[go: up one dir, main page]

JP2519083B2 - Method for producing polymer particles - Google Patents

Method for producing polymer particles

Info

Publication number
JP2519083B2
JP2519083B2 JP63077911A JP7791188A JP2519083B2 JP 2519083 B2 JP2519083 B2 JP 2519083B2 JP 63077911 A JP63077911 A JP 63077911A JP 7791188 A JP7791188 A JP 7791188A JP 2519083 B2 JP2519083 B2 JP 2519083B2
Authority
JP
Japan
Prior art keywords
polymer particles
polymerization
particle size
polymer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63077911A
Other languages
Japanese (ja)
Other versions
JPH01249806A (en
Inventor
純 長谷川
晴喜 及川
正良 関矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP63077911A priority Critical patent/JP2519083B2/en
Publication of JPH01249806A publication Critical patent/JPH01249806A/en
Application granted granted Critical
Publication of JP2519083B2 publication Critical patent/JP2519083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粒子径が1〜20μmであり、且つ単分散粒子
径分布を有する疎水性重合体粒子の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing hydrophobic polymer particles having a particle size of 1 to 20 μm and having a monodisperse particle size distribution.

(従来技術) 約1〜100μmの粒子径を持ち、しかも粒子径の均一
な重合体粒子はカラム充填剤、各種のスペーサー、診断
薬担体等多くの需要があるにもかかわらず製造すること
が困難であった。
(Prior Art) Polymer particles having a particle size of about 1 to 100 μm and having a uniform particle size are difficult to manufacture although there are many demands for column packing materials, various spacers, diagnostic drug carriers, etc. Met.

従来、このような粒子径を有する重合体粒子を得る方
法としては、約2μm以下の微粒子重合体の場合は注意
深くシード乳化重合法を行えば得られるが、それ以上の
粒子径のものは、このシード乳化重合法では反応速度が
非常に遅くなり、実用上製造するのは困難である。従っ
て、一般的に2μm以上の粒子を得ようとする場合に
は、懸濁重合法により粒子径分布を持つ重合体粒子を得
た後、分級してある程度まで粒子径分布を狭めた重合体
粒子を得ているが、この方法では粒子径を完全に単分散
化させることが殆ど不可能である。また、この方法で
は、工程が煩雑で手間がかかる割りに、収率がよくない
という欠点がある。比較的大粒子径で、粒子径分布のそ
ろった重合体粒子の他の製造法としては、特開昭54−12
6288号報あるいは特開昭61−215604号報開示の方法があ
るが、これらの方法は両者とも膨潤助剤をシード粒子に
吸収させた後、モノマー成分を吸収させて重合を行い大
粒子径重合体を得るものである。この両者の方法とも、
得られる重合体粒子中に膨潤助剤を含有し、種々の用途
に使用される際、不純物となり好ましくない。また、こ
れらの方法は比較的単分散の大粒径微粒子を得やすい方
法であるが、シード粒子中に膨潤助剤、さらにモノマー
と二度にわたる吸収工程が存在し、工程が複雑であると
いう問題点もある。
Conventionally, as a method for obtaining polymer particles having such a particle diameter, a fine particle polymer having a particle size of about 2 μm or less can be obtained by carefully performing a seed emulsion polymerization method. The seed emulsion polymerization method has a very slow reaction rate and is difficult to practically manufacture. Therefore, in general, when it is desired to obtain particles having a particle size of 2 μm or more, polymer particles having a particle size distribution are obtained by a suspension polymerization method, and then classified to a certain degree to narrow the particle size distribution. However, it is almost impossible to completely monodisperse the particle size by this method. Further, this method has a drawback that the yield is not good although the process is complicated and laborious. Another method for producing polymer particles having a relatively large particle size and a uniform particle size distribution is disclosed in JP-A-54-12.
There are methods disclosed in Japanese Patent No. 6288 or Japanese Patent Application Laid-Open No. 61-215604. In both of these methods, a swelling aid is absorbed in seed particles, and then a monomer component is absorbed to perform polymerization, whereby a large particle size is obtained. It is the one to get united. Both of these methods
When the polymer particles obtained contain a swelling aid and are used for various purposes, they become impurities, which is not preferable. Further, although these methods are relatively easy to obtain monodisperse large-sized fine particles, there is a problem that the steps are complicated because the seed particles have a swelling aid and a monomer and two absorption steps. There are also points.

また、近年、分散重合体(Dispersion Polymerzatio
n.例えば、CAN.J.CHEM.vol.63,209−216(1985)参照)
により比較的単分離の大粒径重合体微粒子を製造するこ
とが提案されている。一般的に分散重合法においては、
分散媒としての溶媒、分散安定剤としての水溶性高分
子、単量体、該溶媒に可溶な重合開始剤が必須の成分で
ある。分散重合法において、これらの混合物は重合開始
前には均一な溶液であることが必要である。これらの混
合物を重合反応器に添加した後、所定の反応温度に重合
反応器を加熱し重合反応を開始させる。反応開始後、数
分での反応系は均一系の透明状態から白濁状態へと移行
した不均一系になる。即ち、粒子状の重合体の析出が起
きる。その後、反応系中の単量体がなくなるまで、この
析出した重合粒子は粒子として成長を続ける。この分散
重合のメカニズムは未だ充分に明らかにされてはいない
が、系中の水溶性高分子は熱により発生した重合開始剤
由来のラジカルにより水素引き抜きをおこし、単量体が
の水溶性高分子とグラフト反応を起こし、ポリマーが析
出すると考えられている。従って、得られた粒子表面
は、用いた分散安定剤で覆われており、粒子表面は親水
性表面となる。例えば、ポリアクリル酸を水溶性高分子
として用いて疎水性単量体を重合させた後、遠心分離に
より分離した重合体粒子を充分に精製した後、重合体粒
子について電導度滴定を行うと粒子表面にかなりの量の
カルボン酸が検出され、疎水性重合体粒子表面はかなり
の親水性表面になってしまっている。その為に、この粒
子を例えば電子写真方式のトナー用粒子に応用した場
合、粒子表面の親水性の為に帯電量が減少し、得られる
画像は薄いものとなってしまう。
Moreover, in recent years, a dispersion polymer (Dispersion Polymerzatio)
n. For example, see CAN.J.CHEM.vol.63,209-216 (1985))
Has been proposed to produce relatively mono-separated large-sized polymer fine particles. Generally, in the dispersion polymerization method,
A solvent as a dispersion medium, a water-soluble polymer as a dispersion stabilizer, a monomer, and a polymerization initiator soluble in the solvent are essential components. In the dispersion polymerization method, it is necessary for these mixtures to be a homogeneous solution before the initiation of polymerization. After the mixture is added to the polymerization reactor, the polymerization reactor is heated to a predetermined reaction temperature to start the polymerization reaction. The reaction system within a few minutes after the start of the reaction becomes a heterogeneous system in which a homogeneous transparent state is changed to a cloudy state. That is, precipitation of a particulate polymer occurs. After that, the precipitated polymer particles continue to grow as particles until there is no monomer in the reaction system. Although the mechanism of this dispersion polymerization has not been sufficiently clarified yet, the water-soluble polymer in the system causes hydrogen abstraction by radicals derived from the polymerization initiator generated by heat, It is considered that a polymer is precipitated by causing a graft reaction with. Therefore, the obtained particle surface is covered with the used dispersion stabilizer, and the particle surface becomes a hydrophilic surface. For example, after polymerizing a hydrophobic monomer using polyacrylic acid as a water-soluble polymer, sufficiently separating the polymer particles separated by centrifugation, and conducting conductivity titration on the polymer particles A considerable amount of carboxylic acid was detected on the surface, and the surface of the hydrophobic polymer particles became a considerable hydrophilic surface. Therefore, when the particles are applied to, for example, electrophotographic toner particles, the charge amount decreases due to the hydrophilicity of the particle surface, and the obtained image becomes thin.

(発明が解決しようとする課題) 本発明者等は、分散重合により粒子表面が親水性とな
らない疎水性重合体粒子を得るべく鋭意研究の結果、ポ
リメタクリル酸を分散安定剤として使用して疎水性単量
体を重合させ、得られた重合体粒子を洗浄することによ
り、1μm〜20μmの粒子径を持ち、かつ単分散粒子径
分布(重量平均粒子径/数平均粒子径<1.2をいう)を
有する疎水性重合体粒子が得られることを見出し、この
知見にもとづいて本発明を完成するに到った。
(Problems to be Solved by the Invention) The inventors of the present invention have earnestly studied to obtain a hydrophobic polymer particle in which the surface of the particle is not hydrophilic by dispersion polymerization, and as a result, polymethacrylic acid was used as a dispersion stabilizer. Having a particle size of 1 μm to 20 μm and a monodisperse particle size distribution (weight average particle size / number average particle size <1.2) by polymerizing a polymerizable monomer and washing the obtained polymer particles. It was found that a hydrophobic polymer particle having the above can be obtained, and the present invention has been completed based on this finding.

(課題を解決するための手段) かくして本発明によれば、疎水性単量及び全単量体の
1〜40重量%のポリメタクリル酸を、これらを溶解し、
得られる重合体を溶解しない溶媒に溶解し、該溶媒に可
溶なラジカル開始剤を用いて重合を行い粒子状の重合体
を生成せしめ、分離した前記重合体粒子をポリメタクリ
ル酸を溶解し、該重合体を溶解しない溶媒で洗浄するこ
とを特徴とする1〜20μmの粒子径を有し、尚且つ粒子
径の単分散な重合体粒子の製造方法が提供される。
(Means for Solving the Problems) Thus, according to the present invention, a hydrophobic monomer and polymethacrylic acid of 1 to 40 wt% of all monomers are dissolved in these,
The resulting polymer is dissolved in a solvent that does not dissolve, polymerization is carried out using a radical initiator soluble in the solvent to produce a particulate polymer, and the separated polymer particles are dissolved in polymethacrylic acid, A method for producing polymer particles having a particle size of 1 to 20 μm and having a monodispersed particle size is provided, which comprises washing with a solvent that does not dissolve the polymer.

本発明で使用される疎水性単量体とは、水に対する溶
解度が1重量%未満の単量体を意味し、スチレン、α−
メチルスチレン、p−メチルスチレン、クロルメチルス
チレン、ハロゲン化スチレン、シビニルベンゼン等の芳
香族ビニル単量体、メチル(メタ)アクリレート、エチ
ル(メタ)アクリレート、ブチル(メタ)アクリレー
ト、2−エチルヘキシル(メタ)アクリレート、ラウリ
ル(メタ)アクリレート、ステアリル(メタ)アクリレ
ート、エチレングリコールジ(メタ)アクリレート等の
(メタ)アクリル酸エステル、ブタジエン、イソプレン
等の共役ジオレフィン類等は例示される。また、ビニル
ピリジン、クリシジル(メタ)アクリレート等も使用す
ることができる。これらの単量体は生成重合体が室温以
上のガラス転移温度となる様に単独であるいは組み合わ
せて使用される。
The hydrophobic monomer used in the present invention means a monomer having a solubility in water of less than 1% by weight, such as styrene and α-.
Aromatic vinyl monomers such as methylstyrene, p-methylstyrene, chloromethylstyrene, halogenated styrene, and sivinylbenzene, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl ( Examples are (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, (meth) acrylic acid ester such as ethylene glycol di (meth) acrylate, and conjugated diolefins such as butadiene and isoprene. Moreover, vinyl pyridine, chrysidyl (meth) acrylate, etc. can also be used. These monomers are used alone or in combination so that the resulting polymer has a glass transition temperature of room temperature or higher.

本発明で使用される有機溶媒としては、用いられる各
重合成分を溶解して、得られて重合体粒子を溶解しない
溶媒が用いられる。このような溶媒としては、メチルア
ルコール、エチルアルコール、プロピルアルコール類、
ブチルアルコール類等の低級アルコール類、アセトン、
メチルエチルケトン等のケトン類、ピリジン、ピロー
ル、テロラヒドロフラン等のヘテロ環状化合物、n−ヘ
キサン、シクロヘキサン等の炭化水素類、ベンゼン、ト
ルエン等の芳香族炭化水素類、塩化メチレン、クロロホ
ルム等のハロゲン化炭化水素類を例示することができ
る。これらの有機溶媒は、単独、あるいは、2種以上混
合して使用することができる。また、場合により、水を
混合することもできる。好ましくは低級アルコール類で
ある。
As the organic solvent used in the present invention, a solvent that dissolves each of the polymerization components used and does not dissolve the polymer particles obtained is used. Such solvents include methyl alcohol, ethyl alcohol, propyl alcohols,
Lower alcohols such as butyl alcohol, acetone,
Ketones such as methyl ethyl ketone, heterocyclic compounds such as pyridine, pyrrole and terrahydrofuran, hydrocarbons such as n-hexane and cyclohexane, aromatic hydrocarbons such as benzene and toluene, halogenated carbonization such as methylene chloride and chloroform. Hydrogen can be illustrated. These organic solvents can be used alone or in combination of two or more. In addition, water may be optionally mixed. Lower alcohols are preferred.

本発明で使用される重合開始剤としては、使用される
溶媒に可溶の通常のラジカル重合開始剤が使用される。
通常、過酸化ベンゾイル等の過酸化物あるいはアゾビス
イソブチロニトリル等のアゾ系開始剤等が使用される
が、これらに限定されるものではない。
As the polymerization initiator used in the present invention, a usual radical polymerization initiator soluble in the solvent used is used.
Usually, a peroxide such as benzoyl peroxide or an azo initiator such as azobisisobutyronitrile is used, but the invention is not limited thereto.

本発明においては重合反応温度は、使用される重合開
始剤の種類によって異なるが通常20℃〜100℃の範囲で
ある。
In the present invention, the polymerization reaction temperature varies depending on the kind of the polymerization initiator used, but it is usually in the range of 20 ° C to 100 ° C.

本発明の最大の特徴は、分散安定剤である水溶性高分
子としてポリメタクリル酸を使用して分散重合を行う点
にある。ポリメタクリル酸は、疎水性単量体を重合系に
加える前にメタクリル酸単量体を先行させて重合させて
得ても、あるいは予め重合されたポリメタクリル酸を該
単量体と同時に加え重合反応を進行させてもよい。本発
明の分散重合においては、重合体粒子発生のメカニズム
は現在のところ不明であるが、前記のメカニズムとは異
なると考えられる。即ち、ポリメタクリル酸中には通常
グラフト点と考えられるα位の水素が存在しない。その
為に、ポリメタクリル酸と疎水性単量体とはグラフト共
重合しておらず、遠心分離等の精製を行うことによりポ
リメタクリル酸と疎水性重合体粒子を分離することがで
き、得られる該重合体粒子表面は容易に親水性表面から
疎水性表面に変化する。
The greatest feature of the present invention is that polymethacrylic acid is used as a water-soluble polymer that is a dispersion stabilizer to carry out dispersion polymerization. Polymethacrylic acid may be obtained by polymerizing a methacrylic acid monomer prior to adding a hydrophobic monomer to the polymerization system, or by adding a prepolymerized polymethacrylic acid at the same time as the polymerization. The reaction may proceed. In the dispersion polymerization of the present invention, the mechanism of generation of polymer particles is currently unknown, but it is considered to be different from the above mechanism. That is, there is no hydrogen at the α-position, which is usually considered as the grafting point, in polymethacrylic acid. Therefore, the polymethacrylic acid and the hydrophobic monomer are not graft-copolymerized, and the polymethacrylic acid and the hydrophobic polymer particles can be separated by performing purification such as centrifugation. The surface of the polymer particles easily changes from a hydrophilic surface to a hydrophobic surface.

重合系中で疎水性単量体の重合に先だってメタクリル
酸単量体を重合させてポリメタクリル酸を生成させる場
合、その重合に要する時間は該単量体の使用量、重合開
始剤の種類およびその使用量あるいは反応温度により異
なるが、通常1時間から24時間である。用いられるメタ
クリル酸の量は、生成ポリメタクリル酸が疎水性単量体
の総量の1〜40重量%となる範囲である。1重量%未満
では、重合中の重合安定性が悪くなり凝固物が多量に発
生してしまう。40重量%を越えると粒子径が小さくなっ
てしまう。好ましは5〜30重量%である。また、ポリメ
タクリル酸を疎水性単量体と同時に重合系に添加する場
合も、ポリメタクリル酸の使用割合は前記と同じであ
る。さらに、両場合ともポリメタクリル酸の重合度は、
ポリメタクリル酸の20重量%水溶液のB型粘度計で測定
した粘土が100〜500,000cpsの範囲であることが単分散
性の重合体粒子(重量平均粒子径/数平均粒子径<1.2
という)を生成するうえで好ましい。より好ましくは、
50,000〜150,000cpsである。
When a methacrylic acid monomer is polymerized to produce polymethacrylic acid prior to the polymerization of a hydrophobic monomer in the polymerization system, the time required for the polymerization depends on the amount of the monomer used, the type of the polymerization initiator and Although it depends on the amount used or the reaction temperature, it is usually 1 to 24 hours. The amount of methacrylic acid used is in the range such that the polymethacrylic acid produced is 1 to 40% by weight of the total amount of hydrophobic monomers. If it is less than 1% by weight, the polymerization stability during polymerization is deteriorated and a large amount of coagulated product is generated. If it exceeds 40% by weight, the particle size becomes small. Preferred is 5 to 30% by weight. Also, when polymethacrylic acid is added to the polymerization system at the same time as the hydrophobic monomer, the usage ratio of polymethacrylic acid is the same as above. Furthermore, in both cases, the degree of polymerization of polymethacrylic acid is
Clay measured with a B-type viscometer of a 20 wt% aqueous solution of polymethacrylic acid is in the range of 100 to 500,000 cps. Monodisperse polymer particles (weight average particle diameter / number average particle diameter <1.2
That is preferable). More preferably,
It is 50,000 to 150,000 cps.

また、本発明では、重合終了後、さらに単量体を必要
に応じラジカル重合開始剤、溶媒を反応系に添加して重
合を再開することができる。この場合、重合で得られた
粒子量に対し150重量%以下の単量体を添加することが
好ましい。それ以上添加すると添加した単量体が新たに
粒子を作り、粒子径の単分散性が損なわれる。より好ま
しくは100重量%以下である。また新たに添加される単
量体は、先に重合された単量体と同じであっても、異な
ってもよく、用いている溶媒に可溶な単量体であれば良
い。
Further, in the present invention, after the completion of the polymerization, a radical polymerization initiator and a solvent may be added to the reaction system, if necessary, to restart the polymerization. In this case, it is preferable to add 150% by weight or less of the monomer based on the amount of particles obtained by the polymerization. If it is added more than that, the added monomer forms new particles and the monodispersity of the particle diameter is impaired. More preferably, it is 100% by weight or less. The newly added monomer may be the same as or different from the previously polymerized monomer, as long as it is soluble in the solvent used.

以上のようにして生成した重合体粒子は反応系より分
離し、ポリメタクリル酸可溶性の溶剤で洗浄、精製す
る。
The polymer particles thus produced are separated from the reaction system, washed with a polymethacrylic acid-soluble solvent and purified.

洗浄は重合体粒子表面のポリメタクリル酸を除去する
為である。使用される溶剤としてはポリメタクリル酸可
溶性の溶剤であれば特に制限されないが、水、アルカリ
水溶液の使用が望ましい。洗浄後、遠心分離、半透膜等
を利用する透析、限外濾過法等通常の微粒子精製法によ
り精製される。ポリメタクリル酸を完全に除去する為に
は洗浄後、好ましくは遠心分離法が良い。また、遠心分
離法にて行う場合、ポリメタクリル酸の水に対する溶解
度を向上させる為、粒子懸濁液にNaOH等の塩基を添加し
アルカリ側にて行うことも可能である。
The washing is to remove polymethacrylic acid on the surface of the polymer particles. The solvent used is not particularly limited as long as it is a polymethacrylic acid-soluble solvent, but it is preferable to use water or an aqueous alkali solution. After washing, it is purified by a usual fine particle purification method such as centrifugal separation, dialysis using a semipermeable membrane, and ultrafiltration. In order to completely remove polymethacrylic acid, it is preferable to use a centrifugal separation method after washing. Further, in the case of performing the centrifugation method, in order to improve the solubility of polymethacrylic acid in water, it is also possible to add a base such as NaOH to the particle suspension and perform it on the alkali side.

(発明の効果) かくして本発明によれば、従来公知の1〜20μmの粒
子径を有し、尚且つ粒子径の単分散な重合体粒子の製造
法に比べ、水溶性高分子、膨潤助剤等の不純物を含むこ
となく、尚且つ、複雑な工程を得ることなく、1μm〜
20μmの粒子径を持ち、単分散粒子径分布を有する重合
体粒子を得ることができる。
(Effect of the invention) Thus, according to the present invention, compared with the conventionally known method for producing polymer particles having a particle size of 1 to 20 μm and having a particle size of monodisperse, a water-soluble polymer and a swelling aid 1 μm-without including impurities such as
Polymer particles having a particle size of 20 μm and a monodisperse particle size distribution can be obtained.

(実施例) 以下に実施例を挙げて本発明をさらに具体的に説明す
る。尚、実施例中の部及び%は、特に断りのないかぎり
重量基準である。
(Example) Hereinafter, the present invention will be described more specifically with reference to Examples. The parts and percentages in the examples are on a weight basis unless otherwise specified.

実施例1 攪拌翼、冷却コンデンサー、窒素ガス導入管、温度計
を付した2lの反応器を予め窒素置換しておく。この反応
容器中にエタノール840g、蒸留水360g、メタクリル酸1
3.3g、2,2−アソビスイソブチロニトリル0.95gを加え均
一系になるまで攪拌を加えた。その後、窒素にてバブリ
ングを行った後、70℃に反応器を加温して反応を開始さ
せ、そのまま6時間保った。その後、スチレン66.7gを
反応容器に添加して、更に16時間反応を続けた。重合転
化率は重量法で98.3%であった。その後、反応器を室温
まで冷却した。得られた懸濁液を遠心分離器にかけて重
合体粒子を沈澱させ、デカンテーションを行って重合体
粒子を回収した。重合体粒子を蒸留水中に投入し充分に
攪拌した後遠心分離器にかけた。この操作を2回行い、
重合粒子の洗浄、精製をおこなった。得られた重合体粒
子はコールターマルチサイザー(コールター社製)にて
測定した粒子径が、重量平均2.05μm、数平均2.01μm
の単分散の粒子径分布を持つ球状粒子であった。又、得
られた重合体粒子を蒸留水中に懸濁させた液50g(固形
分2g)に0.1N・NaOH溶液をpH12になるまで加え6分間攪
拌した後、0.1N・HCl溶液を0.5cm3づつ30秒毎に添加し
て電導度滴定を行い(京都電子製CM−117電導度計)、
粒子表面の酸量を測定したが粒子表面には酸は検出され
ず、粒子表面はポリスチレンであり疎水性表面が維持さ
れていることがわかった。
Example 1 A 2 liter reactor equipped with a stirring blade, a cooling condenser, a nitrogen gas introducing tube, and a thermometer was previously replaced with nitrogen. In this reaction vessel, ethanol 840g, distilled water 360g, methacrylic acid 1
3.3 g and 2,5-isobisisobutyronitrile (0.95 g) were added, and the mixture was stirred until a homogeneous system was obtained. Then, after bubbling with nitrogen, the reactor was heated to 70 ° C. to start the reaction and kept as it was for 6 hours. Then, 66.7 g of styrene was added to the reaction vessel, and the reaction was continued for another 16 hours. The polymerization conversion rate was 98.3% by gravimetric method. Then the reactor was cooled to room temperature. The obtained suspension was centrifuged to precipitate polymer particles, and decantation was performed to collect the polymer particles. The polymer particles were put into distilled water, sufficiently stirred, and then centrifuged. Do this twice,
The polymer particles were washed and purified. The obtained polymer particles have a particle diameter measured by Coulter Multisizer (manufactured by Coulter Co.) of 2.05 μm in weight average and 2.01 μm in number average.
The particles were spherical particles having a monodisperse particle size distribution of Also, 0.1N NaOH solution was added to 50 g of the obtained polymer particles suspended in distilled water (solid content 2 g) until the pH reached 12, and the mixture was stirred for 6 minutes, and then 0.1 N HCl solution was added to 0.5 cm 3 Conduct conductivity titration by adding every 30 seconds (Kyoto Denshi CM-117 conductivity meter),
The amount of acid on the particle surface was measured, but no acid was detected on the particle surface, and it was found that the particle surface was polystyrene and the hydrophobic surface was maintained.

比較例1 実施例1と同じ反応容器中にエタノール840g、蒸留水
360g、アクリル酸13.3g、2,2−アソビスイソブチロニト
リル0.95gを加え、均一系になるまで攪拌を加えた。そ
の後、窒素にてバブリングを行った後、70℃に反応器を
加温して反応を開始させ、そのまま6時間保った。その
後、スチレン66.7gを反応容器に添加して、更に16時間
反応を続けた。重合転化率は重量法で98.3%であった。
その後、反応器を室温まで冷却した。得られた懸濁液を
遠心分離器にかけて重合体粒子を沈澱させ、デカンテー
ションにより重合体粒子を回収した。重合体粒子を蒸留
水中に投入して充分攪拌した後遠心分離器にかけた。こ
の操作を2回行い、重合粒子の精製をおこなった。得ら
れた重合体粒子はコールターマルチサイザー(コールタ
ー社製)にて測定した粒子径が重量平均1.87μm、数平
均1.80μmの単分散の粒子径分布を持つ球状粒子であっ
た。又、得られた重合体粒子を蒸留水中に懸濁させた液
50g(固形分2g)に0.1N・NaOH溶液をpH12になるまで加
え6分間攪拌した後、0.1N・HCl溶液を0.5cm3づつ30秒
毎に添加して電導度滴定を行い(京都電子製CM−117電
導度計)、粒子表面の酸量を測定したが、粒子表面の酸
は1.18m当量/重合体gであった。従って、アクリル酸
を分散安定剤として使用した場合には、疎水性のポリス
チレン粒子を作製しても粒子表面はかなりの親水性であ
ることが確認された。
Comparative Example 1 In the same reaction vessel as in Example 1, 840 g of ethanol and distilled water
360 g, acrylic acid 13.3 g, and 2,2-isobisisobutyronitrile 0.95 g were added, and the mixture was stirred until it became a homogeneous system. Then, after bubbling with nitrogen, the reactor was heated to 70 ° C. to start the reaction and kept as it was for 6 hours. Then, 66.7 g of styrene was added to the reaction vessel, and the reaction was continued for another 16 hours. The polymerization conversion rate was 98.3% by gravimetric method.
Then the reactor was cooled to room temperature. The obtained suspension was centrifuged to precipitate polymer particles, and the polymer particles were recovered by decantation. The polymer particles were put into distilled water, sufficiently stirred, and then centrifuged. This operation was performed twice to purify the polymer particles. The obtained polymer particles were spherical particles having a monodisperse particle size distribution with a weight average of 1.87 μm and a number average of 1.80 μm measured with a Coulter Multisizer (manufactured by Coulter). Also, a liquid obtained by suspending the obtained polymer particles in distilled water.
To 50g (solid content 2g), add 0.1N NaOH solution to pH 12 and stir for 6 minutes, then add 0.1N HCl solution 0.5cm 3 every 30 seconds to conduct conductivity titration (Kyoto Denshi). (CM-117 conductivity meter), the amount of acid on the surface of the particle was measured, and the acid on the surface of the particle was 1.18 meq / g of polymer. Therefore, when acrylic acid was used as the dispersion stabilizer, it was confirmed that the surface of the particles was considerably hydrophilic even when hydrophobic polystyrene particles were prepared.

実施例2 実施例1の反応容器中にエタノール1140g、ポリメタ
クリル酸水溶液(日本純薬製AC30H、固形分20%)30.0
g、スチレン66.7g、2,2−アゾビスイソブチロニトリル
0.95gを加え、均一系になるまで攪拌を加えた。その
後、窒素にてバブリングを行った後、70℃に反応器を加
温し反応を開始させ、そのまま16時間反応を続けた。重
合転化率は96.2%であった。その後、反応器を室温まで
冷却し精製重合体粒子を得た。重合体粒子は粒子径が、
重量平均5.54μm、数平均5.35μmの単分散の粒子径分
布を持つ球状粒子であった。また、電導度滴定により粒
子表面の酸量を測定したが、粒子表面には酸は検出され
ず、粒子表面は疎水性ポリスチレンであることがわかっ
た。
Example 2 In the reaction vessel of Example 1, ethanol 1140 g, polymethacrylic acid aqueous solution (AC30H manufactured by Nippon Pure Chemical Co., solid content 20%) 30.0
g, styrene 66.7g, 2,2-azobisisobutyronitrile
0.95 g was added, and the mixture was stirred until it became a homogeneous system. Then, after bubbling with nitrogen, the reactor was heated to 70 ° C. to start the reaction, and the reaction was continued for 16 hours. The polymerization conversion rate was 96.2%. Then, the reactor was cooled to room temperature to obtain purified polymer particles. Polymer particles have a particle size
The spherical particles had a monodisperse particle size distribution with a weight average of 5.54 μm and a number average of 5.35 μm. Further, the amount of acid on the particle surface was measured by conductivity titration, but no acid was detected on the particle surface, and it was found that the particle surface was hydrophobic polystyrene.

実施例3 実施例2で重合が終了した系に、更にスチレンを66.7
g、2,2−アゾビスイソブチロニトリル0.95gを加えて、1
0時間重合を続けた。重合転化率は97.8%であった。実
施例と同じ操作により精製重合体粒子を得た。重合体粒
子は、粒子径が重量平均6.95μm、数平均6.72μmの単
分散の粒子径分布を持つ球状粒子であった。また、電導
度滴定により粒子表面の酸量を測定したが、粒子表面に
は酸は検出されず、粒子表面は疎水性のポリスチレンで
あることがわかった。
Example 3 The system in which the polymerization was completed in Example 2 was further supplemented with 66.7 styrene.
g, 2,2-azobisisobutyronitrile 0.95 g, 1
Polymerization was continued for 0 hours. The polymerization conversion rate was 97.8%. Purified polymer particles were obtained by the same procedure as in the example. The polymer particles were spherical particles having a monodisperse particle size distribution with a weight average of 6.95 μm and a number average of 6.72 μm. Further, the amount of acid on the particle surface was measured by conductivity titration, but no acid was detected on the particle surface, and it was found that the particle surface was hydrophobic polystyrene.

実施例4 実施例2で重合が終了した系に、更にスチレンを10.0
g、ジビニルベンゼン(和光純薬製、純度55%)10.0g、
2,2−アゾビスイソブチロニトリル0.50gを加えて10時間
重合反応を続けた。重合転化率は94.8%であった。実施
例1と同様にして得た精製重合体粒子は、粒子径が重量
平均6.02μm、数平均5.78μmの単分散の粒子径分布を
持つ球状粒子であった。また、電導度滴定により粒子表
面の酸量を測定したが、粒子表面には酸は検出されず、
粒子表面は疎水性ポリスチレンであることがわかった。
またの得られた粒子をトルエン溶媒中に滴下したとこ
ろ、溶液が白く濁り、粒子がトルエン溶媒に不溶である
ことから、粒子中に架橋構造が導入されたことが確認さ
れた。
Example 4 The system in which the polymerization was completed in Example 2 was further supplemented with styrene at 10.0.
g, divinylbenzene (Wako Pure Chemical Industries, purity 55%) 10.0 g,
0.50 g of 2,2-azobisisobutyronitrile was added and the polymerization reaction was continued for 10 hours. The polymerization conversion rate was 94.8%. The purified polymer particles obtained in the same manner as in Example 1 were spherical particles having a monodisperse particle size distribution with a weight average of 6.02 μm and a number average of 5.78 μm. Also, the amount of acid on the particle surface was measured by conductivity titration, but no acid was detected on the particle surface,
The particle surface was found to be hydrophobic polystyrene.
When the obtained particles were dropped into a toluene solvent, the solution became cloudy and the particles were insoluble in the toluene solvent, which confirmed that a crosslinked structure was introduced into the particles.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】疎水性単量体及び全単量体の1〜40重量%
のポリメタクリル酸を、これらを溶解し、得られる重合
体を溶解しない溶媒に溶解し、該溶媒に可溶なラジカル
開始剤を用いて重合を行い粒子状の重合体を生成せし
め、分離した前記重合体粒子をポリメタクリル酸を溶解
し、該重合体を溶解しない溶媒で洗浄することを特徴と
する1〜20μmの粒子径を有し、且つ単分散粒子径分布
を有する重合体粒子の製造方法。
1. A hydrophobic monomer and 1 to 40% by weight of all monomers.
The polymethacrylic acid is dissolved in a solvent that does not dissolve the resulting polymer, and polymerization is performed using a radical initiator that is soluble in the solvent to produce a particulate polymer, which is then separated. A method for producing polymer particles having a particle size of 1 to 20 μm and having a monodisperse particle size distribution, characterized in that the polymer particles are dissolved in polymethacrylic acid and washed with a solvent that does not dissolve the polymer. .
JP63077911A 1988-03-30 1988-03-30 Method for producing polymer particles Expired - Fee Related JP2519083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63077911A JP2519083B2 (en) 1988-03-30 1988-03-30 Method for producing polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63077911A JP2519083B2 (en) 1988-03-30 1988-03-30 Method for producing polymer particles

Publications (2)

Publication Number Publication Date
JPH01249806A JPH01249806A (en) 1989-10-05
JP2519083B2 true JP2519083B2 (en) 1996-07-31

Family

ID=13647259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63077911A Expired - Fee Related JP2519083B2 (en) 1988-03-30 1988-03-30 Method for producing polymer particles

Country Status (1)

Country Link
JP (1) JP2519083B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2963949B2 (en) * 1990-10-08 1999-10-18 東洋紡績株式会社 Oriented polyester film
JP2679453B2 (en) * 1991-05-28 1997-11-19 日本ゼオン株式会社 Method for producing polymer fine particles

Also Published As

Publication number Publication date
JPH01249806A (en) 1989-10-05

Similar Documents

Publication Publication Date Title
CN101434673A (en) Preparation of monodisperse porous polymer microsphere
GB2161170A (en) Production of polymer particles
JPH07100746B2 (en) Method for producing uniform macroporous polymer beads
JP5554111B2 (en) Method for producing monodisperse polymer particles
US4908392A (en) Process for producing crosslinked polymer particles
JP2002542319A (en) Method for producing polymer particles
KR100429243B1 (en) Process for preparing high purity vinylpyrrolidone polymer
JP2519083B2 (en) Method for producing polymer particles
JP3137752B2 (en) Method for producing resin for toner
JP2000191818A (en) Preparation of porous particulate
JP2009114271A (en) Porous resin particles having hydroxy group or primary amino group and method for producing the same
EP0326383B1 (en) Process for preparation of monodisperse polymer particles having increased particle size
KR100257293B1 (en) Method for manufacturing porous polymer particle
JP2679453B2 (en) Method for producing polymer fine particles
JPH011702A (en) Method for producing polymer particles
JPH0692443B2 (en) Method for producing polymer particles
JPH09188706A (en) Polymerization of acrylic monomer in aqueous suspension
JPH0689082B2 (en) Method for producing monodisperse polymer
JPH03168204A (en) Production of porous crosslinked copolymer
JP2716928B2 (en) Method for producing high molecular weight styrenic polymer particles
JP5121572B2 (en) Method for producing porous polymer particles
US5244940A (en) Process for agglomerating a latex, agglomerated latex obtained and its application to the modification of thermoplastic matrices to make them impact-resistant
KR20140051597A (en) Dispersion stabilizer for suspension polymerization, preparation method thereof, fabrication method of thermal expansion micro-particle and recovery method of the dispersion stabilizer
JPS6044321B2 (en) Suspension polymerization method
JP2549940B2 (en) Method for producing highly crosslinked polymer particles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees