある。Therefore, an object of the present invention is to eliminate the need for a lead wire or the like which requires soldering as the conventional connection means for applying an external alternating electric field as described above, and to eliminate the drawbacks caused thereby, and to improve reliability and production. An object of the present invention is to provide an ultrasonic motor with high performance and low cost.
[問題点を解決するための手段および作用] 本考案は、屈曲または板波進行波タイプの超音波モー
タにおいて、円環状の弾性体と、この弾性体に固着され
て交番電界を印加されることにより上記弾性体の表面に
進行波を発生させる圧電体素子と、上記弾性体の表面に
圧接され上記進行波により該弾性体に対し回転される移
動体と、上記圧電体素子の表面に設けられた複数の電極
と、この電極に対向する導電パターンを有する円環状の
第1領域と上記交番電界を出力する手段に接続される第
2領域とこれら第1および第2領域間を電気的に接続す
る連結部とを有しており、上記第1領域と上記複数の電
極とが電気的に導通するように、上記第1領域を上記圧
電体素子に一体的に固着されるフレキシブルプリント基
板とを具備したことを特徴とする。Means and Action for Solving the Problems The present invention is directed to a bending or plate wave traveling wave type ultrasonic motor, in which an annular electric body is fixed to the elastic body and an alternating electric field is applied thereto. A piezoelectric element for generating a traveling wave on the surface of the elastic body, a moving body pressed against the surface of the elastic body and rotated with respect to the elastic body by the traveling wave, and provided on the surface of the piezoelectric element. A plurality of electrodes, an annular first region having a conductive pattern facing the electrodes, a second region connected to the means for outputting the alternating electric field, and an electrical connection between the first and second regions. A flexible printed circuit board integrally fixed to the piezoelectric element so that the first region and the plurality of electrodes are electrically connected to each other. Characterized by having You.
[実施例] 以下、本考案を図示の実施例に基づいて説明する。Hereinafter, the present invention will be described based on the illustrated embodiment.
第1図(A),(B),(C)は、本考案の一実施例
を示す超音波モータの圧電体素子の配列状態、全体側面
および要部拡大断面図をそれぞれ示した図である。1 (A), 1 (B), and 1 (C) are views showing an arrangement state of piezoelectric elements of an ultrasonic motor, an entire side view, and an enlarged sectional view of a main part, respectively, showing an embodiment of the present invention. .
上記第1図(A)に示すように圧電体素子1の配列は
前述した第7図における圧電体素子21の場合と全く同様
に、分極処理の施された複数個の圧電体素子を隣り合う
圧電体素子1の分極方向が互いに逆になり、かつA相と
B相の2つの群1a,1bに分けられた円環状に形成されて
いて、それぞれの圧電体素子群1a,1bはλ/4+nλだけ
空間的に相離れるようになっており、各圧電体素子間の
分極方向はλ/2の間隔で規則正しくくり返されるように
なっている。このように配列された圧電体素子1の表面
および裏面には、第1図(C)に示すように、銀等の導
電ペーストを所定の形状に印刷塗布し、これを焼成し
て、上記圧電体素子群1a,1bの表面および共通相(GND)
の裏面にそれぞれ対応する電極2a,2b,2gを形成されてい
る。As shown in FIG. 1 (A), the arrangement of the piezoelectric elements 1 is similar to that of the piezoelectric element 21 in FIG. 7 described above, and a plurality of polarized piezoelectric elements are adjacent to each other. The polarization directions of the piezoelectric elements 1 are opposite to each other, and are formed in an annular shape divided into two groups 1a and 1b of A phase and B phase. Each of the piezoelectric element groups 1a and 1b has λ / It is spatially separated by 4 + nλ, and the polarization direction between the piezoelectric elements is regularly repeated at an interval of λ / 2. As shown in FIG. 1 (C), a conductive paste such as silver is printed and applied in a predetermined shape on the front and back surfaces of the piezoelectric elements 1 arranged in this manner, and the printed paste is fired. Surface and common phase (GND) of body element groups 1a and 1b
Corresponding to the electrodes 2a, 2b, 2g are formed on the back surface.
一方、第2図に示すように薄いフレキシブルな絶縁体
ベース4a上に銅箔等を貼り合わせて導電層4b(第1図
(C)参照)を形成したフレキシブル基板を用い、同基
板上の導電層4b上をソルダーレジストまたオーバレイ等
の絶縁層4c(第1図(C)参照)で不要部分をマスクし
て、上記圧電体素子群1a,1bの表面および両素子群の共
通相の裏面にそれぞれ対応する形状パターン3a,3b,3gか
らなるパターン層3およびこのパターン3a,3b,3g上に上
記電極2a,2b,2gに相対向するランド3cを形成すると共
に、パターン3a,3bと3gの形成されたベースを帯状の接
続部4dで結ぶ。そして、更に、圧電体素子1の集合体と
同形状の円環状の円環体2個をつないだ上記接続部4dの
途中に垂直方向の突起部4eを設け、この突起部4e上に上
記パターン3a,3b,3gからそれぞれ引き出された端子が導
電層4bで形成されるようにし、各端子がそれぞれ上記圧
電体素子群1a,1bおよびGND3gの端子A,B,Gとなる総合端
子電極4fとする。On the other hand, as shown in FIG. 2, a flexible substrate having a conductive layer 4b (see FIG. 1C) formed by laminating a copper foil or the like on a thin flexible insulator base 4a is used. Unnecessary portions are masked on the layer 4b with an insulating layer 4c (see FIG. 1 (C)) such as a solder resist or an overlay, so that the unnecessary portions are masked on the front surfaces of the piezoelectric element groups 1a and 1b and the back surface of the common phase of both element groups. A pattern layer 3 composed of corresponding shape patterns 3a, 3b, 3g and lands 3c opposed to the electrodes 2a, 2b, 2g are formed on the patterns 3a, 3b, 3g, and the patterns 3a, 3b, and 3g are formed. The formed base is connected by a strip-shaped connecting portion 4d. Further, a vertical projection 4e is provided in the middle of the connecting portion 4d connecting two annular toroids having the same shape as the aggregate of the piezoelectric elements 1, and the pattern is formed on the projection 4e. Terminals drawn from 3a, 3b, 3g are each formed by a conductive layer 4b, and each terminal is a total terminal electrode 4f which becomes the terminals A, B, G of the piezoelectric element groups 1a, 1b and GND 3g, respectively. I do.
そして、このように形成されたフレキシブル基板を第
2図におけるI−I′線に沿って内側に折り曲げ、第1
図(B)に示すように圧電体素子1を上下から挟み込む
形で接着し、上記ランド3cを通じて上記圧電体素子1の
電極2a,2bおよび2gと電気的に接続する。そして、上記
フレキシブル基板からなる端子電極4を接着した圧電体
を弾性体5に一体的に接着固定する。このように構成し
て、上記パターン3a,3b,3gから引き出された端子電極4f
に外部電源(図示されず)よりモータ駆動用交番電界を
印加すれば、交番電界はパターン3a,3b,3gからランド3c
を通じて電極2a,2bおよび2gに加わり、その結果、圧電
体素子1が伸縮運動を起し、弾性体5の表面に発生する
楕円運動により加圧接触している移動体6が一方向に駆
動されてモータが回転する。Then, the flexible substrate thus formed is bent inward along the line II ′ in FIG.
As shown in FIG. 2B, the piezoelectric element 1 is adhered so as to sandwich it from above and below, and is electrically connected to the electrodes 2a, 2b and 2g of the piezoelectric element 1 through the lands 3c. Then, the piezoelectric body to which the terminal electrode 4 made of the flexible substrate is bonded is integrally fixed to the elastic body 5. With such a configuration, the terminal electrodes 4f drawn from the patterns 3a, 3b, 3g
When an alternating electric field for driving the motor is applied from an external power supply (not shown) to the
Are applied to the electrodes 2a, 2b, and 2g, and as a result, the piezoelectric element 1 expands and contracts, and the moving body 6 in pressure contact with the elliptical movement generated on the surface of the elastic body 5 is driven in one direction. The motor rotates.
第3図は、上記第1図の実施例の超音波モータにおけ
る圧電体素子1の配置および分極方向の組合せを変更し
た例を示すもので、図示のように分極方向が相隣る一方
が同方向、他方が反対方向となるように、即ち、2個々
宛同方向,反対方向となるように組合されて隙間なく配
列されている。そしれこれらの圧電体素子1の電極2a,2
b,2g(第1図(C)参照)に相対する、上述したフレキ
シブル絶縁体ベース4a上の導電層4bによって形成される
導電パターン3a,3b,3gは、第4図に示すように、共通相
に対応するパターン3gは全く同様であるが、電極2a,2b
に対応するパターン3a,3bは互いに歯間に入り込む櫛歯
型に形成されている点で異なっている。このように導電
パターン3a,3bを櫛歯状に形成した端子電極4Aとして
も、その作用は上記第1図(A),(B),(C)に示
した超音波モータと変るところはない。FIG. 3 shows an example in which the combination of the arrangement of the piezoelectric elements 1 and the polarization direction in the ultrasonic motor of the embodiment shown in FIG. 1 is changed, and one in which the polarization directions are adjacent to each other as shown in FIG. And the other is in the opposite direction, that is, the two are arranged in the same direction and in the opposite direction without gaps. The electrodes 2a, 2 of these piezoelectric elements 1
As shown in FIG. 4, the conductive patterns 3a, 3b, 3g formed by the conductive layer 4b on the flexible insulator base 4a, which are opposed to b, 2g (see FIG. 1 (C)), are common. The pattern 3g corresponding to the phase is exactly the same, but the electrodes 2a, 2b
Are different from each other in that the patterns 3a and 3b are formed in the shape of a comb tooth that enters between the teeth. Thus, even if the terminal electrodes 4A in which the conductive patterns 3a and 3b are formed in a comb shape, the operation is the same as that of the ultrasonic motor shown in FIGS. 1 (A), 1 (B) and 1 (C). .
即ち、圧電体素子1の電極2a,2bや弾性体5へのハン
ダ付工程も不要であり、これに基づく欠点は解消される
と共に、超音波振動時にも安定な信頼性の高いモータと
することができる。また、端子電極4Aをフレキシブルな
構造とすることにより、圧電体素子1の振動を外部に伝
達しない緩衝機能を持たせ、モータの性能,効率を向上
させることができる。更に、弾性体が絶縁性の材質であ
っても、圧電体に電界印加が可能であり、不要部分以外
は絶縁処理を施しているため、不用意にショートするよ
うなこともない。That is, a step of soldering the electrodes 2a and 2b of the piezoelectric element 1 and the elastic body 5 is not required, and the disadvantages based on this are eliminated, and a highly reliable motor that is stable even during ultrasonic vibration is provided. Can be. In addition, since the terminal electrode 4A has a flexible structure, a function of transmitting vibration of the piezoelectric element 1 to the outside is provided, so that the performance and efficiency of the motor can be improved. Furthermore, even if the elastic body is an insulating material, an electric field can be applied to the piezoelectric body, and since an unnecessary portion is subjected to an insulating process, a short circuit does not occur carelessly.
第5図(A)〜(D)は、本考案の他の実施例を示す
超音波モータであって、(A)は平面図、(B)は上記
(A)のII-II′線に沿う断面図、(C)は上記(B)
の要部拡大図、(D)は上記(C)における導電体層の
パターンをそれぞれ示している。5 (A) to 5 (D) show an ultrasonic motor showing another embodiment of the present invention, wherein FIG. 5 (A) is a plan view, and FIG. (C) is the above (B)
(D) shows the pattern of the conductor layer in (C) above.
本実施例における弾性体5は、上記(A),(B)図
に示すようにアルミニウム,ステンレス等の金属材料か
らなる円環状のもので、その下端部の一部に外方に向け
て突起部5aが設けられている。そして、同弾性体5の下
面にはガラスエポキシ樹脂等で絶縁層14を設け、同絶縁
層14の表面には、銅箔等の導電層15を貼設し、さらに同
導電層15の表面に(D)図に示すように、ソルダーレジ
スト等の絶縁物で不要部分をマスクした、圧電体素子群
1a,1b(第1図(A)参照)に対応するパターン15a,15b
を形成する。そして、この導電層パターン15a,15b上に
は、圧電体素子1の電極13a,13bと相対向する位置にラ
ンド15cが形成されている。また、弾性体5の下面には
共通相(GND)端子16,16′として絶縁層14の一部をとり
除き金属面が残されている。また、上記圧電体素子1の
電極13aの一部を、電極13a,13b側の一部、分極処理が施
されていない部分1c((C)図参照)に形成する。この
ような構成で圧電体素子1を弾性体5に固着させ、上記
電極13a,13bをランド15cを介してパターン15a,15bに接
続させ、また上記電極13gを上記GND端子16,16′と電気
的に接続する。The elastic body 5 in the present embodiment is an annular body made of a metal material such as aluminum or stainless steel as shown in the above (A) and (B) figures, and has a projecting outward at a part of its lower end. A part 5a is provided. An insulating layer 14 made of glass epoxy resin or the like is provided on the lower surface of the elastic body 5, and a conductive layer 15 such as a copper foil is attached on the surface of the insulating layer 14. (D) As shown in the figure, a piezoelectric element group in which unnecessary portions are masked with an insulator such as a solder resist.
Patterns 15a and 15b corresponding to 1a and 1b (see FIG. 1A)
To form On the conductive layer patterns 15a and 15b, lands 15c are formed at positions facing the electrodes 13a and 13b of the piezoelectric element 1. A metal surface is left on the lower surface of the elastic body 5 by removing a part of the insulating layer 14 as common phase (GND) terminals 16 and 16 '. Further, a part of the electrode 13a of the piezoelectric element 1 is formed on a part on the side of the electrodes 13a and 13b, and on a part 1c that is not subjected to a polarization process (see FIG. (C)). In such a configuration, the piezoelectric element 1 is fixed to the elastic body 5, the electrodes 13a, 13b are connected to the patterns 15a, 15b via the lands 15c, and the electrodes 13g are electrically connected to the GND terminals 16, 16 '. Connection.
このように構成された超音波モータへの、外部電源か
らの駆動用交番電界の印加は、上記弾性体5の突起部5a
の下側に位置する、上述のように形成された端子電極12
に、フレキシブル基板付カードエッジ型コネクタ等を介
して供給される。なお、上記第5図(A),(B),
(C)中の符号6は移動体を示している。The application of the driving alternating electric field from the external power supply to the ultrasonic motor thus configured is performed by using the protrusions 5a of the elastic body 5.
The terminal electrode 12 formed as described above, located below
Is supplied via a card edge type connector with a flexible substrate. In addition, FIG. 5 (A), (B),
Reference numeral 6 in (C) indicates a moving body.
このように構成された本実施例における超音波モータ
においても、前実施例における超音波モータと同様に圧
電体素子の電極13a,13bにリード線等をハンダ付けする
工程が不要となる許りでなく、弾性体5そのもの電極端
子機能を持たせることにより更に安価で生産性の高いも
のとすることができる。Also in the ultrasonic motor according to the present embodiment configured as described above, the step of soldering the lead wires and the like to the electrodes 13a and 13b of the piezoelectric element is unnecessary, similarly to the ultrasonic motor according to the previous embodiment. Instead, the elastic body 5 itself has the electrode terminal function, so that it is possible to further reduce the cost and increase the productivity.
[考案の効果] 以上述べたように本考案によれば、従来の超音波モー
タにおける、外部電界印加用電極への接続手段としての
ハンダ付を必要とするリード線等は一切不要の端子電極
を、弾性体と一体に構成するようにしたので、信頼性、
生産性の高い低コストの超音波モータを提供することが
できる。[Effects of the Invention] As described above, according to the present invention, the conventional ultrasonic motor uses terminal electrodes that do not require any lead wires or the like that need to be soldered as connection means to the external electric field application electrode. , Because it is configured integrally with the elastic body, reliability,
A low-cost ultrasonic motor with high productivity can be provided.
第1図(A),(B),(C)は、本考案の一実施例を
示す超音波モータにおける圧電体素子の平面図、全体の
側面図および要部拡大断面図、 第2図は、上記第1図の超音波モータの圧電体素子を挟
持するフレキシブル基板からなる端子電極の平面図、 第3図は、上記第1図の超音波モータの圧電体素子の配
置および分極方向の組合せを変更した他の例を示す平面
図、 第4図は、上記第3図の圧電体素子を挟持するフレキシ
ブル基板からなる端子電極の平面図、 第5図(A)〜(D)は、本考案の他の実施例を示す超
音波モータであって、(A)はその平面図、(B)は上
記(A)中のII-II′線に沿う概略断面図、(C)は上
記(B)の要部拡大図、(D)は上記(C)における端
子電極の導電パターンを示す平面図、 第6図,第7図(A),(B),(C)はそれぞれ、超
音波モータの駆動原理を示す説明図、 第8図は、従来の超音波モータの電気接続端子と外部電
源との接続状態を示す概要図である。 1……圧電体素子 4,12……端子電極 4b,15……導電層 5……弾性体 6……移動体1 (A), 1 (B) and 1 (C) are a plan view, a whole side view and an enlarged sectional view of a main part of a piezoelectric element in an ultrasonic motor according to an embodiment of the present invention. FIG. 3 is a plan view of a terminal electrode formed of a flexible substrate sandwiching the piezoelectric element of the ultrasonic motor of FIG. 1; FIG. 3 is a combination of the arrangement and the polarization direction of the piezoelectric element of the ultrasonic motor of FIG. FIG. 4 is a plan view showing a terminal electrode formed of a flexible substrate sandwiching the piezoelectric element shown in FIG. 3, and FIGS. FIG. 6 is an ultrasonic motor showing another embodiment of the invention, wherein (A) is a plan view thereof, (B) is a schematic sectional view taken along the line II-II ′ in (A), and (C) is an above-mentioned ( (B) is an enlarged view of a main part, (D) is a plan view showing the conductive pattern of the terminal electrode in (C), and FIGS. 6 and 7 (A). ), (B), and (C) are explanatory diagrams showing the driving principle of the ultrasonic motor, respectively. FIG. 8 is a schematic diagram showing a connection state between an electric connection terminal of a conventional ultrasonic motor and an external power supply. . 1 ... piezoelectric element 4, 12 ... terminal electrode 4b, 15 ... conductive layer 5 ... elastic body 6 ... moving body
───────────────────────────────────────────────────── フロントページの続き (72)考案者 舟窪 朋樹 東京都渋谷区幡ヶ谷2丁目43番2号 オ リンパス光学工業株式会社内 合議体 審判長 下野 和行 審判官 飯尾 良司 審判官 伊藤 陽 (56)参考文献 特開 昭62−260567(JP,A) 特開 昭63−64581(JP,A) 実開 昭61−126697(JP,U) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomoki Funakubo 2-43-2 Hatagaya, Shibuya-ku, Tokyo O-limpus Optical Industry Co., Ltd. References JP-A-62-260567 (JP, A) JP-A-63-64581 (JP, A) JP-A-61-126697 (JP, U)
Claims (1)
り、上記弾性体の表面に進行波を発生させる圧電体素子
と、 上記弾性体の表面に圧接され、上記進行波により該弾性
体に対し回転される移動体と、 上記圧電体素子の表面に設けられた複数の電極と、 円環状に形成され、上記複数の電極に対向する導電パタ
ーンを有する第1領域と、上記交番電界を出力する手段
に接続される第2領域と、これら第1および第2領域間
を電気的に接続する連結部とを有しており、上記第1領
域と上記複数の電極とが電気的に導通するように、該第
1領域と上記圧電体素子に一体的に固着されるフレキシ
ブルプリント基板と、 を具備することを特徴とする超音波モータ。1. An annular elastic body, a piezoelectric element fixed to the elastic body and applying an alternating electric field to generate a traveling wave on the surface of the elastic body, and a piezoelectric element on the surface of the elastic body. A moving body pressed against and rotated with respect to the elastic body by the traveling wave; a plurality of electrodes provided on a surface of the piezoelectric element; and a conductive pattern formed in an annular shape and opposed to the plurality of electrodes. A first region having a first region, a second region connected to the means for outputting the alternating electric field, and a connecting portion for electrically connecting the first and second regions. An ultrasonic motor comprising: a first region and a flexible printed circuit board integrally fixed to the piezoelectric element so that the plurality of electrodes are electrically connected to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987021458U JP2529875Y2 (en) | 1987-02-16 | 1987-02-16 | Ultrasonic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987021458U JP2529875Y2 (en) | 1987-02-16 | 1987-02-16 | Ultrasonic motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63131595U JPS63131595U (en) | 1988-08-29 |
JP2529875Y2 true JP2529875Y2 (en) | 1997-03-19 |
Family
ID=30817919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1987021458U Expired - Lifetime JP2529875Y2 (en) | 1987-02-16 | 1987-02-16 | Ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2529875Y2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009154111A (en) * | 2007-12-27 | 2009-07-16 | Sony Corp | Piezoelectric pump, cooling device, and electronic appliance |
JP5658481B2 (en) * | 2010-05-06 | 2015-01-28 | 稲葉 律夫 | Ultrasonic motor |
JP6140507B2 (en) * | 2013-03-29 | 2017-05-31 | Fdk株式会社 | Ultrasonic motor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0337750Y2 (en) * | 1985-01-24 | 1991-08-09 | ||
JPH0744850B2 (en) * | 1986-05-06 | 1995-05-15 | キヤノン株式会社 | Vibration wave motor |
-
1987
- 1987-02-16 JP JP1987021458U patent/JP2529875Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63131595U (en) | 1988-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001352768A (en) | Multilayer electromechanical energy conversion element and oscillation wave driver | |
US5448127A (en) | Vibration wave driven motor | |
US8076823B2 (en) | Ultrasonic actuator | |
JP2529875Y2 (en) | Ultrasonic motor | |
US6747397B2 (en) | Stacked type electro-mechanical energy conversion element and vibration wave driving apparatus using the same | |
JP3311034B2 (en) | Laminated piezoelectric element, method for manufacturing laminated piezoelectric element, vibration wave driving device, and apparatus equipped with vibration wave driving device | |
JP2007264095A (en) | Vibration plate and vibration wave driving device | |
JPH08308268A (en) | Multilayer piezoelectric element, polarization processing method thereof, vibration wave motor, and drive device | |
JPS62260567A (en) | Oscillatory wave motor | |
JP3383401B2 (en) | Ultrasonic motor and ultrasonic motor drive | |
JP4516365B2 (en) | Ultrasonic motor | |
JP3148036B2 (en) | Printed wiring board and ultrasonic motor | |
JP4878691B2 (en) | Multilayer electromechanical energy conversion element | |
JP2967562B2 (en) | Piezoelectric transformer and method of manufacturing piezoelectric transformer | |
JP4388273B2 (en) | Ultrasonic motor and electronic device with ultrasonic motor | |
JP2023059607A (en) | pressure sensor | |
JP2018056162A (en) | Piezoelectric actuator | |
JP2919658B2 (en) | Ultrasonic motor | |
JPH05146181A (en) | Method for manufacturing piezoelectric diaphragm for ultrasonic motor | |
JPH1093157A (en) | Piezoelectric transformer | |
WO2023053160A1 (en) | Piezoelectric element assembly and method for manufacturing same | |
JPH1041559A (en) | Piezoelectric transformer | |
JP2003188434A (en) | Piezo-electric transformer case | |
JP2019125777A (en) | Piezoelectric element unit | |
JPH01321874A (en) | ultrasonic motor |