[go: up one dir, main page]

JP2526400B2 - Adaptive equalizer using neural network and Viterbi decoder - Google Patents

Adaptive equalizer using neural network and Viterbi decoder

Info

Publication number
JP2526400B2
JP2526400B2 JP5223854A JP22385493A JP2526400B2 JP 2526400 B2 JP2526400 B2 JP 2526400B2 JP 5223854 A JP5223854 A JP 5223854A JP 22385493 A JP22385493 A JP 22385493A JP 2526400 B2 JP2526400 B2 JP 2526400B2
Authority
JP
Japan
Prior art keywords
neural network
calculation unit
output
viterbi decoder
adaptive equalizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5223854A
Other languages
Japanese (ja)
Other versions
JPH0758677A (en
Inventor
憲 岩崎
Original Assignee
郵政省通信総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郵政省通信総合研究所長 filed Critical 郵政省通信総合研究所長
Priority to JP5223854A priority Critical patent/JP2526400B2/en
Publication of JPH0758677A publication Critical patent/JPH0758677A/en
Application granted granted Critical
Publication of JP2526400B2 publication Critical patent/JP2526400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,特定されない振幅・遅
延歪を有する伝送路を通してディジタルデータを伝送す
るとき必要となる適応等化技術に属し,ニューラルネッ
トワークとヴィタビ復号器を用いた適応等化器に関する
ものである.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adaptive equalization technique required for transmitting digital data through a transmission line having an unspecified amplitude / delay distortion, and a neural network.
It relates to an adaptive equalizer using a network and a Viterbi decoder .

【0002】[0002]

【従来の技術】電話回線は多数の加入者線,交換機,中
継系により構成されており,それぞれの呼の振幅・遅延
特性を全ての呼に対して均一にすることは困難である.
また空間の電波伝搬を利用する無線中継,放送,移動・
携帯あるいは無線データ端末通信では,伝搬媒質の特性
の変動,物体の移動等伝送路に時間的変動要因が含まれ
ることは避けられない.
2. Description of the Related Art A telephone line is composed of many subscriber lines, exchanges, and relay systems, and it is difficult to make the amplitude and delay characteristics of each call uniform for all calls.
In addition, wireless relay, broadcasting, mobile
In mobile or wireless data terminal communication, it is unavoidable that the transmission path includes temporal fluctuation factors such as fluctuations in the characteristics of the propagation medium and movements of objects.

【0003】従ってこれらの伝送路を通してディジタル
データあるいは画像信号を伝送すると,シンボル間干渉
やマルチパス歪等の発生を伴い,エラービットやゴース
トの発生等伝送品質の劣化あるいはスループットの低下
をもたらす.そこで,これらの歪を自動的に補償する
めに,適応等化器が従来より用いられている.
Therefore, when digital data or an image signal is transmitted through these transmission lines, intersymbol interference, multipath distortion, etc. occur, which causes deterioration of transmission quality such as generation of error bits and ghosts or deterioration of throughput. Therefore, we will automatically compensate for these distortions .
In order, the adaptive equalizer that has been conventionally used.

【0004】従来より電話回線によるディジタルデータ
伝送,ディジタル無線中継,テレビジョン放送等の分野
では,伝送路特性の自動補償のために適応等化器が用い
られている.適応等化器は線形トランスバーサル等化器
と判定帰還等化器に大別される.線形トランスバーサル
等化器では,実際のメッセージデータの送信に先立っ
て,あるいはその後周期的に,既知のトレーニング信号
を送信し,それと受信信号系列との差即ち誤差信号をつ
くる.そして自乗誤差を漸減する方向にトランスバーサ
ルフィルタのタップ利得(重み)を制御する.この重み
調整法を最小自乗平均アルゴリズムと言い,出力の信号
対歪比を最大にする.ピーク歪を最小にするアルゴリズ
ム(Zero-Forcing Algorithm)を用いる場合もある.メ
ッセージデータ送信期間では特性の変動はないものと見
なして重みの調整は行わない.判定帰還等化器では,メ
ッセージデータ送信期間においてもデータの判定値を正
しいものと見なして,その判定値との差を誤差信号とし
て重みを制御する.従って判定帰還等化器は回線特性の
緩やかな変動を追尾できるが,反面判定値にエラーが生
ずると誤差の伝播を生ずることがある.
Conventionally, adaptive equalizers have been used for automatic compensation of transmission line characteristics in the fields of digital data transmission through telephone lines, digital radio relay, television broadcasting and the like. Adaptive equalizers are roughly divided into linear transversal equalizers and decision feedback equalizers. In the linear transversal equalizer, the known training signal is transmitted prior to the actual transmission of the message data or periodically thereafter, and the difference between the known training signal and the received signal sequence, that is, the error signal is generated. Then, the tap gain (weight) of the transversal filter is controlled so as to gradually reduce the squared error. This weight adjustment method is called the least mean square algorithm and maximizes the signal-to-distortion ratio of the output. In some cases, an algorithm (Zero-Forcing Algorithm) that minimizes peak distortion is used. The characteristics are not changed during the message data transmission period and the weights are not adjusted. In the decision feedback equalizer, the decision value of the data is regarded as correct even during the message data transmission period, and the weight is controlled using the difference from the decision value as an error signal. Therefore, the decision feedback equalizer can track the gradual fluctuation of the line characteristics, but on the other hand, if an error occurs in the decision value, error propagation may occur.

【0005】多層パーセプトロン構成のニューラルネッ
トワークを用いた適応等化器も提案されている.ニュー
ラルネットワークはトランスバーサルフィルタの積和素
子を多素子化し,各素子の出力に非線形素子を付加し,
それらを多層構成にしたものと言える.ただしトランス
バーサルフィルタの入力は時系列データに限られるのに
対し,ニューラルネットワークは一般には多数の入力を
持ち,それらはそれぞれ独立であってもよい.
An adaptive equalizer using a neural network with a multilayer perceptron configuration has also been proposed. In the neural network, the sum of products element of the transversal filter is made multi-element, and the non-linear element is added to the output of each element,
It can be said that they are made up of multiple layers. However, while the inputs of the transversal filter are limited to time series data, neural networks generally have a large number of inputs, which may be independent of each other.

【0006】都市内移動・携帯通信あるいは屋内無線デ
ータ端末通信は,より厳しい伝搬条件下,即ち受信信号
はレイリーフェージングを受け,更にシンボル間干渉を
受ける環境下で使用されることが予想される.レイリー
フェージング環境では直接波と同一振幅を有し位相が一
様ランダムに分布した多数の干渉波が直接波に重畳され
る.周波数選択性フェージング環境では更に隣接,次隣
接等のシンボル間干渉がランダムな位相で加わる.この
ような厳しい伝搬条件下では判定帰還等化器の出力即ち
判定値は必ずしも正しいとは限らない.レイリーフェー
ジング環境あるいは周波数選択性フェージング環境に打
ち勝って高能率・高品質なデータ伝送を可能にする適応
等化器の技術はまだ確立されていない.
It is expected that mobile / portable communication in an urban area or indoor wireless data terminal communication will be used under more severe propagation conditions, that is, in an environment where the received signal is subjected to Rayleigh fading and further intersymbol interference is received. In a Rayleigh fading environment, a large number of interfering waves with the same amplitude as the direct wave and with a uniformly distributed phase are superimposed on the direct wave. In a frequency-selective fading environment, intersymbol interference such as adjacent and next-adjacent symbols is added at random phases. Under such severe propagation conditions, the output of the decision feedback equalizer, that is, the decision value is not always correct. The adaptive equalizer technology that overcomes the Rayleigh fading environment or the frequency selective fading environment and enables high-efficiency and high-quality data transmission has not yet been established.

【0007】[0007]

【発明の目的】本発明は上記に鑑みて成されたもので,
の目的は貧弱な伝搬環境下でも高能率・高品質なデ
ィジタルデータ伝送を可能にする適応等化器を提供する
ことである.
SUMMARY OF THE INVENTION The present invention has been made in view of the above,
Its purpose is to provide an adaptive equalizer which allows a high efficiency and high quality digital data transmission even under poor propagation environment.

【0008】[0008]

【発明の構成】回線品質の劣る伝送路で高品質のディジ
タルデータ伝送を実現する代表的な技術に畳込み符号化
ヴィタビ復号法がある.メッセージデータを畳込み符号
化してから送信し,受信側でヴィタビアルゴリズムに基
づく復号を行うものである.符号化率 R = 1/2, 拘束
長 K = 5 の畳込み符号を用いれば,ガウス伝送路で
は,無符号化に比べそれぞれ 4.2 dB(ビット誤り率;
BER = 1×10-4 のとき), 4.6 dB(BER = 1×10-5
のとき)の符号化利得があることが知られている.
A convolutional coding Viterbi decoding method is a typical technique for realizing high-quality digital data transmission on a transmission line with poor line quality. The message data is convolutionally encoded and then transmitted, and the receiving side performs decoding based on the Viterbi algorithm. If a convolutional code with coding rate R = 1/2 and constraint length K = 5 is used, it is 4.2 dB (bit error rate;
BER = 1 × 10 -4 ), 4.6 dB (BER = 1 × 10 -5)
It is known that there is a coding gain of

【0009】本発明に係るニュートラルネットワークと
ヴィタビ複号器を用いた適応等化器は,図1に示すよう
に,受信信号の復調出力値をシンボル間隔毎に順次シフ
トしながら貯えるタップ付き遅延線叉はシフトレジスタ
(1),ニューラルネットワーク(2),ヴィタビ復号
器(3),及び再畳込み符号化器(4)から構成され
る.受信復調信号はニューラルネットワークの順方向計
算部(2−1)を通ってからヴィタビ復号器(3)に入
力される.(3)の出力は復号出力となるが,一方
(4)の入力となり再符号化される.(4)の出力は重
み調整のための参照信号となる.復調出力値は一方
(1)により,ヴィタビ復号器(3)の時間遅れに対応
した時間遅れを与えられてニューラルネットワークの順
方向計算部(2−2)の入力になる.(2−2)の出力
と(4)の出力との差を取ることにより誤差信号が得ら
れる.この誤差信号によりニューラルネットワークの逆
方向計算部(2−3)において重みの調整を行う.この
重みを用いて(2−1)でヴィタビ復号器へ至る信号を
計算する.この一巡動作を各シンボルが受信される毎に
繰り返す.逆方向計算部(2−3)で行われる重みの調
整法としては,ニューラルネットワークで一般に用いら
れている誤差逆伝播法(Backpropagatio
n Algorithm)が利用できる.
A neutral network according to the present invention
As shown in FIG. 1, the adaptive equalizer using the Viterbi decoder is a tapped delay line or shift register (1) that stores the demodulated output value of the received signal while sequentially shifting it at each symbol interval, a neural network. (2), Viterbi decoder (3), and reconvolutional encoder (4). The received demodulated signal is input to the Viterbi decoder (3) after passing through the forward direction calculation unit (2-1) of the neural network. The output of (3) becomes the decoded output, while the output of (4) becomes the input and is re-encoded. The output of (4) serves as a reference signal for weight adjustment. The demodulation output value is given a time delay corresponding to the time delay of the Viterbi decoder (3) by one side (1) and becomes the input of the forward direction calculation unit (2-2) of the neural network. An error signal is obtained by taking the difference between the output of (2-2) and the output of (4). Based on this error signal, the weight is adjusted in the backward calculation unit (2-3) of the neural network. Using this weight, the signal to the Viterbi decoder is calculated in (2-1). This cycle operation is repeated each time each symbol is received. A backpropagation method (Backpropagation) generally used in neural networks is used as a weight adjustment method performed in the backward calculation unit (2-3).
n Algorithm) is available.

【0010】[0010]

【実施例】本発明に係るニュートラルネットトワークと
ヴィタビ複合器を用いた適応等化器の性能を計算機シミ
ュレーションにより評価した.
[Embodiment] A neutral network according to the present invention
The performance of the adaptive equalizer using the Viterbi compounder was evaluated by computer simulation.

【0011】伝送路ではレイリーフェージング及び周波
数選択性フェージングを受ける.移動体の移動方向と電
波の進行方向とのなす角度を θi とすると受信波は fd = (V/λ) cos θi なるドップラー偏移を受ける.ここで V は移動体の移
動速度,λ は電波の波長である. V/λ を最大ドップ
ラー周波数という.周波数を伝送路のシンボルレート R
s で規格化すると,規格化最大ドップラー周波数は Fd = (V/λ)/Rs と表される.レイリーフェージングは θi が 0 から 2
π の範囲で一様に分布する N 波の合成 で表される. ここで T はシンボル間隔(1/Rs)で規格
化された時間であり,整数値を取るものとする.φ(t)
は変調信号に対応する位相関数,αi は初期位相, F0
は規格化搬送波周波数,j は虚数単位,係数 1/N1/2
信号電力を 1 に規格化するためのものである.i = 1
を直接波と見なして θ1 = 0 とする.F0→ 0 とすると
等価低域表示 が得られる. N→ ∞ のとき z(t) の実数部・虚数部
は,平均値 0 の多数の独立な確率変数の和と見なせる
から,それぞれ平均値 0 の独立なガウス確率変数とな
る.従って z(t) の振幅(絶対値)はレイリー分布をな
す.図2の5−1および5−2はそれぞれ z(T) の振幅
(絶対値)および位相の時間波形の例,図2の6は振幅
(絶対値)の累積分布例を示したものである.位相の時
間波形(5−2)は変調成分 φ(T) を除くため逓倍し
て表示されている.累積分布(6)はレイリー分布の理
論値にほぼ一致している.周波数選択性フェージング環
境では更に遅延波 zd(T) = z(T - 1), z2d(T)= z(T
- 2), ・・・ 等が z(T) に加算される.ここでは zd(T)
のみに限定する.受信信号は u(T) = [1/(1 + γ)]z(t) + [γ/(1 + γ)]zd(T) γ[dB] = -20 log10 γ と表される.ただし遅延波の θi は全て一様ランダム
とする.
Rayleigh fading and frequency selective fading are applied to the transmission path. If the angle between the moving direction of the moving body and the traveling direction of the radio wave is θ i , the received wave undergoes a Doppler shift of f d = (V / λ) cos θ i . Where V is the moving speed of the moving body and λ is the wavelength of the radio wave. V / λ is called the maximum Doppler frequency. Frequency is the symbol rate of the transmission line R
When normalized with s , the normalized maximum Doppler frequency is expressed as F d = (V / λ) / R s . Rayleigh fading has θ i from 0 to 2
Synthesis of N waves uniformly distributed in π range It is represented by. Here, T is the time normalized by the symbol interval (1 / R s ) and is assumed to take an integer value. φ (t)
Is the phase function corresponding to the modulated signal, α i is the initial phase, F 0
Is the normalized carrier frequency, j is the imaginary unit, and the coefficient 1 / N 1/2 is for normalizing the signal power to 1. i = 1
Is regarded as a direct wave and θ 1 = 0. Equivalent low range display when F 0 → 0 Is obtained. When N → ∞, the real and imaginary parts of z (t) can be regarded as the sum of a large number of independent random variables with a mean value of 0. Therefore, each is a Gaussian random variable with a mean value of 0. Therefore, the amplitude (absolute value) of z (t) forms a Rayleigh distribution. 5-1 and 5-2 in FIG. 2 are examples of amplitude (absolute value) and phase time waveforms of z (T), and 6 in FIG. 2 is an example of cumulative distribution of amplitude (absolute value). . The time waveform of the phase (5-2) is multiplied to display the modulation component φ (T). The cumulative distribution (6) almost agrees with the theoretical value of the Rayleigh distribution. In a frequency-selective fading environment, further delayed waves z d (T) = z (T-1), z 2d (T) = z (T
-2), ..., etc. are added to z (T). Where z d (T)
Limited to only. The received signal is expressed as u (T) = [1 / (1 + γ)] z (t) + [γ / (1 + γ)] z d (T) γ [dB] = -20 log 10 γ . However, all θ i of the delayed wave are uniformly random.

【0012】図3は実施した計算機シミュレーションの
詳細を示すブロック図である.実施例では符号化率 R =
1/2, 拘束長 K = 5, 生成多項式 g1 = (10111), g2 =
(11001) なる畳込み符号を用いた.送信側では符号化
器の 2 つの出力により搬送波を直交位相変調(QPSK)
して送信する.伝送路上でフェージング歪を受け u(T)
が受信される.u(T) は受信側で直交同期復調され,u
(t) の実数部・虚数部がそれぞれ同相成分(I-channel;
I-ch)信号,直交成分(Q-channel; Q-ch)信号とな
る.また各チャネル独立に付加雑音として疑似ガウス乱
数を加える.規格化最大ドップラー周波数 Fd は 0.000
01 とし, N = 1 波または N = 5 波とした.ニューラル
ネットワークは 2 層構成とし,第1層,第2層の素子
数はそれぞれ 4 個,2 個とした.また入力端子数は Ic
h, Q-ch それぞれ 5 個づつ計 10個とした.学習係数
μ は 0.2, 慣性係数 η は 0.8 とした.
FIG. 3 is a block diagram showing the details of the computer simulation carried out. In the embodiment, the coding rate R =
1/2, constraint length K = 5, generator polynomial g 1 = (10111), g 2 =
The convolutional code of (11001) is used. Quadrature phase modulation (QPSK) of carrier wave by two outputs of encoder at transmission side
And send. U (T) undergoes fading distortion on the transmission line
Is received. u (T) is orthogonally demodulated on the receiving side, and u
The real and imaginary parts of (t) are in-phase components (I-channel;
I-ch) signal and quadrature component (Q-channel; Q-ch) signal. In addition, pseudo Gaussian random numbers are added as additive noise to each channel independently. Normalized maximum Doppler frequency F d is 0.000
We set 01 and set N = 1 wave or N = 5 wave. The neural network has a two-layer structure, and the numbers of elements in the first and second layers are 4 and 2, respectively. The number of input terminals is Ic
The number of each of h and Q-ch is 5 and the total is 10. Learning coefficient
μ was 0.2 and the inertia coefficient η was 0.8.

【0013】[0013]

【発明の効果】上記の条件の下で実施した計算機シミュ
レーションの結果を表1に示す.比較のために,a.通
常の無等化無符号化BPSK,b.通常のヴィタビ復号
法のみを用いた QPSK,c.ニューラルネットワー
クのみを用いたBPSKの結果も合わせて示す.d.欄
が本発明に係るニュートラルネットワークとヴィタビ複
合器を用いた適応等化器を備えたQPSKの結果であ
る.各方式とも全く同一の伝搬条件で比較されている.
1回のランは500シンボルのトレーニング系列に続く
49500シンボル(ビット)のメッセージデータから
なっている.それぞれ100回のランを実行し,各ラン
の49500ビット中に含まれているエラービットの個
数によって100回のランを分類した.たとえば N=
1波,E/N。(ビット当たりの信号エネルギー対雑
音電力密度比)=8dB,γ=∞dBのとき,a.無等
化無符号化BPSKでは100回のランのうち90回は
6〜50個のエラービットを含んでいたことを示す.こ
のときの実際のエラービットの個数は各回平均で9.6
個であり,理論値に良く一致している.<E>は平均
のビット当たり信号エネルギーである.
The results of the computer simulation carried out under the above conditions are shown in Table 1. For comparison, a. Normal unequalized uncoded BPSK, b. QPSK using only the ordinary Viterbi decoding method, c. The results of BPSK using only the neural network are also shown. d. The columns indicate the neutral network and the Viterbi compound according to the present invention.
This is the result of QPSK with an adaptive equalizer using a combiner. Each method is compared under exactly the same propagation conditions.
One run consists of 49500 symbol (bit) message data following a 500 symbol training sequence. Each run was executed 100 times, and 100 runs were classified according to the number of error bits contained in 49500 bits of each run. For example, N =
1 wave, E b / N. When (signal energy to noise power density ratio per bit) = 8 dB and γ = ∞ dB, a. In unequalized uncoded BPSK, it is shown that 90 out of 100 runs contained 6 to 50 error bits. The actual number of error bits at this time is 9.6 on average each time.
They are in good agreement with the theoretical value. <E b > is the average signal energy per bit.

【0014】表1に示す計算機シミュレーション結果か
ら,本発明に係るニュートラルネットワークとヴィタビ
復号器を用いた適応等化器を備えたQPSK方式は,N
=1波のみでγ=∞dBのとき,言い替えれば直接波の
み受信され干渉はないときは通常のヴィタビ復号法より
劣るが,N=5波の干渉があり更にγ=20dBの隣接
シンボル干渉が加わるような劣悪なフェージング環境で
も,100回のランのうち94回(<Eb/NO>=3
4dBのとき)ないし90回(同24dBのとき)は誤
りのない伝送が可能であることが示された.
From the computer simulation results shown in Table 1, the neutral network and the Viterbi according to the present invention are shown.
The QPSK system with an adaptive equalizer using a decoder is
When only = 1 wave and γ = ∞ dB, in other words, when only the direct wave is received and there is no interference, it is inferior to the normal Viterbi decoding method, but there is N = 5 wave interference and further γ = 20 dB adjacent symbol interference. 94 times (<Eb / NO> = 3) out of 100 runs even in a poor fading environment
It was shown that error-free transmission is possible from 4 dB) to 90 times (24 dB).

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るニュートラルネットワークとヴィ
タビ複合器を用いた適応等化器の概略構成を示す機能
ロック図である.
FIG. 1 is a neutral network and a network according to the present invention.
FIG. 7 is a functional block diagram showing a schematic configuration of an adaptive equalizer using a tabby compound device .

【図2】性能評価のために実施した計算機シミュレーシ
ョンにおける伝送路特性の例を示す図である.
FIG. 2 is a diagram showing an example of transmission path characteristics in a computer simulation carried out for performance evaluation.

【図3】計算機シミュレーションの詳細を示すブロック
図である.
FIG. 3 is a block diagram showing details of a computer simulation.

【符号の説明】[Explanation of symbols]

1 タップ付き遅延線叉はシフトレジスタ 2 ニューラルネットワーク 2−1 ニューラルネットワークの順方向計算部 2−2 ニューラルネットワークの逆方向計算部 3 ヴィタビ復号器 4 再畳込み符号化器 5−1 N 波の合成波の振幅(絶対値)の時間波形の
例 5−2 位相の時間波形(変調成分を除くために逓倍し
て表示してある)の例 6 N 波の合成波の振幅(絶対値)の累積分布例 7 伝送路 8 送信側畳込み符号化器
1 Delay line or shift register with tap 2 Neural network 2-1 Forward calculation unit of neural network 2-2 Reverse calculation unit of neural network 3 Viterbi decoder 4 Reconvolutional encoder 5-1 N wave synthesis Waveform amplitude (absolute value) time waveform example 5-2 Phase time waveform (multiplied to remove modulation component) 6N N-wave composite wave amplitude (absolute value) accumulation Distribution example 7 Transmission line 8 Transmission side convolutional encoder

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04L 27/01 H04L 27/00 K Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H04L 27/01 H04L 27/00 K

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 受信信号の復調出力値をシンボル間隔毎
に順次シフトしながら貯えるタップ付き遅延線叉はシフ
トレジスタと,当該タツプ付き遅延線叉はシフトレジス
タからの復調出力値を入力する第一のニューラルネット
ワーク順方向計算部と,当該第一のニューラルネットワ
ーク順方向計算部の出力を入力とするヴィタビ復号器
送信側畳込み符号化器と同一の機能特性を有すると
共に,前記ヴィタビ復号器の出力を入力とする再畳込み
符号化器とタップ付き遅延線叉はシフトレジスタによ
りヴィタビ復号器の時間遅れに対応した時間遅れを与え
られた復調出力値を入力とする第二のニューラルネット
ワーク順方向計算部と,当該第二のニュートラルネット
ワーク順方向計算部の出力と前記再畳込み符号化器の出
力との差であ誤差信号を入力とするニューラルネットワ
ーク逆方向計算部を備え,前記逆方向計算部が, 第二のニューラルネットワーク順
方向計算部の出力と再畳込み符号化器の出力との差であ
る誤差信号に基づいて誤り誤差逆伝播法を行うことによ
り,ニューラルネットワークの重みを調整・制御するこ
とを特徴とする適応等化器.
1. A tapped delay line or to store while sequentially shifting the demodulated output value for each symbol interval of the received signal and the shift register, the taps with a delay line or the Shift register
A first neural network forward calculation unit for inputting the demodulated output value from data, and Viterbi decoder which receives the output of the first neural network forward calculation unit, identical to the transmission-side convolutional encoder With the functional characteristics of
Both inputs a re-convolutional encoder that receives the output of the Viterbi decoder and a demodulated output value that is delayed by a tapped delay line or shift register corresponding to the time delay of the Viterbi decoder. Second neural network forward calculation unit and the second neutral net
Output of the work forward calculation unit and output of the reconvolutional encoder
And a neural network reverse calculation unit which receives the Sadea error signal between force, the reverse calculation unit, and an output of the second neural network forward calculation unit output and re convolutional encoder Is the difference
Error error backpropagation based on the error signal
An adaptive equalizer characterized by adjusting and controlling the weight of a neural network.
JP5223854A 1993-08-17 1993-08-17 Adaptive equalizer using neural network and Viterbi decoder Expired - Lifetime JP2526400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5223854A JP2526400B2 (en) 1993-08-17 1993-08-17 Adaptive equalizer using neural network and Viterbi decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5223854A JP2526400B2 (en) 1993-08-17 1993-08-17 Adaptive equalizer using neural network and Viterbi decoder

Publications (2)

Publication Number Publication Date
JPH0758677A JPH0758677A (en) 1995-03-03
JP2526400B2 true JP2526400B2 (en) 1996-08-21

Family

ID=16804761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5223854A Expired - Lifetime JP2526400B2 (en) 1993-08-17 1993-08-17 Adaptive equalizer using neural network and Viterbi decoder

Country Status (1)

Country Link
JP (1) JP2526400B2 (en)

Also Published As

Publication number Publication date
JPH0758677A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
US5414734A (en) Compensation for multi-path interference using pilot symbols
KR100299625B1 (en) High speed simultaneous broadcasting system using adaptive compensation means
US5483557A (en) Channel equalisation in particular for fading channels
EP0755141B1 (en) Adaptive decision feedback equalization for communication systems
US6012161A (en) System and method for joint coding and decision feedback equalization
Ariyavisitakul et al. Joint coding and decision feedback equalization for broadband wireless channels
CN100518153C (en) Method and device for carrying out balanced treatment for RF pulse
JP2004507166A (en) Method and apparatus for adaptive linear equalization for Walsh covered modulation
Tellado-Mourelo et al. Adaptive DFE for GMSK in indoor radio channels
US7292661B1 (en) Block-iterative equalizers for digital communication system
Zhu et al. Single carrier frequency domain equalization with noise prediction for broadband wireless systems
US6928107B1 (en) Iterative precoding system and method for resource limited data transceivers
JP2526400B2 (en) Adaptive equalizer using neural network and Viterbi decoder
US6519282B1 (en) Method for digital transmission of information
Wu et al. The performance of TCM 16-QAM with equalization, diversity and slow frequency hopping for wideband mobile communications
JP3272167B2 (en) Receiver and digital mobile communication system
Webb et al. Equaliser techniques for QAM transmissions over dispersive mobile radio channels
Akaiwa et al. An adaptive equalizer for digital FM with limiter-discriminator detection in frequency-selective fading channel
US20040057504A1 (en) CDMA receiving device and method
Xiang et al. A new lattice polynomial perceptron and its applications to frequency-selective fading channel equalization and ACI suppression
Uesugi et al. Interference cancellation method using DFE
Tseng et al. Performance of optimum diversity combining and equalization with co-channel interference in mobile radio channel
Tantifkovit et al. Code-aided adaptive equalizer for cellular mobile radio systems
Meehan et al. Precoding over a dynamic continuous wave digital mobile channel
Hung et al. Blind adaptive equalizer for underwater communications

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term