JP2520099B2 - Carbon fiber pitch manufacturing method - Google Patents
Carbon fiber pitch manufacturing methodInfo
- Publication number
- JP2520099B2 JP2520099B2 JP1004882A JP488289A JP2520099B2 JP 2520099 B2 JP2520099 B2 JP 2520099B2 JP 1004882 A JP1004882 A JP 1004882A JP 488289 A JP488289 A JP 488289A JP 2520099 B2 JP2520099 B2 JP 2520099B2
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- molecular weight
- weight
- average molecular
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 19
- 239000004917 carbon fiber Substances 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title description 15
- 238000010438 heat treatment Methods 0.000 claims description 33
- 239000002994 raw material Substances 0.000 claims description 21
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 238000009835 boiling Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 6
- 239000012046 mixed solvent Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- 239000013557 residual solvent Substances 0.000 claims 1
- 239000011295 pitch Substances 0.000 description 46
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- 239000011302 mesophase pitch Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 12
- 239000000835 fiber Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 239000003208 petroleum Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000004523 catalytic cracking Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Landscapes
- Working-Up Tar And Pitch (AREA)
- Inorganic Fibers (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は炭素繊維用ピッチの製造法に関し、詳しくは
高強度のピッチ系炭素繊維の製造に好適なピッチを効率
よく製造する方法に関する。TECHNICAL FIELD The present invention relates to a method for producing a pitch for carbon fiber, and more particularly to a method for efficiently producing a pitch suitable for producing a high-strength pitch-based carbon fiber.
[従来の技術及び発明が解決しようとする課題] プラスチックや金属の複合材料として知られている炭
素繊維は、従来ポリアクリロニトリルの繊維を焼成して
製造されてきたが、原料が高価である上に、焼成時の炭
化収率が低いという問題があった。このため近年はピッ
チなどを原料とする炭素繊維の製法が数多く提案されて
いる(特開昭57-141488号公報,特開昭58-196293号公
報,特開昭58-142976号公報,特開昭58-164687号公報,
特開昭63-196721号公報等)。[Problems to be Solved by Conventional Techniques and Inventions] Carbon fibers, which are known as composite materials of plastics and metals, have been manufactured by firing polyacrylonitrile fibers conventionally, but the raw materials are expensive. However, there is a problem that the carbonization yield during firing is low. Therefore, in recent years, many methods for producing carbon fibers using pitch as a raw material have been proposed (JP-A-57-141488, JP-A-58-196293, JP-A-58-142976, JP-A-58-142976, 58-164687,
JP-A-63-196721).
しかしながら、特開昭57-141488号公報や特開昭58-19
6293号公報に記載されている方法では、沸点が150〜500
℃と比較的低沸点留分を原料として用いているため、重
質化反応に長時間を要し、またこのため生成するピッチ
の分子量分布が広くなり、高強度繊維が得られない。However, JP-A-57-141488 and JP-A-58-19
In the method described in Japanese Patent No. 6293, the boiling point is 150 to 500.
Since a fraction having a relatively low boiling point of ℃ and a relatively low boiling point is used as a raw material, it takes a long time to carry out the heaviening reaction, and the resulting molecular weight distribution of the pitch is broad, so that a high strength fiber cannot be obtained.
また、特開昭58-142976号公報に記載されている方法
では、沸点が540℃以上の比較的高沸点留分を用いてい
るが、減圧蒸留残渣を用いているため、コースク分や無
機の夾雑物が残存している可能性がある。また、高分子
量側へ分子量分布が広がり、高強度繊維や良曳糸性の障
害となるおそれがある。Further, in the method described in JP-A-58-142976, a relatively high-boiling fraction having a boiling point of 540 ° C. or higher is used, but a vacuum distillation residue is used. Contaminants may remain. Further, the molecular weight distribution spreads toward the high molecular weight side, which may impair the high strength fiber and the spinnability.
さらに、特開昭58-164687号公報や特開昭63-196721号
公報に記載されている方法は、一旦メソ相を生成させ、
非メソ相部分を密度差等を利用して分離し、炭素材料と
して用いる方法であり、非メソ相部分の分離が煩雑であ
り、しかも分離性能が悪く、経済性に劣るという問題が
ある。Further, the methods described in JP-A-58-164687 and JP-A-63-196721, once generate a mesophase,
This is a method of separating a non-meso phase portion using a density difference or the like and using it as a carbon material, and there is a problem that the separation of the non-meso phase portion is complicated, the separation performance is poor, and the economy is poor.
本発明はこのような従来の問題点を解消し、高強度か
つ高伸度の炭素繊維の製造に適し、紡糸性にもすぐれた
ピッチを効率よく製造する方法を提供することを目的と
するものである。An object of the present invention is to solve such conventional problems, and to provide a method for efficiently producing a pitch which is suitable for producing a carbon fiber having high strength and high elongation and is excellent in spinnability. Is.
[課題を解決するための手段] すなわち本発明は、原料ピッチとして、数平均分子量
が300〜500,重量平均分子量/数平均分子量が1.5〜2.2,
沸点が450℃以上,窒素ガス中10℃/分の昇温速度で800
℃まで昇温したときの残留分が5重量%以下であり、か
つジクロルメタン95容量%とメチルアルコール5容量%
の混合溶剤でシリカゲル薄層に展開した原点におけるピ
ーク面積が1%以下であるものを用い、第一段熱処理を
温度380〜500℃,圧力1〜1500mmHgにおいて、次いで第
二段熱処理を温度450〜550℃,圧力0.1粗20mmHgで行な
うことを特徴とする炭素繊維用ピッチの製造方法を提供
するものである。[Means for Solving the Problems] That is, the present invention has a number-average molecular weight of 300 to 500, a weight-average molecular weight / number-average molecular weight of 1.5 to 2.2, as a raw material pitch.
Boiling point is 450 ℃ or higher, 800 at a heating rate of 10 ℃ / min in nitrogen gas
The residual content when heated to ℃ is 5% by weight or less, and 95% by volume of dichloromethane and 5% by volume of methyl alcohol.
The first stage heat treatment was performed at a temperature of 380 to 500 ° C and a pressure of 1 to 1500 mmHg, and then the second stage heat treatment was performed at a temperature of 450 to It is intended to provide a method for producing a pitch for carbon fiber, which is characterized in that it is carried out at 550 ° C. and a pressure of 0.1 coarse 20 mmHg.
上記の如く本願発明は、原料ピッチとして特定のもの
を用い、かつ二段階の熱処理を行なうことに特徴があ
る。As described above, the present invention is characterized by using a specific raw material pitch and performing a two-step heat treatment.
ここで原料ピッチとしては数平均分子量(VPO測定)
が300〜500、好ましくは350〜480であって、重量平均分
子量(Mw)と数平均分子量(Mn)(GPC測定)とがMw/Mn
=1.5〜2.2、好ましくは1.5〜2.0となるようなものが用
いられる。なお、最高分子量が1500以下であることが望
ましい。最高分子量が1500を超えると均質性が失われ
る。Here, the raw material pitch is number average molecular weight (VPO measurement)
Is 300 to 500, preferably 350 to 480, and the weight average molecular weight (Mw) and the number average molecular weight (Mn) (GPC measurement) are Mw / Mn.
= 1.5 to 2.2, preferably 1.5 to 2.0 is used. The maximum molecular weight is preferably 1500 or less. Homogeneity is lost when the maximum molecular weight exceeds 1500.
また、原料ピッチとしてはASTM D 1160に準拠して測
定された沸点が450℃以上であるものを用いる。沸点が4
50℃未満のものであると収率が低下するため好ましくな
い。As the raw material pitch, one having a boiling point of 450 ° C. or higher measured according to ASTM D 1160 is used. Boiling point 4
If the temperature is lower than 50 ° C, the yield is lowered, which is not preferable.
さらに、熱天秤分析(TGA)装置を用いて窒素ガス
中、毎分(10℃/分)の昇温速度で800℃まで昇温した
ときの残留分が5重量%以下、好ましくは4.5〜0.5重量
%のものが原料ピッチとして用いられる。ここで、上記
残留分が多いということは、高分子量物、あるいは熱処
理に際して高分子量物を生成しやすい成分を多く含むこ
とを意味し、この残留分が5重量%を超えるものでは、
紡糸した繊維の均質性が失われ、強度低下を招くため好
ましくない。Furthermore, when the temperature is raised to 800 ° C. at a heating rate of 10 minutes per minute (10 ° C./minute) in nitrogen gas using a thermobalance analyzer (TGA), the residual content is 5% by weight or less, preferably 4.5 to 0.5. Weight% of the material is used as the raw material pitch. Here, a large amount of the above-mentioned residue means that it contains a large amount of a high-molecular-weight substance or a component that easily forms a high-molecular-weight substance upon heat treatment, and if this residual amount exceeds 5% by weight,
It is not preferable because the homogeneity of the spun fiber is lost and the strength is lowered.
また、原料ピッチとしては、薄層クロマトグラフ・水
素炎イオン化検出器(TLC-FID)を用い、ジクロルメタ
ン95容量%とメチルアルコール5容量%の混合溶剤でシ
リカゲル薄層に展開した原点におけるピーク面積が1%
以下のものを用いる。ここで原点におけるピーク面積が
1%を超えるものでは高分子量物などの異質物の含有量
が多く、繊維の均質性が失われ、強度低下を招くため好
ましくない。As the raw material pitch, a thin layer chromatograph / hydrogen flame ionization detector (TLC-FID) was used, and the peak area at the origin developed on a silica gel thin layer with a mixed solvent of 95% by volume of dichloromethane and 5% by volume of methyl alcohol was measured. 1%
Use the following. Here, if the peak area at the origin exceeds 1%, the content of foreign substances such as high molecular weight substances is large, the homogeneity of the fibers is lost, and the strength is lowered, which is not preferable.
このTLC-FID法の概要を述べると、この試験方法は初
留点200℃以上の重質油の炭化水素のうちの飽和分,芳
香族分,レジンおよびアスファルテンを定量する方法に
ついて規定しており、まず活性化したシリカゲル製薄層
棒の基点に適当な溶剤で希釈した試料をスポットし、こ
の薄層棒を三種類の溶媒を変えた展開槽(第1槽:n−ヘ
キサン,第2槽:n−ヘキサン20容量%とトルエン80容量
%,第3槽:ジクロルメタン95容量%とメチルアルコー
ル5容量%)で順次展開し、飽和分,芳香族分およびレ
ジンの順に分離し,スポット残留分、すなわち原点に表
われるピークをアスファルテンとする。次に乾燥により
溶媒除去後、スポット検出装置にかけ、規定の条件でス
ポットの検出を行なう。クロマトグラムと同時に描かれ
る積分曲線の高さより各成分の面積パーセントを求め
る。This TLC-FID method is outlined. This test method specifies a method for determining saturated components, aromatic components, resins and asphaltene in hydrocarbons of heavy oil with an initial boiling point of 200 ° C or higher. First, a sample diluted with an appropriate solvent was spotted on the base point of the activated silica gel thin-layer rod, and this thin-layer rod was changed to a development tank (first tank: n-hexane, second tank). : n-hexane 20% by volume and toluene 80% by volume, the third tank: dichloromethane 95% by volume and methyl alcohol 5% by volume) were sequentially developed to separate saturated components, aromatic components, and resin in this order, and spot residue, That is, the peak that appears at the origin is asphaltene. Next, after the solvent is removed by drying, the spot is detected by a spot detector, and the spot is detected under prescribed conditions. The area percentage of each component is calculated from the height of the integral curve drawn simultaneously with the chromatogram.
本発明の方法で用いる原料ピッチは基本的には上記の
条件をすべて具備したものであればよいが、他に軟化点
が50〜150℃であり、Si,Alが各々3ppm以下、芳香族指数
(fa)が0.75以上、n−ヘプタン不溶分が25〜80重量
%、トルエン不溶分が0重量%に近いものであることが
好ましい。The raw material pitch used in the method of the present invention may basically have all the above conditions, but the softening point is 50 to 150 ° C., Si and Al are each 3 ppm or less, and the aromatic index. It is preferable that (fa) is 0.75 or more, n-heptane insoluble matter is 25 to 80% by weight, and toluene insoluble matter is close to 0% by weight.
このような原料ピッチは、石油系残油、例えば石油の
接触分解残油,ナフサ等の熱分解残油など芳香族炭化水
素含量の高いものを、減圧蒸留し、沸点約400℃以上
の留分を除去した後、得られたピッチをトルエンとヘキ
サンとの混合溶剤による抽出、あるいは超臨界抽出して
重質分を除去することにより、またはバッチ式反応器
で380〜500℃,1〜500mmHgにおいて0.05〜30時間反応さ
せ、このとき反応後期に発生する比較的重質の分解油を
回収することにより得ることができる。さらに、連続
式二段反応器を用い、第一段反応器で380〜500℃、大気
圧以下において0.5〜10時間反応させた後、第二段反応
器で420〜550℃、20mmHg以下において0.05〜6時間反応
させて得られる分解油からなるピッチを用いることがで
きる。Such a raw material pitch is obtained by distilling a petroleum-based residual oil having a high aromatic hydrocarbon content such as a catalytic cracking residual oil of petroleum and a thermal cracking residual oil of naphtha under a reduced pressure to obtain a fraction having a boiling point of about 400 ° C or higher. After removing the obtained pitch by extraction with a mixed solvent of toluene and hexane, or by supercritical extraction to remove heavy components, or in a batch reactor at 380 ~ 500 ℃, 1 ~ 500mmHg It can be obtained by reacting for 0.05 to 30 hours and recovering a relatively heavy cracked oil generated in the latter stage of the reaction. Furthermore, using a continuous two-stage reactor, 380 ~ 500 ℃ in the first stage reactor, after reacting for 0.5 to 10 hours at atmospheric pressure or less, 420 ~ 550 ℃ in the second stage reactor, 0.05 at 20mmHg or less. A pitch composed of cracked oil obtained by reacting for 6 hours can be used.
本発明においては、上記の如き原料ピッチを二段階に
分けて熱処理する。In the present invention, the above-mentioned raw material pitch is heat treated in two stages.
第1段熱処理は、温度380〜500℃,圧力1〜1500mmH
g,熱処理時間0.1〜10時間、好ましくは温度390〜480
℃,圧力5mmHg〜大気圧,熱処理時間0.2〜8時間の条件
で行ない、実質的に光学的異方性相(メゾ相)が生成せ
ず、トルエン不溶分5〜35重量%まで重質化することが
望ましい。ここで第一段熱処理の温度が380℃未満であ
ると反応が遅く熱処理に長時間を要し、一方500℃を超
えると揮発分の除去量が多くなり収率が低下し、コーキ
ングが発生するほか、高分子量物が生成するので好まし
くない。また第一段熱処理の圧力が1mmHg未満であると
揮発分の除去量が多くなり収率が低下し、一方1500mmHg
を超えると軽質分の除去が不十分となり分子量分布が広
くなるので好ましくない。The first stage heat treatment is temperature 380 ~ 500 ℃, pressure 1 ~ 1500mmH
g, heat treatment time 0.1 to 10 hours, preferably temperature 390 to 480
℃, pressure 5mmHg-atmospheric pressure, heat treatment time 0.2-8 hours, no optically anisotropic phase (mesophase) is formed, and toluene insoluble content becomes 5 to 35% by weight. Is desirable. If the temperature of the first-stage heat treatment is lower than 380 ° C, the reaction is slow and the heat treatment requires a long time. On the other hand, if it exceeds 500 ° C, the amount of volatile components removed increases and the yield decreases, causing coking. In addition, a high molecular weight product is generated, which is not preferable. If the pressure of the first-stage heat treatment is less than 1 mmHg, the amount of volatile components removed increases and the yield decreases.
If it exceeds, the removal of light components becomes insufficient and the molecular weight distribution becomes broad, which is not preferable.
次にこのように第一段熱処理により重質化して得られ
た等方性ピッチを、第二段熱処理してメソ相ピッチ化す
る。Next, the isotropic pitch obtained by making the structure heavy by the first-stage heat treatment in this manner is subjected to the second-stage heat treatment to form a mesophase pitch.
この第二段熱処理は等方性ピッチ(僅かにメソ相ピッ
チを含んでいるものであってもよい)を、第一段熱処理
より厳しい条件で行なうものであり、温度450〜550℃,
圧力0.1〜20mmHg,熱処理時間0.2〜30分間、好ましくは
温度460〜500℃,圧力0.1〜10mmHg,熱処理時間1〜20分
間の条件で行ない、90%以上、好ましくは95〜100%の
メソ相ピッチ化を行なう。ここで第二段熱処理の温度が
450℃未満であると軽質分の除去が困難となって熱処理
時間が長くなり、一方550℃を超えると収率が低下し、
コーキングが発生し、反応速度の制御が困難となるので
好ましくない。また、第二段熱処理の圧力が0.1mmHg未
満であると収率が低下し真空装置が大がかりなものとな
り、一方20mmHgを超えると軽質分の除去が不十分となり
分子量分布が広くなるので好ましくない。This second-stage heat treatment is performed at an isotropic pitch (which may contain a slight amount of mesophase pitch) under stricter conditions than the first-stage heat treatment, at a temperature of 450 to 550 ° C.
The pressure is 0.1 to 20 mmHg, the heat treatment time is 0.2 to 30 minutes, preferably the temperature is 460 to 500 ° C., the pressure is 0.1 to 10 mmHg, and the heat treatment time is 1 to 20 minutes. 90% or more, preferably 95 to 100% mesophase pitch Make a change. Where the temperature of the second stage heat treatment is
If the temperature is lower than 450 ° C, it will be difficult to remove light components and the heat treatment time will be long, while if it exceeds 550 ° C, the yield will decrease.
It is not preferable because coking occurs and it becomes difficult to control the reaction rate. Further, if the pressure of the second-stage heat treatment is less than 0.1 mmHg, the yield will be reduced and the vacuum apparatus will be large-scaled.
このようにしてメソ相ピッチの含有量が90%以上であ
り、キノリン不溶分が5〜50重量%、トルエン不溶分が
60〜95重量%、軟化点が280〜380℃、数平均分子量が90
0〜1200であり、重量平均分子量/数平均分子量が1.3〜
1.8である炭素繊維用ピッチを製造することができる。In this way, the mesophase pitch content is 90% or more, the quinoline insoluble content is 5 to 50% by weight, and the toluene insoluble content is
60-95% by weight, softening point 280-380 ℃, number average molecular weight 90
0 to 1200, and weight average molecular weight / number average molecular weight of 1.3 to
A carbon fiber pitch of 1.8 can be produced.
このようにして得られたピッチからピッチ系炭素繊維
を製造するには常法により、まずこのピッチを紡糸し、
次いで不融化処理し、さらに焼成(炭化,黒鉛化)すれ
ばよい。In order to produce a pitch-based carbon fiber from the pitch obtained in this way, by a conventional method, first, this pitch is spun,
Next, infusibilization treatment may be performed, and further firing (carbonization, graphitization) may be performed.
[実施例] 次に本発明を実施例により説明する。[Examples] Next, the present invention will be described with reference to Examples.
実施例1 石油の接触分解残油を減圧蒸留し、466℃以上の留分
を除去してピッチを得た。このピッチをトルエン:n−ヘ
キサン=7:3の混合溶剤で抽出して重質分を除去し、さ
らに溶剤を乾燥させたものを原料ピッチとして用いた。
この原料ピッチの性状は次の通りであった。なお、測定
法は以下同様である。Example 1 The catalytically cracked residual oil of petroleum was distilled under reduced pressure to remove the fraction at 466 ° C. or higher to obtain pitch. This pitch was extracted with a mixed solvent of toluene: n-hexane = 7: 3 to remove heavy components, and the solvent was dried to be used as the raw material pitch.
The properties of this raw material pitch were as follows. The measuring method is the same as described below.
(1) 数平均分子量:440(VPO測定) (2) 重量平均分子量/数平均分子量=1.77(GPC測
定) (3) 最高分子量:1420 (4) 蒸留性状(ASTM D 1160に準拠) 初留点 5% 10% 20% 30% 40% 50% 466℃ 480℃ 491℃ 504℃ 520℃ 537℃ 559℃ (5) TGAを用いて窒素ガス中、10℃/分の昇温速度
で800℃まで昇温したときの残留分:4.3重量% (6) TLC-FID(ジクロルメタン95容量%とメチルア
ルコール5容量%の混合溶剤でシリカゲル薄層に展開)
分析での原点におけるピーク面積:0.8% (7) 軟化点:105℃ (8) fa:0.789 (9) n−ヘプタン不溶分:65重量% (10) トルエン不溶分:0重量% (11) Si:1ppm以下 (12) Al:1ppm以下 上記の性状を有する原料ピッチを420℃,10mmHgに1時
間保持する第一段熱処理を行なって重質化し、トルエン
不溶分17.0重量%,軟化点183℃であり、かつメソ相を
実質的に含まないメソ相前駆体ピッチを得た。(1) Number average molecular weight: 440 (VPO measurement) (2) Weight average molecular weight / number average molecular weight = 1.77 (GPC measurement) (3) Maximum molecular weight: 1420 (4) Distillation property (based on ASTM D 1160) Initial boiling point 5% 10% 20% 30% 40% 50% 466 ° C 480 ° C 491 ° C 504 ° C 520 ° C 537 ° C 559 ° C (5) Use TGA to raise the temperature to 800 ° C in nitrogen gas at a rate of 10 ° C / min. Residue when heated: 4.3% by weight (6) TLC-FID (developed into a silica gel thin layer with a mixed solvent of 95% by volume of dichloromethane and 5% by volume of methyl alcohol)
Peak area at the origin in the analysis: 0.8% (7) Softening point: 105 ° C (8) fa: 0.789 (9) n-Heptane insoluble matter: 65 wt% (10) Toluene insoluble matter: 0 wt% (11) Si : 1ppm or less (12) Al: 1ppm or less The raw material pitch having the above properties is subjected to a first stage heat treatment of holding at 420 ° C and 10mmHg for 1 hour to make it heavy, with a toluene insoluble content of 17.0% by weight and a softening point of 183 ° C. A mesophase precursor pitch, which was present and was substantially free of mesophase, was obtained.
続いて該前駆体ピッチを460℃,1mmHgで15分間第二段
熱処理することにより、キノリン不溶分34.5重量%,軟
化点330℃の100%メソ相ピッチを得た。このメソ相ピッ
チの性状は、トルエン不溶分89重量%,数平均分子量11
30,重量平均分子量/数平均分子量の値が1.57であっ
た。Subsequently, the precursor pitch was subjected to a second stage heat treatment at 460 ° C. and 1 mmHg for 15 minutes to obtain 100% mesophase pitch having a quinoline insoluble content of 34.5% by weight and a softening point of 330 ° C. The properties of this mesophase pitch are as follows: toluene insoluble content 89% by weight, number average molecular weight 11
The value of 30, weight average molecular weight / number average molecular weight was 1.57.
得られた100%メソ相ピッチを内径0.2mmのノズルで40
0m/分の引取速度にて紡糸し、糸経11μmのピッチ繊維
を得た。40% of the obtained 100% mesophase pitch with a nozzle having an inner diameter of 0.2 mm
Spinning was performed at a take-up speed of 0 m / min to obtain pitch fibers having a warp of 11 μm.
このピッチ繊維を常法に従い、空気中で200℃から360
℃まで昇温し、360℃で10分間保持して不融化した。次
に1500℃に5分間保持して炭化した。さらに2400℃,5分
間で黒鉛化した。得られた炭素繊維の引張強度及び引張
弾性率は次の通りであった。This pitch fiber is heated in air from 200 ℃ to 360
The temperature was raised to ℃ and kept at 360 ℃ for 10 minutes to infusibilize. Next, it was carbonized by holding it at 1500 ° C. for 5 minutes. Furthermore, it was graphitized at 2400 ℃ for 5 minutes. The tensile strength and tensile elastic modulus of the obtained carbon fiber were as follows.
実施例2 石油の接触分解残油をバッチ反応器で2℃/分の昇温
速度で昇温し、最終的に420℃,2mmHgで1時間反応さ
せ、メソ相ピッチを製造した。 Example 2 Catalytic cracking residual oil of petroleum was heated in a batch reactor at a heating rate of 2 ° C./min, and finally reacted at 420 ° C. and 2 mmHg for 1 hour to produce a mesophase pitch.
このとき、反応後期に発生する比較的重質の留分を回
収し、原料ピッチとして用いた。この原料ピッチの性状
は次の通りであった。At this time, a relatively heavy fraction generated in the latter stage of the reaction was recovered and used as a raw material pitch. The properties of this raw material pitch were as follows.
(1) 数平均分子量:380 (2) 重量平均分子量/数平均分子量=1.92 (3) 最高分子量:1030 (4) 蒸留性状 % % % % % % % 初留点 10 20 30 40 50 60 70 ℃ ℃ ℃ ℃ ℃ ℃ ℃ 453℃ 487 495 505 517 532 548 568 (5) TGAを用いて窒素ガス中、10℃/分の昇温速
度で800℃まで昇温したときの残留分:3.2重量% (6) TLC-FID分析での原点におけるピーク面積:0.3
% (7) 軟化点:73℃ (8) fa:0.75 (9) n−ヘプタン不溶分:32重量% (10) トルエン不溶分:0重量% (11) Si:2ppm (12) Al:1ppm以下 上記の性状を有する原料ピッチを400℃,40mmHgに4時
間保持し第一段熱処理を行なった。このときのトルエン
不溶分は20.3重量%,軟化点は152℃であった。(1) Number average molecular weight: 380 (2) Weight average molecular weight / number average molecular weight = 1.92 (3) Maximum molecular weight: 1030 (4) Distillation property %%%%%%%% Initial boiling point 10 20 30 40 50 60 70 ℃ ℃ ℃ ℃ ℃ ℃ ℃ 453 487 495 505 517 532 548 568 (5) Residue when heated to 800 ℃ in nitrogen gas using TGA at a heating rate of 10 ℃ / min: 3.2 wt% ( 6) Peak area at the origin in TLC-FID analysis: 0.3
% (7) Softening point: 73 ° C (8) fa: 0.75 (9) Insoluble matter in n-heptane: 32% by weight (10) Insoluble matter in toluene: 0% by weight (11) Si: 2ppm (12) Al: 1ppm or less The raw material pitch having the above properties was held at 400 ° C. and 40 mmHg for 4 hours to perform the first stage heat treatment. At this time, the toluene insoluble content was 20.3% by weight and the softening point was 152 ° C.
続いて480℃,3mmHgで4.5分間第二段熱処理することに
より、キノリン不溶分25.5重量%,軟化点322℃の100%
メソ相ピッチを得た。このメソ相ピッチの性状は、トル
エン不溶分78重量%,数平均分子量1070,重量平均分子
量/数平均分子量の値が1.67であった。Then, the quinoline insoluble matter was 25.5% by weight and the softening point was 322 ° C.
A mesophase pitch was obtained. The properties of this mesophase pitch were as follows: toluene insoluble content 78% by weight, number average molecular weight 1070, weight average molecular weight / number average molecular weight 1.67.
得られた100%メソ相ピッチを、実施例1と同様にし
て紡糸,不融化,焼成し炭化繊維を得た。得られた炭素
繊維の引張強度および引張弾性率は次の通りであった。The obtained 100% mesophase pitch was spun, infusibilized and fired in the same manner as in Example 1 to obtain a carbonized fiber. The tensile strength and tensile elastic modulus of the obtained carbon fiber were as follows.
上記の如く、実施例1,2とも、1500℃炭化品は引張弾
性率の割には強度が大きいため、伸度が2%前後と大き
かった。また、2400℃黒鉛化品は引張弾性率も大きかっ
た。この結果から本発明によれば従来にない、高強度,
高弾性,高伸度の炭素繊維が得られることが判る。 As described above, in both Examples 1 and 2, the carbonized products at 1500 ° C. had a large strength relative to the tensile elastic modulus, so that the elongation was as large as about 2%. The graphitized product at 2400 ° C also had a large tensile modulus. From this result, according to the present invention, high strength,
It is clear that carbon fibers with high elasticity and high elongation can be obtained.
比較例1 実施例1と同様に石油の接触分解残油を減圧蒸留し、
455℃以上の留分を除去して残渣ピッチを得た。このピ
ッチの性状は次の通りであった。Comparative Example 1 The catalytic cracking residual oil of petroleum was distilled under reduced pressure in the same manner as in Example 1,
Fractions above 455 ° C were removed to obtain residual pitch. The properties of this pitch were as follows.
(1) 数平均分子量:420 (2) 重量平均分子量/数平均分子量=2.36 (3) 最高分子量:2500 (4) 蒸留性状 % % % % % % % 初留点 5 10 20 30 40 50 60 ℃ ℃ ℃ ℃ ℃ ℃ ℃ 455℃ 503 508 517 527 540 553 573 (5) TGAを用いて窒素ガス中、10℃/分の昇温速度
で800℃まで昇温したときの残留分:11重量% (6) TLC-FID分析での原点におけるピーク面積:2.3
% (7) 軟化点:104℃ (8) fa:0.779 (9) n−ヘプタン不溶分:63重量% (10) トルエン不溶分:1.3重量% (11) Si:2ppm (12) Al:1ppm以下 上記の性状を有する原料ピッチを420℃,10mmHgに4.5
時間保持する第一段熱処理を行なって重質化し、トルエ
ン不溶分16.3重量%,軟化点181℃であり、かつメソ相
を実質的に含まないメソ相前駆体ピッチを得た。(1) Number average molecular weight: 420 (2) Weight average molecular weight / number average molecular weight = 2.36 (3) Maximum molecular weight: 2500 (4) Distillation property %%%%%%%% Initial boiling point 5 10 20 30 40 50 60 ℃ ℃ ℃ ℃ ℃ ℃ ℃ 455 ℃ 503 508 517 527 540 553 573 (5) Residue when heated to 800 ℃ in nitrogen gas using TGA at a heating rate of 10 ℃ / min: 11 wt% ( 6) Peak area at the origin in TLC-FID analysis: 2.3
% (7) Softening point: 104 ° C (8) fa: 0.779 (9) n-heptane insoluble matter: 63 wt% (10) Toluene insoluble matter: 1.3 wt% (11) Si: 2ppm (12) Al: 1ppm or less The raw material pitch having the above properties is 4.5 at 10 ℃ and 420 ℃.
A first-stage heat treatment for holding for a time was carried out to obtain a mesophase precursor pitch having a toluene insoluble content of 16.3% by weight, a softening point of 181 ° C. and substantially not containing a mesophase.
続いて該前駆体ピッチを実施例1と同一条件で第二段
熱処理することにより、キノリン不溶分36.3重量%,軟
化点335℃の100%メソ相ピッチを得た。このメソ相ピッ
チの性状は。トルエン不溶分68重量%、数平均分子量11
50、重量平均分子量/数平均分子量の値が1.83であっ
た。Then, the precursor pitch was subjected to a second stage heat treatment under the same conditions as in Example 1 to obtain 100% mesophase pitch having a quinoline insoluble content of 36.3% by weight and a softening point of 335 ° C. What is the nature of this mesophase pitch? Toluene insoluble content 68% by weight, number average molecular weight 11
50, and the value of weight average molecular weight / number average molecular weight was 1.83.
得られた100%メソ相ピッチを、実施例1と同様にし
て紡糸,不融化,焼成し炭素繊維を得た。得られた炭素
繊維の引張強度および引張弾性率は次の通りであった。The obtained 100% mesophase pitch was spun, infusibilized and fired in the same manner as in Example 1 to obtain a carbon fiber. The tensile strength and tensile elastic modulus of the obtained carbon fiber were as follows.
[発明の効果] 本発明の方法によれば、焼成後の引張強度が400kg/mm
2以上という高強度の炭素繊維の製造が可能な炭素繊維
用ピッチを得ることができる。 According to the method of the present invention, the tensile strength after firing is 400 kg / mm.
It is possible to obtain a carbon fiber pitch capable of producing a carbon fiber having a high strength of 2 or more.
また、この炭素繊維は伸度が大きく、従来法で得られ
る原料ピッチを用いた炭素繊維の難点となっていた脆さ
を克服した、すぐれた性能を有している。In addition, this carbon fiber has a high elongation and has excellent performance overcoming the brittleness which was a difficulty of the carbon fiber using the raw material pitch obtained by the conventional method.
しかも本発明の方法ではメソ相ピッチと等方性ピッチ
との分離操作を行なう必要がなく、また第二段熱処理を
厳しい条件で行うため、比較的ピッチの軟化点が高く、
不融化処理の時間を短縮できるなど、製造効率も高い。Moreover, in the method of the present invention, it is not necessary to perform the separation operation of the mesophase pitch and the isotropic pitch, and since the second stage heat treatment is performed under severe conditions, the softening point of the pitch is relatively high,
Manufacturing efficiency is high, such as shortening the infusibilization time.
さらに、本発明の方法により得られるピッチは分子量
分布が狭く、均質であり、流動性も良好である。したが
って、紡糸性よく高強度繊維を製造することが可能であ
る。Furthermore, the pitch obtained by the method of the present invention has a narrow molecular weight distribution, is homogeneous, and has good fluidity. Therefore, it is possible to produce a high-strength fiber with good spinnability.
Claims (1)
00,重量平均分子量/数平均分子量が1.5〜2.2,沸点が45
0℃以上,窒素ガス中10℃/分の昇温速度で800℃まで昇
温したときの残留分が5重量%以下であり、かつジクロ
ルメタン95容量%とメチルアルコール5容量%の混合溶
剤でシリカゲル薄層に展開した原点におけるピーク面積
が1%以下であるものを用い、第一段熱処理を温度380
〜500℃,圧力1〜1500mmHgにおいて、次いで第二段熱
処理を温度450〜55℃,圧力0.1〜20mmHgで行なうことを
特徴とする炭素繊維用ピッチの製造方法。1. A raw material pitch having a number average molecular weight of 300 to 5
00, weight average molecular weight / number average molecular weight 1.5 to 2.2, boiling point 45
Silica gel with a residual solvent of 5% by weight or less when heated to 800 ° C at a heating rate of 0 ° C or higher in nitrogen gas at 10 ° C / min, and a mixed solvent of 95% by volume of dichloromethane and 5% by volume of methyl alcohol. The first-stage heat treatment was performed at a temperature of 380 using a thin layer with a peak area of 1% or less at the origin.
A method for producing a pitch for carbon fibers, characterized in that the second stage heat treatment is carried out at a temperature of 450 to 55 ° C. and a pressure of 0.1 to 20 mmHg at ˜500 ° C. and a pressure of 1 to 1500 mmHg.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1004882A JP2520099B2 (en) | 1989-01-13 | 1989-01-13 | Carbon fiber pitch manufacturing method |
EP19900100420 EP0378187A3 (en) | 1989-01-13 | 1990-01-10 | Pitch for carbon fibers, process for production of said pitch, and process for production of carbon fibers using said pitch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1004882A JP2520099B2 (en) | 1989-01-13 | 1989-01-13 | Carbon fiber pitch manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02187493A JPH02187493A (en) | 1990-07-23 |
JP2520099B2 true JP2520099B2 (en) | 1996-07-31 |
Family
ID=11596049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1004882A Expired - Lifetime JP2520099B2 (en) | 1989-01-13 | 1989-01-13 | Carbon fiber pitch manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2520099B2 (en) |
-
1989
- 1989-01-13 JP JP1004882A patent/JP2520099B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02187493A (en) | 1990-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0084237B1 (en) | Process for the manufacture of carbon fibers and feedstock therefor | |
US4431512A (en) | Aromatic pitch from asphaltene-free steam cracker tar fractions | |
JPH0456077B2 (en) | ||
US4671864A (en) | Process for the manufacture of carbon fibers and feedstock therefor | |
GB2124246A (en) | Process for preparing precursor pitch for carbon fibers | |
JPS588786A (en) | Preparation of pitch as raw material for carbon fiber | |
US4522701A (en) | Process for preparing an anisotropic aromatic pitch | |
JP2520099B2 (en) | Carbon fiber pitch manufacturing method | |
JPH0471117B2 (en) | ||
EP0223387B1 (en) | Process for producing pitch useful as raw material for carbon fibers | |
EP0378187A2 (en) | Pitch for carbon fibers, process for production of said pitch, and process for production of carbon fibers using said pitch | |
JPH0516475B2 (en) | ||
JP2917486B2 (en) | Mesoface pitch for carbon materials | |
JPH0321589B2 (en) | ||
JPH08120282A (en) | Production of isotropic pitch for carbon fiber | |
JPH054999B2 (en) | ||
JPS6218593B2 (en) | ||
JPH08134468A (en) | Production of isotropic pitch for carbon fiber | |
JPH0362197B2 (en) | ||
JPH0730334B2 (en) | Pitch manufacturing method | |
JPH08144131A (en) | Isotropic petroleum pitch for producing carbon fiber | |
JP2533487B2 (en) | Carbon fiber manufacturing method | |
JPH0362196B2 (en) | ||
JPH0257839B2 (en) | ||
JPS6232178A (en) | Manufacturing method of pitch for carbon material |