[go: up one dir, main page]

JP2517071B2 - Cooling device and its control method - Google Patents

Cooling device and its control method

Info

Publication number
JP2517071B2
JP2517071B2 JP63204450A JP20445088A JP2517071B2 JP 2517071 B2 JP2517071 B2 JP 2517071B2 JP 63204450 A JP63204450 A JP 63204450A JP 20445088 A JP20445088 A JP 20445088A JP 2517071 B2 JP2517071 B2 JP 2517071B2
Authority
JP
Japan
Prior art keywords
condenser
path
refrigerant
compressor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63204450A
Other languages
Japanese (ja)
Other versions
JPH0252955A (en
Inventor
正喜 中尾
一夫 大島
常雄 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63204450A priority Critical patent/JP2517071B2/en
Publication of JPH0252955A publication Critical patent/JPH0252955A/en
Application granted granted Critical
Publication of JP2517071B2 publication Critical patent/JP2517071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、年間を通して冷却を行う冷却装置およびそ
の制御方法に関するものであり、特に低外気温時の制御
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for cooling all year round and a control method therefor, and more particularly to a control method for low outside air temperature.

(従来の技術) 基本的な冷却装置の構成を第6図に示す。冷凍サイク
ルは、主に、圧縮機1、凝縮器2、開度可変膨張弁3、
蒸発器4の四つの要素により構成されている。空冷式空
調機では、室内に蒸発器を、室外に凝縮器を設置する。
冷凍サイクル内には冷媒と呼ばれる低沸点媒体が封入さ
れ、この冷媒が各構成要素間を循環することにより、室
内の熱を室外に放出することができる。
(Prior Art) The configuration of a basic cooling device is shown in FIG. The refrigeration cycle mainly includes a compressor 1, a condenser 2, a variable opening degree expansion valve 3,
It is composed of four elements of the evaporator 4. In an air-cooled air conditioner, an evaporator is installed indoors and a condenser is installed outdoors.
A low-boiling-point medium called a refrigerant is enclosed in the refrigeration cycle, and the refrigerant circulates between the components, whereby heat inside the room can be released to the outside.

次に、この冷凍サイクルの作用を説明する。まず、蒸
発器4において低圧の冷媒液が室内の熱を奪って蒸発
し、ガスになる。蒸発器で気化した冷媒ガスは、圧縮機
1に送られ、圧縮されて高温高圧のガスとなり、凝縮器
2に送られる。凝縮器では、蒸発器とは逆に外気に熱を
放出し、高圧の液となる。この高圧の液が開度可変膨張
弁3に送られ、膨張して低温低圧の液となり、これが蒸
発器に送られ、以下このサイクルを繰り返す。すなわ
ち、圧縮機の作用により、室温より飽和温度の低いガス
冷媒を外気より飽和温度の高いガスに圧縮することによ
り、室内の熱を室外に放出することができる。
Next, the operation of this refrigeration cycle will be described. First, in the evaporator 4, the low-pressure refrigerant liquid takes heat in the room to evaporate and become gas. The refrigerant gas vaporized in the evaporator is sent to the compressor 1, is compressed into high temperature and high pressure gas, and is sent to the condenser 2. On the contrary to the evaporator, the condenser releases heat to the outside air and becomes a high-pressure liquid. This high-pressure liquid is sent to the variable opening expansion valve 3, expands and becomes a low-temperature low-pressure liquid, which is sent to the evaporator, and this cycle is repeated thereafter. That is, by the action of the compressor, the heat inside the room can be released outside by compressing the gas refrigerant whose saturation temperature is lower than room temperature into the gas whose saturation temperature is higher than the outside air.

しかし、第6図に示した冷却装置を外気温が低いとき
でもそのまま外気温が高い時と同じ様に運転すると凝縮
器での熱交換性能が高まり、凝縮器内の冷媒圧力である
凝縮圧力が低くなる。凝縮圧力が低くなると蒸発器内の
冷媒圧力である蒸発圧力もそれに伴い低下するため、蒸
発器に霜が付いたり、過除湿運転状態になるという問題
があった。また、凝縮圧力が低くなっても蒸発圧力が低
下しないように圧縮機での圧縮仕事量を落とすと、今度
は、冷凍サイクル中を循環する冷媒流量が減少してしま
い、冷却能力が下がるか、あるいは過熱度が高くなると
いう問題があった。
However, when the cooling device shown in FIG. 6 is operated in the same way as when the outside air temperature is high as it is when the outside air temperature is high, the heat exchange performance in the condenser is improved and the condensation pressure, which is the refrigerant pressure in the condenser, is increased. Get lower. When the condensing pressure becomes low, the evaporation pressure, which is the refrigerant pressure in the evaporator, also decreases accordingly, so that there are problems that the evaporator is frosted or is in an over-dehumidifying operation state. Also, if the compression work in the compressor is reduced so that the evaporation pressure does not decrease even if the condensation pressure becomes low, this time, the flow rate of the refrigerant circulating in the refrigeration cycle will decrease, and the cooling capacity will decrease. Alternatively, there is a problem that the degree of superheat becomes high.

これを解決するために、従来は、第7図のように圧縮
機から膨張弁に至る経路にバイパス経路236を設け、か
つ、バイパス経路と凝縮器を経由する経路の合流点に凝
縮圧力調節弁226を設けていた。この凝縮圧力調節弁
は、内部に一定圧力の気体を封入した三方弁であり、凝
縮圧力が低下した場合には自動的に、バイパス側の経路
の開度を高めて、凝縮圧力を外気温が高い時と同じぐら
いの圧力まで上げることにより、蒸発圧力が下がらない
ようにするとともに、冷却能力が下がるのを抑えてい
た。
In order to solve this, conventionally, as shown in FIG. 7, a bypass path 236 is provided in the path from the compressor to the expansion valve, and the condensing pressure control valve is provided at the confluence of the path passing through the bypass path and the condenser. There was a 226. This condensing pressure control valve is a three-way valve that encloses a gas with a constant pressure inside.When the condensing pressure decreases, the opening degree of the bypass side path is automatically increased so that the condensing pressure changes to the ambient temperature. By raising the pressure to the same level as when it was high, the evaporation pressure was kept from falling and the cooling capacity was kept from falling.

しかし、この方法は、外気温が低い時に、凝縮圧力と
蒸発圧力との圧力差が小さいため少ない圧縮動力で冷却
装置を運転できる機会を逃し、凝縮圧力を高くして蒸発
圧力との圧力差を高めて、圧縮動力を大きくして運転し
ており、経済的な運転方法とは言えない。
However, this method misses the opportunity to operate the cooling device with less compression power because the pressure difference between the condensation pressure and the evaporation pressure is small when the outside air temperature is low, and the condensation pressure is increased to reduce the pressure difference from the evaporation pressure. It is operated at a higher pressure and a higher compression power, which is not an economical method of operation.

また、第6図に示した冷却装置を外気温度が低い時に
運転する上での問題点を、冷媒循環量を確保するという
観点から解決すると、開度可変膨張弁3の全開度の開度
を大きくする方法がある。膨張弁の開度を大きくする方
法としては膨張弁を複数個並列に並べる方法や所定能力
より大きい膨張弁を取り付ける(例えば冷却能力5[R
T]の空調機に冷却能力10[RT]用の膨張弁を取り付け
る)方法がある。ここで、[RT]は冷却装置の冷却能力
を示す単位で、1[RT]=3,320[kcal/h]である。膨
張弁の開度を大きくすることにより、凝縮圧力が低い状
態が維持され、圧縮機での圧縮動力が少ない運転ができ
る。
Further, when the problem in operating the cooling device shown in FIG. 6 when the outside air temperature is low is solved from the viewpoint of securing the refrigerant circulation amount, the opening degree of all the opening degrees of the variable opening degree expansion valve 3 is changed. There is a way to make it bigger. As a method of increasing the opening degree of the expansion valves, a method of arranging a plurality of expansion valves in parallel or an expansion valve having a larger capacity than a predetermined capacity is attached (for example, cooling capacity 5
There is a method to attach an expansion valve for cooling capacity of 10 [RT] to the air conditioner of [T]. Here, [RT] is a unit indicating the cooling capacity of the cooling device, and 1 [RT] = 3,320 [kcal / h]. By increasing the opening degree of the expansion valve, the state where the condensing pressure is low is maintained, and the operation with less compression power in the compressor can be performed.

しかし、この運転方法も膨張弁の開度には限りがあ
り、膨張弁の数を増やしすぎる(3個あるいは4個取り
付ける)、あるいは能力のあまりにも大きい膨張弁(冷
却能力5[RT]の空調機に15[RT]用の膨張弁を取り付
ける)を使うと、過熱度制御が精度よく行えないためこ
の方法にも限度があるため、外気温が下がってきた場合
には、凝縮圧力が下がり過ぎて膨張弁を全開にしても冷
媒循環量が減少し過熱度が高くなってしまう。
However, this operating method also has a limit in the opening of the expansion valves, and the number of expansion valves is increased too much (3 or 4 are installed), or the expansion valves with too large capacity (cooling capacity 5 [RT] air conditioning) are used. If an expansion valve for 15 [RT] is attached to the machine), the superheat control cannot be performed accurately, and this method also has a limit. Therefore, when the outside temperature drops, the condensation pressure drops too much. Therefore, even if the expansion valve is fully opened, the refrigerant circulation amount decreases and the degree of superheat increases.

(発明が解決しようとする課題) 本発明は、従来技術では外気温が低い時でも外気温が
高い時と同程度に圧縮動力を大きくして空調機を運転す
ることの不効率さに鑑みてなされたもので、圧縮動力の
少ない経済的な冷却装置とその制御方法を提供すること
を目的とする。
(Problems to be Solved by the Invention) The present invention has been made in view of the inefficiency of operating the air conditioner by increasing the compression power to the same extent as when the outside temperature is high in the prior art. It is an object of the present invention to provide an economical cooling device with a small compression power and a control method thereof.

(課題を解決するための手段と作用) 本発明は、年間を通して冷却を行う冷却装置に関する
もので、圧縮動力の少ない経済的な冷却装置の運転を可
能にするために、圧縮機から凝縮器を経て膨張弁に至る
経路にバイパスを設け凝縮器を経由する経路の冷媒流量
とバイパス経路の流量との比を制御する手段を設定する
か、凝縮器の能力を可変とするため凝縮器に送風する室
外側送風機の風量を可変とする手段を設ける。
(Means and Actions for Solving the Problems) The present invention relates to a cooling device that cools year-round, and in order to enable operation of an economical cooling device with low compression power, a compressor is removed from a compressor. A bypass is provided in the path leading to the expansion valve to set a means for controlling the ratio of the refrigerant flow rate of the path passing through the condenser and the flow rate of the bypass path, or air is blown to the condenser to make the capacity of the condenser variable. A means for varying the air volume of the outdoor blower is provided.

運転にあたっては、蒸発器出口での冷媒の過熱度を測
定しこれに応じて開度可変膨張弁を調整することを基本
とする。しかし、開度可変膨張弁を全開にしても凝縮圧
力と蒸発圧力の圧力差が小さくて冷凍サイクル中を循環
する冷媒流量が少なく過熱度が高くなる場合に、設定過
熱度と測定過熱度の差に応じて前記手段により凝縮圧力
を調節して、過熱度を制御する。
In operation, it is basically necessary to measure the degree of superheat of the refrigerant at the outlet of the evaporator and adjust the opening variable expansion valve accordingly. However, even when the variable opening expansion valve is fully opened, when the pressure difference between the condensation pressure and the evaporation pressure is small and the refrigerant flow rate in the refrigeration cycle is small and the superheat degree is high, the difference between the set superheat degree and the measured superheat degree is small. According to the above, the condensing pressure is adjusted by the means to control the degree of superheat.

また、凝縮圧力が低下して、圧縮機の吸入圧力と吐出
圧力との比である圧縮比が圧縮機のもつ許容最低圧縮比
より小さくなった場合に、凝縮圧力を圧縮機の許容最低
圧縮比以上となる最低の圧力まで高めることを特徴とす
る。
When the condensation pressure decreases and the compression ratio, which is the ratio of the suction pressure to the discharge pressure of the compressor, becomes smaller than the minimum allowable compression ratio of the compressor, the condensation pressure is set to the minimum allowable compression ratio of the compressor. The feature is that the pressure is increased to the minimum pressure above.

従来の技術とは、外気温が低い時に凝縮圧力が低いこ
とを有効に利用し、圧縮動力の少ない経済的な運転がで
きる点が異なる。
It differs from the conventional technology in that the low condensing pressure is effectively used when the outside temperature is low, and economical operation with less compression power can be performed.

(実施例) 以下図面を参照して本発明の実施例を詳細に説明す
る。
Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の装置の実施例を示す。この冷却装
置は、回転数制御手段30を有する圧縮機21と、凝縮器22
と前記凝縮器に送風する室外側送風機27と、蒸発器24と
前記蒸発器に送風する室内側送風機28と、前記圧縮機21
から吐出される冷媒を前記凝縮器22を経由して導く経路
と、前記凝縮器22をバイパスして導くバイパス経路36
と、両経路の流量比を調整する手段としての、合流点と
凝縮器22の間に設けられた第1の調節弁41と、バイパス
経路36に設けられた第2の調節弁42と、合流点からの冷
媒を前記蒸発器に導く経路と、前記流量比を調節する手
段と前記蒸発器24の中間に設けた開度可変膨張弁23と、
前記蒸発器から流出される冷媒を前記圧縮機にもどす経
路とで構成された冷媒装置において、前記圧縮機21の吐
出圧力と、吸入圧力の比を検出する圧縮比センサ34と、
前記圧縮機21の吸入口での過熱度を検出する過熱度セン
サ33と、前記圧縮比センサ34並びに、前記過熱度センサ
33からの二つの信号を演算処理して、前記開度可変膨張
弁23並びに前記流量比を調節する手段に制御信号を送出
する制御装置部35とから構成される。32は室温センサで
ある。
FIG. 1 shows an embodiment of the device according to the invention. This cooling device includes a compressor 21 having a rotation speed control means 30, and a condenser 22.
And an outdoor fan 27 that blows air to the condenser, an evaporator 24, an indoor fan 28 that blows air to the evaporator, and the compressor 21.
A path for guiding the refrigerant discharged from the condenser 22 via the condenser 22, and a bypass path 36 for guiding the refrigerant by bypassing the condenser 22.
And a first control valve 41 provided between the confluence point and the condenser 22 and a second control valve 42 provided in the bypass path 36 as a means for adjusting the flow rate ratio of both paths. A path for guiding the refrigerant from the point to the evaporator, a means for adjusting the flow rate ratio, and an opening degree variable expansion valve 23 provided in the middle of the evaporator 24,
In a refrigerant device configured with a path for returning the refrigerant flowing out from the evaporator to the compressor, a discharge pressure of the compressor 21, and a compression ratio sensor 34 for detecting a suction pressure ratio,
A superheat sensor 33 for detecting the superheat at the suction port of the compressor 21, the compression ratio sensor 34, and the superheat sensor.
It is composed of a control device section 35 which arithmetically processes two signals from 33 and sends a control signal to the variable opening expansion valve 23 and means for adjusting the flow rate ratio. 32 is a room temperature sensor.

第1図の実施例では、バイパス経路は凝縮器22の入口
よりとっている。第2図は、バイパス経路を凝縮器の途
中から引き込んだ例である。第3図は、バイパス経路部
分が第2の凝縮器55として熱交換を行っている例であ
る。第4図は、凝縮器として熱交換しているバイパス路
が多経路ある例であり、調節弁を各経路に持っている。
第1図から第4図の構成は、冷却装置の規模、設置条件
等により任意に選択することができる。
In the embodiment of FIG. 1, the bypass path is taken from the inlet of the condenser 22. FIG. 2 is an example in which the bypass path is pulled in from the middle of the condenser. FIG. 3 is an example in which the bypass path portion performs heat exchange as the second condenser 55. FIG. 4 shows an example in which there are multiple bypass paths for heat exchange as a condenser, and each control path has a control valve.
The configurations shown in FIGS. 1 to 4 can be arbitrarily selected depending on the scale of the cooling device, installation conditions, and the like.

第5図は送風量を制御可能な室外側送風機127を用い
た冷却装置の実施例を示す。この実施例では、第3図の
実施例において第1の調節弁41および第2の調節弁42に
対してなされた制御は、前記室外側送風機127に対して
なされる。この室外側送風機127は運転回転数可変の単
数または複数の送風機により構成される。
FIG. 5 shows an embodiment of a cooling device using an outdoor air blower 127 capable of controlling the air flow rate. In this embodiment, the control performed on the first control valve 41 and the second control valve 42 in the embodiment of FIG. 3 is performed on the outdoor blower 127. The outdoor blower 127 is composed of a single blower or a plurality of blowers whose operating speed is variable.

以上に5通りの構成例を示したが、要するに低外気温
時に凝縮圧力を制御できるような構成であればどのよう
な構成でもよい。また、前記第1の調節弁および第2の
調節弁と制御可能な室外側送風機を同時に具備した構成
でもよい。
Although five examples of configurations have been shown above, any configuration may be used as long as the condensation pressure can be controlled at a low outside temperature. Further, the first control valve and the second control valve and the controllable outdoor fan may be simultaneously provided.

次に、本発明の冷却装置の制御方法について説明す
る。外気温が低い場合、本運転方法では、凝縮圧力は成
行きにまかせ、できるだけ開度可変膨張弁23の開度を開
けることにより過熱度を制御する。膨張弁の開度を大き
くする方法としては膨張弁を複数個並列に並べる方法や
所定能力より大きい膨張弁を取り付ける(例えば冷却能
力5[RT]の空調機に冷却能力10[RT]用の膨張弁を取
り付ける)方法がある。膨張弁の開度を大きくすること
により、凝縮圧力が低い状態が維持されるため、圧縮機
での圧縮動力が少ない運転ができる。しかし、この運転
方法も 膨張弁の開度には限りがあり、膨張弁の数を増やし
すぎる(3個あるいは4個取り付ける)、あるいは能力
のあまりにも大きい膨張弁(冷却能力5[RT]の空調機
に15[RT]用の膨張弁を取り付ける)を使うと、過熱度
制御が精度よく行えないためこの方法にも限度がある。
Next, a method for controlling the cooling device of the present invention will be described. When the outside air temperature is low, in the present operating method, the condensing pressure is allowed to reach the limit and the degree of superheat is controlled by opening the opening degree of the opening degree variable expansion valve 23 as much as possible. As a method of increasing the opening degree of the expansion valves, a method of arranging a plurality of expansion valves in parallel or an expansion valve having a larger capacity than a predetermined capacity is attached (for example, an air conditioner having a cooling capacity of 5 [RT] is expanded for a cooling capacity of 10 [RT]). There is a method to attach the valve). By increasing the opening degree of the expansion valve, the state where the condensing pressure is low is maintained, so that the operation with less compression power in the compressor can be performed. However, this operation method also has a limited expansion valve opening, and the number of expansion valves is increased too much (3 or 4 are installed), or the expansion valve with too large capacity (cooling capacity 5 [RT] air conditioning). If you use an expansion valve for 15 [RT] on the machine), this method has a limit because the superheat control cannot be performed accurately.

圧縮機には冷凍機油の関係で許容できる最低の圧縮
比がある。
The compressor has the lowest compression ratio acceptable in relation to the refrigeration oil.

などの理由により、外気温が例えば10[℃]以下に下が
ったような場合には、次のような問題が起こる。
For example, when the outside temperature drops below 10 degrees Celsius, the following problems occur.

凝縮圧力が下がり過ぎて膨張弁を全開にしても冷媒
循環量が減少し過熱度が高くなる。
Even if the expansion valve is fully opened because the condensing pressure is too low, the refrigerant circulation amount decreases and the degree of superheat increases.

吸入圧力と吐出圧力の圧縮比が圧縮機の許容最低圧
縮比以下になる。
The compression ratio between the suction pressure and the discharge pressure becomes less than the allowable minimum compression ratio of the compressor.

このような状況を回避するためには、凝縮圧力を高く
するより方法が無い。しかし、従来の装置で用いている
凝縮圧力調節弁では設定できる凝縮圧力が一定であるた
め、これをそのまま用いると凝縮圧力は必要以上に高く
なり、圧縮動力が大きくなってしまう。そこで、本発明
では凝縮圧力を可変とする手段を設け以下のように制御
を行う。
To avoid this situation, there is no way to increase the condensing pressure. However, since the condensing pressure that can be set by the condensing pressure control valve used in the conventional device is constant, if this is used as it is, the condensing pressure becomes unnecessarily high and the compression power becomes large. Therefore, in the present invention, means for varying the condensing pressure is provided and control is performed as follows.

第1図に示した冷凍サイクルにおける操作方法を第8
図(a)、(b)の操作の流れ図に沿って説明する。
The operation method in the refrigeration cycle shown in FIG.
The operation will be described with reference to the operation flow charts of FIGS.

まず、過熱度の制御を行なう。過熱度は過熱度センサ
33により測定され設定過熱度と比較される。第1段階で
は、通常の過熱度制御と同様に、測定過熱度が設定過熱
度より高ければその差に応じて膨張弁23を開き、逆に、
測定過熱度が設定過熱度より低ければその差に応じて膨
張弁23を閉じる。しかし、第2段階として、外気温が低
くなりそれとともに凝縮圧力も低くなり、測定過熱度が
設定過熱度よりも高く(Y)しかも膨張弁23が全開
(Y)となった場合には、測定過熱度と設定過熱度の差
に応じて第1の調節弁41並びに第2の調節弁42の開度を
連動させて、又は独立に調節し、バイパス側を流れる冷
媒流量を増加させて、凝縮圧力を高くして、過熱度を下
げる。逆に、測定過熱度が設定過熱度より低く(N)し
かも第1の調節弁41を閉じ、第2の調節弁42を開いてバ
イパス側に冷媒を流して凝縮圧力を高くしている場合に
は、測定過熱度と設定過熱度の差に応じて第1の調節弁
41と第2の調節弁42の開度を連動させて、又は独立に制
御し、バイパス側を流れる冷媒流量が減少するように調
節することにより、凝縮圧力を下げて、過熱度を高くす
る。この方法により膨張弁23により過熱度制御ができな
い場合でも第1の調節弁41と第2の調節弁42により過熱
度制御が行える。
First, the degree of superheat is controlled. Superheat is a superheat sensor
Measured by 33 and compared to the set superheat. In the first stage, like the normal superheat control, if the measured superheat is higher than the set superheat, the expansion valve 23 is opened according to the difference, and conversely,
If the measured superheat is lower than the set superheat, the expansion valve 23 is closed according to the difference. However, in the second step, when the outside air temperature becomes lower and the condensing pressure becomes lower, the measured superheat degree is higher than the set superheat degree (Y) and the expansion valve 23 is fully opened (Y), the measurement is performed. Depending on the difference between the superheat degree and the set superheat degree, the openings of the first control valve 41 and the second control valve 42 are interlocked or independently adjusted to increase the flow rate of the refrigerant flowing on the bypass side to condense. Increase pressure to reduce superheat. On the contrary, when the measured superheat degree is lower than the set superheat degree (N) and the first control valve 41 is closed and the second control valve 42 is opened to flow the refrigerant to the bypass side to increase the condensation pressure. Is the first control valve depending on the difference between the measured superheat and the set superheat.
The condensing pressure is lowered and the degree of superheat is increased by interlocking or independently controlling the openings of 41 and the second control valve 42 to adjust the flow rate of the refrigerant flowing through the bypass side to decrease. By this method, even when the expansion valve 23 cannot control the superheat degree, the first control valve 41 and the second control valve 42 can control the superheat degree.

以上が基本的な制御であるが、この制御の後に圧縮機
の圧縮比に以下のような問題が生じた場合は、以下の制
御を行う。
The above is the basic control, but if the following problems occur in the compression ratio of the compressor after this control, the following control is performed.

圧縮機21の吸入圧力と吐出圧力の比である圧縮比を圧
縮比センサ34で検出し、記憶している許容最低圧縮比と
比較する。ここでもし測定圧縮比が許容最低圧縮比より
小さい場合(Y)には、測定圧縮比と許容最低圧縮比と
の差に応じて第1の調節弁41並びに第2の調節弁42の開
度を連動させて、又は独立に調節し、バイパス側を流れ
る冷媒流量が増加するように調節することにより、凝縮
圧力を高くして圧縮比が許容最低圧縮比以上となるよう
にする。しかし、測定圧縮比が許容最低圧縮比以上
(N)であってもそれが大きすぎるような場合、たとえ
ば、許容最低圧縮比が2.0なのに設定凝縮圧力を高くし
て3.0の圧縮比で運転したような場合には圧縮動力が大
きくなり不経済な運転になる。そこで、許容最低圧縮比
より測定圧縮比が大きい場合にはその差に応じて逆に、
バイパス側を流れる冷媒流量が減少するように調節する
ことにより凝縮圧力を下げ、常に許容最低圧縮比付近の
圧縮比で冷却装置を運転させる。外気温が高い時には、
第1の調節弁41は全開、第2の調節弁42は全閉とする。
The compression ratio, which is the ratio between the suction pressure and the discharge pressure of the compressor 21, is detected by the compression ratio sensor 34 and compared with the stored minimum allowable compression ratio. Here, if the measured compression ratio is smaller than the minimum allowable compression ratio (Y), the opening degree of the first control valve 41 and the second control valve 42 is changed according to the difference between the measured compression ratio and the minimum allowable compression ratio. Are adjusted in conjunction with each other or independently to adjust the flow rate of the refrigerant flowing on the bypass side to increase the condensing pressure so that the compression ratio becomes equal to or higher than the allowable minimum compression ratio. However, if the measured compression ratio is more than the allowable minimum compression ratio (N) and it is too large, for example, even if the allowable minimum compression ratio is 2.0, the set condensing pressure is increased to operate at the compression ratio of 3.0. In that case, the compression power becomes large and the operation becomes uneconomical. Therefore, when the measured compression ratio is larger than the allowable minimum compression ratio, conversely according to the difference,
By adjusting so that the flow rate of the refrigerant flowing through the bypass side is reduced, the condensing pressure is lowered, and the cooling device is always operated at a compression ratio near the minimum allowable compression ratio. When the outside temperature is high,
The first control valve 41 is fully opened and the second control valve 42 is fully closed.

この許容最低圧縮比に関する制御は、現状の圧縮機が
一定の圧縮比以上でしか動作できないことによってお
り、圧縮機においてこの問題が解決されれば不要とな
る。
The control regarding the allowable minimum compression ratio is based on the fact that the present compressor can operate only at a certain compression ratio or more, and is unnecessary if this problem is solved in the compressor.

第1図〜第5図,第7図に示した室温センサ32,232
は、室温と設定温度を比較し、この差は、制御装置部3
5,235を介して圧縮機21,221の回転制御手段30,230にフ
ィードバックされる。すなわち、室温が設定温度より高
ければ圧縮機21,221の回転数を増加させ、設定温度より
低ければ減少させる。このような制御は、冷却装置で一
般に行われる制御である。
Room temperature sensors 32, 232 shown in FIGS. 1 to 5 and 7.
Compares the room temperature with the set temperature, and the difference is the controller unit 3
It is fed back to the rotation control means 30, 230 of the compressor 21, 221 via 5, 235. That is, if the room temperature is higher than the set temperature, the rotation speeds of the compressors 21 and 221 are increased, and if the room temperature is lower than the set temperature, the rotation speed is decreased. Such control is control generally performed in the cooling device.

次に、第5図に示した構成における操作方法を第9図
(a)、(b)の操作の流れ図に沿って説明する。
Next, the operation method in the configuration shown in FIG. 5 will be described with reference to the operation flowcharts of FIGS. 9 (a) and 9 (b).

第1段階の制御は第1図の構成と同様である。第2段
階として測定過熱度が設定過熱度よりも高く(Y)しか
も膨張弁23が全開(Y)となった場合には、測定過熱度
と設定過熱度の差に応じて制御可能な室外側送風機127
の風量を減らすことにより、凝縮圧力を高くして、過熱
度を下げる。逆に、測定過熱度が設定過熱度より低く
(N)しかも制御可能な室外側送風機127の風量を減ら
して(Y)凝縮圧力を高くしている場合には、測定過熱
度と設定過熱度の差に応じて制御可能な室外側送風機12
7の風量を増やすことにより、凝縮圧力を低くして過熱
度を高くする。この方法により膨張弁23により過熱度制
御ができない場合には制御可能な室外側送風機127の風
量を調節することにより過熱度制御が行える。
The control in the first stage is the same as the configuration in FIG. As the second stage, when the measured superheat is higher than the set superheat (Y) and the expansion valve 23 is fully opened (Y), the outdoor side that can be controlled according to the difference between the measured superheat and the set superheat. Blower 127
The condensing pressure is raised and the superheat degree is lowered by reducing the air volume of. On the contrary, when the measured superheat degree is lower than the set superheat degree (N) and the air volume of the controllable outdoor fan 127 is reduced (Y) to increase the condensing pressure, the measured superheat degree and the set superheat degree are Outdoor blower 12 that can be controlled according to the difference
By increasing the air volume of 7, the condensing pressure is lowered and the degree of superheat is increased. When superheat control cannot be performed by the expansion valve 23 by this method, the superheat control can be performed by adjusting the controllable air volume of the outdoor blower 127.

風量の調節は室外側送風機が複数の送風機で構成され
る場合は一部の運転を断続させても良い。
When the outdoor blower is composed of a plurality of blowers, a part of the operation may be intermittently performed to adjust the air volume.

圧縮比の制御については、第1図の構成における制御
方法と同様であり、測定圧縮比が許容最低圧縮比より小
さい場合(Y)には、測定圧縮比と許容最低圧縮比との
差に応じて制御可能な室外側送風機127の風量を減らす
ことにより凝縮圧力を高くして、圧縮比が許容最低圧縮
比以上となるようにする。しかし、測定圧縮比が許容最
低圧縮比以上(N)であってもそれが大きすぎるような
場合、たとえば、許容最低圧縮比が2.0なのに設定凝縮
圧力を高くして3.0の圧縮比で運転したような場合には
圧縮動力が大きくなり不経済な運転になる。そこで、許
容最低圧縮比より測定圧縮比が大きい場合にはその差に
応じて制御可能な室外側送風機127の風量を増やすこと
により凝縮圧力を下げ、常に許容最低圧縮比付近の圧縮
比で冷却装置を運転させる。
The control of the compression ratio is the same as the control method in the configuration of FIG. 1, and when the measured compression ratio is smaller than the minimum allowable compression ratio (Y), it depends on the difference between the measured compression ratio and the minimum allowable compression ratio. The condensing pressure is increased by reducing the amount of air that can be controlled by the outdoor blower 127 so that the compression ratio becomes equal to or higher than the allowable minimum compression ratio. However, if the measured compression ratio is more than the allowable minimum compression ratio (N) and it is too large, for example, even if the allowable minimum compression ratio is 2.0, the set condensing pressure is increased to operate at the compression ratio of 3.0. In that case, the compression power becomes large and the operation becomes uneconomical. Therefore, when the measured compression ratio is larger than the allowable minimum compression ratio, the condensing pressure is reduced by increasing the air volume of the outdoor blower 127 that can be controlled according to the difference, and the cooling device is always used with a compression ratio near the allowable minimum compression ratio. To drive.

外気温が高い時には制御可能な室外側送風機127の風
量は最大風量で運転する。
When the outside air temperature is high, the controllable outdoor fan 127 operates at the maximum air volume.

(発明の効果) 以上の説明より本発明から次のような効果が得られ
る。
(Effects of the Invention) From the above description, the following effects can be obtained from the present invention.

外気温が低い時に冷却装置を運転する場合、凝縮圧
力調節機器を用いることにより、膨張弁が全開になって
冷媒循環流量が少なくて過熱度が高い場合にも、凝縮器
をバイパスする冷媒流量を調節するか、あるいは、凝縮
器へ送風する風量を調節して過熱度制御が行なえ、しか
も凝縮圧力は必要最低な圧力に抑えられるため省エネル
ギーな運転が可能となる。
When operating the cooling device when the outside air temperature is low, by using the condensing pressure adjusting device, even if the expansion valve is fully opened and the refrigerant circulation flow rate is low and the superheat degree is high, the refrigerant flow rate bypassing the condenser can be controlled. The superheat degree can be controlled by adjusting or by adjusting the amount of air blown to the condenser, and the condensing pressure can be suppressed to the necessary minimum pressure, which enables energy-saving operation.

第10図は、本発明と第2図に示した従来技術の運転効
率(COP)の比較を示す。COPは以下のように定義され
る。
FIG. 10 shows a comparison of operating efficiency (COP) between the present invention and the prior art shown in FIG. COP is defined as follows.

本発明の構成および制御方法により外気温度が20
[℃]以下で明確に効率の差が表われ、外気温度5
[℃]以下では、従来方法と比べて効率は約1.9倍とな
る。
With the configuration and control method of the present invention, the outside air temperature is 20
There is a clear difference in efficiency below [℃], and the outside temperature is 5
Below [° C], the efficiency is about 1.9 times that of the conventional method.

第11図は、本発明の制御方法を適用した空調機の性能
図である。室内の乾球温度は27〔℃ DB〕、湿球温度は1
9.5〔℃ WB〕であり、実線、一点鎖線、点線は圧縮機を
それぞれ78Hz,54Hz,32Hzで運転した場合の外気温度とCO
P、冷却能力および消費電力の関係を示す。図から本発
明の制御方法では、外気温が低い時は外気温が高い時と
比べて、同一の圧縮機運転周波数でも、冷却能力が増
え、同時に消費電力が減って効率の良い運転が行えるこ
とがわかる。
FIG. 11 is a performance diagram of an air conditioner to which the control method of the present invention is applied. Indoor dry-bulb temperature is 27 [℃ DB], wet-bulb temperature is 1
9.5 [℃ WB], solid line, dash-dotted line, and dotted line are outside air temperature and CO when the compressor is operated at 78Hz, 54Hz, and 32Hz, respectively.
The relationship between P, cooling capacity and power consumption is shown. From the figure, in the control method of the present invention, when the outside air temperature is low, compared with when the outside air temperature is high, even with the same compressor operating frequency, the cooling capacity increases, and at the same time, the power consumption decreases and efficient operation can be performed. I understand.

外気温が低い時に冷却装置を運転する場合、吸入圧
力と吐出圧力との比が圧縮機の許容最低圧縮比より小さ
くなっても、凝縮器をバイパスする冷媒流量を調節する
か、あるいは、凝縮器への送風する風量を調節すること
により、必要とする最低の圧力に凝縮圧力を設定するこ
とができ、圧縮機を保護しながら省エネルギーな運転が
可能となる。
When operating the cooling device when the outside air temperature is low, even if the ratio between the suction pressure and the discharge pressure becomes smaller than the allowable minimum compression ratio of the compressor, the refrigerant flow rate bypassing the condenser is adjusted or the condenser is bypassed. The condensing pressure can be set to the minimum required pressure by adjusting the amount of air blown to the compressor, which enables energy-saving operation while protecting the compressor.

【図面の簡単な説明】[Brief description of drawings]

第1図は、凝縮圧力調節手段として2つの調節弁を用い
た本発明の実施例を示す図、 第2図は、第1図の凝縮圧力調節手段を用いた構成で、
バイパス経路を凝縮器の途中から引き込んだ場合の本発
明の実施例を示す図、 第3図は、第1図の凝縮圧力調節手段を用いた構成で、
バイパス経路部分が凝縮器として熱交換を行っている場
合の本発明の実施例を示す図、 第4図は、第1図の凝縮圧力調節手段を用いた構成で、
凝縮器として熱交換しているバイパス経路が多経路ある
場合の本発明の実施例を示す図、 第5図は、凝縮圧力調節手段として制御可能な室外側送
風機を用いた本発明の実施例を示す図、 第6図は、基本的な冷却装置の構成を示す図、 第7図は、従来の冷却装置の構成を示す図、 第8図は、凝縮圧力調節手段として2つの調節弁を用い
た本発明の冷却装置の運転操作の例を示す流れ図、 第9図は、凝縮圧力調節手段として回転数可変室外側送
風機を用いた本発明の冷却装置の運転操作の例を示す流
れ図、 第10図は、従来方法により冷却装置を制御した場合と、
本発明により冷却装置を制御した場合の効率(COP)を
比較した図、 第11図は、本発明の制御方法を適用した空調機の性能図
である。 1,21,221…圧縮機、2,22,222…凝縮器、3,23,223…開度
可変膨張弁、4,24,224…蒸発器、226…凝縮圧力調節
弁、7,27,227…室外側送風機、8,28,228…室内側送風
機、30,230…回転制御手段、32,232…室温センサ、33,2
33…過熱度センサ、34…圧縮比センサ、35,235…制御装
置部、41…第1の調節弁、42…第2の調節弁、55…第2
の凝縮器、127…制御可能な室外側送風機。
FIG. 1 is a diagram showing an embodiment of the present invention using two control valves as condensing pressure control means, and FIG. 2 is a configuration using the condensing pressure control means of FIG.
The figure which shows the Example of this invention at the time of pulling a bypass path | route from the middle of a condenser, FIG. 3 is a structure using the condensation pressure adjusting means of FIG.
The figure which shows the Example of this invention when a bypass path part is performing heat exchange as a condenser, FIG. 4 is a structure using the condensation pressure adjusting means of FIG.
FIG. 5 is a diagram showing an embodiment of the present invention when there are multiple bypass paths for heat exchange as a condenser, and FIG. 5 is an embodiment of the present invention using a controllable outdoor blower as the condensation pressure adjusting means. Fig. 6, Fig. 6 is a diagram showing the configuration of a basic cooling device, Fig. 7 is a diagram showing the configuration of a conventional cooling device, and Fig. 8 uses two control valves as condensing pressure control means. 10 is a flow chart showing an example of the operation of the cooling device of the present invention, and FIG. 9 is a flow chart showing an example of the operation of the cooling device of the present invention using a variable rotation speed outdoor fan as the condensation pressure adjusting means. The figure shows the case where the cooling device is controlled by the conventional method,
The figure which compares the efficiency (COP) when controlling a cooling device by this invention, FIG. 11 is a performance figure of the air conditioner to which the control method of this invention is applied. 1,21,221… Compressor, 2,22,222… Condenser, 3,23,223… Variable opening expansion valve, 4,24,224… Evaporator, 226… Condensing pressure control valve, 7,27,227… Outdoor blower, 8,28,228… Indoor side blower, 30,230 ... Rotation control means, 32,232 ... Room temperature sensor, 33,2
33 ... Superheat sensor, 34 ... Compression ratio sensor, 35, 235 ... Control device section, 41 ... First control valve, 42 ... Second control valve, 55 ... Second
Condenser, 127 ... Controllable outdoor blower.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機と、凝縮器と、該凝縮器に送風する
室外側送風機と、蒸発器と、該蒸発器に送風する室内側
送風機と、前記圧縮機からの冷媒を前記凝縮器に導く第
1経路と、前記凝縮器からの冷媒を前記蒸発器に導く第
2経路と、前記圧縮機からの冷媒を前記凝縮器をバイパ
スして第2経路へ導くバイパス経路と、第2経路上でと
バイパス経路が導かれた合流点と、その合流点と前記凝
縮器との間に設けられた第1の調節弁と、前記バイパス
経路に設けられた第2の調節弁と、前記第2経路内で前
記合流点と前記蒸発器との中間に設けた開度可変膨張弁
と、前記蒸発器からの冷媒を前記圧縮機に導く第3経路
と、該第3経路内の冷媒の過熱度を検出する過熱度セン
サと、前記圧縮機の吐出圧力と吸入圧力との比を検出す
る圧縮比センサとを具備し、 さらに、該過熱度センサの検出値が、所定の設定値より
高ければその差に応じて前記開度可変膨張弁の開度を大
きくするとともに前記凝縮器の冷媒流量に対する前記バ
イパス経路の冷媒流量の割合を増加させるよう前記第1
の調節弁および第2の調節弁の開度を調節し、前記所定
の設定値より低ければその差に応じて前記開度可変膨張
弁の開度を小さくするとともに前記凝縮器の冷媒流量に
対する前記バイパス経路の冷媒流量の割合を減少させる
よう前記第1の調節弁および第2の調節弁の開度を調節
し、かつ、前記圧縮比センサの検出値が当該圧縮機が動
作できるための最低圧縮比である許容圧縮比より低い場
合はその差に応じて前記凝縮器の冷媒流量に対する前記
バイパス経路の冷媒流量を増加させるよう制御し、検出
された圧縮比が前記許容圧縮比より高い場合はその差に
応じて前記凝縮器の冷媒流量に対する前記バイパス経路
の冷媒流量の割合を減少させるよう制御する制御装置部
を有する冷却装置。
1. A compressor, a condenser, an outdoor blower for blowing air to the condenser, an evaporator, an indoor blower for blowing air to the evaporator, and a refrigerant from the compressor to the condenser. A first path for guiding, a second path for guiding the refrigerant from the condenser to the evaporator, a bypass path for guiding the refrigerant from the compressor to the second path by bypassing the condenser, and on the second path And a first control valve provided between the converging point and the condenser, a second control valve provided in the bypass path, and the second control valve. A variable opening degree expansion valve provided between the confluence point and the evaporator in the path, a third path for guiding the refrigerant from the evaporator to the compressor, and a degree of superheat of the refrigerant in the third path. And a compression ratio sensor for detecting the ratio between the discharge pressure and the suction pressure of the compressor. If the detected value of the superheat sensor is higher than a predetermined set value, the opening degree of the opening degree variable expansion valve is increased according to the difference, and the bypass path for the refrigerant flow rate of the condenser is provided. The first to increase the ratio of the refrigerant flow rate
Of the control valve and the second control valve, and if the opening is lower than the predetermined set value, the opening of the variable opening expansion valve is reduced according to the difference, and the opening is adjusted with respect to the refrigerant flow rate of the condenser. The minimum compression for adjusting the opening of the first control valve and the second control valve so as to reduce the proportion of the refrigerant flow rate in the bypass path, and for the detected value of the compression ratio sensor to enable the compressor to operate. If it is lower than the allowable compression ratio which is the ratio, it is controlled so as to increase the refrigerant flow rate of the bypass path with respect to the refrigerant flow rate of the condenser according to the difference, and if the detected compression ratio is higher than the allowable compression ratio, A cooling device having a control unit that controls to reduce the ratio of the refrigerant flow rate of the bypass path to the refrigerant flow rate of the condenser according to the difference.
【請求項2】前記凝縮器をバイパスするバイパス経路が
前記凝縮器の1部を通過する請求項1記載の冷却装置。
2. The cooling device according to claim 1, wherein a bypass path bypassing the condenser passes through a part of the condenser.
【請求項3】前記凝縮器をバイパスするバイパス経路中
に、他の凝縮器を有する請求項1、または請求項2記載
の冷却装置。
3. The cooling device according to claim 1, further comprising another condenser in a bypass path that bypasses the condenser.
【請求項4】圧縮機と、凝縮器と、該凝縮器に送風する
風量制御可能な室外側送風機と、蒸発器と、該蒸発器に
送風する室内側送風機と、前記圧縮機からの冷媒を前記
凝縮器に導く第1経路と、前記凝縮器からの冷媒を前記
蒸発器に導く第2経路と、該第2経路の中間に設けた開
度可変膨張弁と、前記蒸発器からの冷媒を前記圧縮機に
導く第3経路と、該第3経路内の冷媒の過熱度を検出す
る過熱度センサと、前記圧縮機の吐出圧力と吸入圧力と
の比を検出する圧縮比センサとを具備し、 さらに、該過熱度センサの検出値が所定の設定値より高
ければその差に応じて開度可変膨張弁の開度を大きくす
るとともに前記室外側送風機の送風量を減少させるよう
制御し、前記検出された過熱度が前記所定の設定値より
低ければその差に応じて前記開度可変膨張弁の開度を小
さくするとともに前記室外側送風機の送風量を増加させ
るよう制御し、かつ、前記圧縮比センサの検出値が当該
圧縮機が動作できるための最低圧縮比である許容圧縮比
より低い場合はその差に応じて前記室外側送風機の風量
を減少させ、前記検出された圧縮比が前記許容圧縮比よ
り高い場合はその差に応じて前記室外側送風機の風量を
増加させるよう制御する制御装置部を有する冷却装置。
4. A compressor, a condenser, an outdoor blower capable of controlling the amount of air blown to the condenser, an evaporator, an indoor blower that blows air to the evaporator, and a refrigerant from the compressor. A first path leading to the condenser, a second path guiding the refrigerant from the condenser to the evaporator, an opening degree variable expansion valve provided in the middle of the second path, and a refrigerant from the evaporator are provided. A third path leading to the compressor, a superheat sensor for detecting a superheat degree of the refrigerant in the third path, and a compression ratio sensor for detecting a ratio between a discharge pressure and a suction pressure of the compressor are provided. Further, if the detected value of the superheat sensor is higher than a predetermined set value, the opening degree of the opening degree variable expansion valve is increased according to the difference, and control is performed so as to reduce the air flow rate of the outdoor blower, If the detected degree of superheat is lower than the predetermined set value, the opening degree is determined according to the difference. Control is performed such that the opening degree of the variable degree expansion valve is reduced and the amount of air blown by the outdoor blower is increased, and the detected value of the compression ratio sensor is the minimum compression ratio for the compressor to operate. When it is lower than the ratio, the air volume of the outdoor blower is reduced according to the difference, and when the detected compression ratio is higher than the allowable compression ratio, the air volume of the outdoor blower is increased according to the difference. A cooling device having a control device section for controlling.
【請求項5】圧縮機と、凝縮器と、該凝縮器に送風する
室外側送風機と、蒸発器と、該蒸発器に送風する室内側
送風機と、前記圧縮機からの冷媒を前記凝縮器に導く第
1経路と、前記凝縮器からの冷媒を前記蒸発器に導く第
2経路と、圧縮器からの冷媒を前記凝縮器をバイパスし
て第2経路へ導くバイパス経路と、第2経路上でバイパ
ス経路が導かれた合流点と、その合流点と前記凝縮器と
の間に設けられた第1の調節弁と、前記バイパス経路に
設けられた第2の調節弁と、第2経路内で前記合流点と
前記蒸発器との中間に設けた開度可変膨張弁と、前記蒸
発器からの冷媒を前記圧縮機に導く第3経路と、該第3
経路内の冷媒の過熱度を検出する過熱度センサと、前記
圧縮機の吐出圧力と吸入圧力との比を検出する圧縮比セ
ンサと、前記圧縮比センサ並びに前記過熱度センサから
の信号に基づいて前記開度可変膨張弁並びに前記第1の
調節弁および第2の調節弁の開度を調節する制御装置部
とを具備する冷却装置の制御方法であって、 前記過熱度センサの検出値が所定の設定値より高い場合
は前記開度可変膨張弁の開度を大きくする方向に制御
し、さらに、該開度可変膨張弁が全開でも過熱度が前記
所定の設定値より高い場合には前記第1経路の冷媒流量
に対する前記バイパス経路の冷媒流量の割合を増加させ
るよう前記第1の調節弁及び第2の調節弁の開度を調節
し、また、前記検出値が前記所定の設定値より低ければ
その差に応じて前記開度可変膨張弁の開度を小さくする
とともに前記凝縮器の冷媒流量に対する前記バイパス経
路の冷媒流量の割合を減少させるよう前記第1の調節弁
及び第2の調節弁の開度を調節することを特徴とする冷
却装置の制御方法。
5. A compressor, a condenser, an outdoor blower for blowing air to the condenser, an evaporator, an indoor blower for blowing air to the evaporator, and a refrigerant from the compressor to the condenser. A first path for guiding, a second path for guiding the refrigerant from the condenser to the evaporator, a bypass path for guiding the refrigerant from the compressor to the second path by bypassing the condenser, and a second path on the second path. In a confluence point where the bypass path is guided, a first control valve provided between the confluence point and the condenser, a second control valve provided in the bypass path, and in the second path. A variable opening expansion valve provided between the confluence point and the evaporator, a third path for guiding the refrigerant from the evaporator to the compressor, and the third path.
A superheat sensor for detecting the superheat of the refrigerant in the path, a compression ratio sensor for detecting the ratio between the discharge pressure and the suction pressure of the compressor, based on signals from the compression ratio sensor and the superheat sensor. A method for controlling a cooling device, comprising: a variable opening expansion valve; and a control device section that adjusts the opening amounts of the first control valve and the second control valve, wherein a detection value of the superheat sensor is predetermined. If it is higher than the preset value, the opening degree of the variable opening expansion valve is controlled so as to increase, and even if the variable opening expansion valve is fully opened, if the degree of superheat is higher than the predetermined set value, The openings of the first control valve and the second control valve are adjusted so as to increase the ratio of the refrigerant flow rate of the bypass path to the refrigerant flow rate of the first path, and the detected value is lower than the predetermined set value. Depending on the difference, The opening degree of the first control valve and the second control valve is adjusted so as to reduce the opening degree of the expansion valve and reduce the ratio of the refrigerant flow rate of the bypass path to the refrigerant flow rate of the condenser. Control method for cooling device.
【請求項6】圧縮機と、凝縮器と、該凝縮器に送風する
風量制御可能な室外側送風機と、蒸発器と、該蒸発器に
送風する室内側送風機と、前記圧縮機からの冷媒を前記
凝縮器に導く第1経路と、前記凝縮器からの冷媒を前記
蒸発器に導く第2経路と、該第2経路の中間に設けた開
度可変膨張弁と、前記蒸発器からの冷媒を前記圧縮機に
導く第3経路と、該第3経路内の冷媒の過熱度を検出す
る過熱度センサと、前記圧縮機の吐出圧力と吸入圧力と
の比を検出する圧縮比センサと、前記圧縮比センサ並び
に前記過熱度センサからの信号に基づいて、前記開度可
変膨張弁の開度並びに前記室外側送風機の風量を制御す
る制御装置部とからなる冷却装置の制御方法であって、 前記過熱度センサの検出値が所定の設定値より高ければ
その差に応じて前記開度可変膨張弁の開度を大きくする
方向に制御し、さらに、該開度可変膨張弁が全開でも検
出値が前記所定の設定値より高い場合には、前記室外側
送風機の送風量を減らし、また、前記検出値が前記所定
の設定値より低ければその差に応じて前記室外側送風機
の風量を増やし、さらに、前記室外側送風機が最大風量
でも検出値が設定値より低ければ前記開度可変膨張弁の
開度を小さくすることを特徴とする冷却装置の制御方
法。
6. A compressor, a condenser, an outdoor blower capable of controlling the amount of air blown to the condenser, an evaporator, an indoor blower that blows air to the evaporator, and a refrigerant from the compressor. A first path leading to the condenser, a second path guiding the refrigerant from the condenser to the evaporator, an opening degree variable expansion valve provided in the middle of the second path, and a refrigerant from the evaporator are provided. A third path leading to the compressor, a superheat sensor for detecting a superheat degree of the refrigerant in the third path, a compression ratio sensor for detecting a ratio between a discharge pressure and a suction pressure of the compressor, A control method for a cooling device, comprising: a controller for controlling the opening of the variable opening expansion valve and the air volume of the outdoor blower based on signals from a ratio sensor and the superheat sensor, If the detection value of the degree sensor is higher than the preset value, The opening degree of the variable opening expansion valve is controlled so as to increase, and when the detected value is higher than the predetermined set value even when the variable opening expansion valve is fully opened, the amount of air blown by the outdoor blower is changed. If the detected value is lower than the predetermined set value, the air volume of the outdoor blower is increased according to the difference, and if the detected value is lower than the set value even if the outdoor blower has the maximum air volume, the open value is set. A method for controlling a cooling device, which comprises reducing the opening degree of a variable expansion valve.
【請求項7】圧縮機と、凝縮器と、該凝縮器に送風する
室外側送風機と、蒸発器と、該蒸発器に送風する室内側
送風機と、前記圧縮機からの冷媒を前記凝縮器を経由し
て導く第1経路と、前記凝縮器からの冷媒を前記蒸発器
に導く第2経路と、圧縮機からの冷媒を前記凝縮器をバ
イパスして第2経路へ導くバイパス経路と、第2経路上
でバイパス経路が導かれた合流点と、その合流点と前記
凝縮器との間に設けられた第1の調節弁と、前記バイパ
ス経路に設けられた第2の調節弁と、前記第2経路内で
前記合流点と前記蒸発器との中間に設けた開度可変膨張
弁と、前記蒸発器からの冷媒を前記圧縮機に導く第3経
路と、該第3経路内の冷媒の過熱度を検出する過熱度セ
ンサと、前記圧縮機の吐出圧力と吸入圧力との比を検出
する圧縮比センサと、前記圧縮比センサ並びに前記過熱
度センサからの信号に基づいて前記開度可変膨張弁並び
に前記第1の調節弁および第2の調節弁の開度を調節す
る制御装置部とを具備する冷却装置の制御方法であっ
て、 前記圧縮比センサの検出値が当該圧縮機が動作できるた
めの最低圧縮比である許容圧縮比より小さい場合はその
差に応じて前記凝縮器の冷媒流量に対する前記バイパス
経路の冷媒流量を増加させるよう前記第1の調節弁及び
第2の調節弁の開度を調節し、前記検出値が前記許容圧
縮比より大きい場合はその差に応じて前記凝縮器の冷媒
流量に対する前記バイパス経路の冷媒流量の割合を減少
させるよう前記第1の調節弁及び第2の調節弁の開度を
調節することを特徴とする冷却装置の制御方法。
7. A compressor, a condenser, an outdoor blower for blowing air to the condenser, an evaporator, an indoor blower for blowing air to the evaporator, and a refrigerant from the compressor to the condenser. A first path for guiding the refrigerant from the condenser to the evaporator; a bypass path for guiding the refrigerant from the compressor to the second path by bypassing the condenser; A converging point on which a bypass path is guided, a first control valve provided between the converging point and the condenser, a second control valve provided on the bypass path, and the first control valve. A variable opening expansion valve provided in the middle of the confluence point and the evaporator in two paths, a third path for guiding the refrigerant from the evaporator to the compressor, and overheating of the refrigerant in the third path. And a compression ratio sensor for detecting the ratio between the discharge pressure and the suction pressure of the compressor. A cooling device including a controller for adjusting the opening of the opening variable expansion valve and the opening of the first control valve and the second control valve based on signals from the compression ratio sensor and the superheat sensor. In the control method of the above, if the detection value of the compression ratio sensor is smaller than the allowable compression ratio that is the minimum compression ratio for the compressor to operate, the bypass path for the refrigerant flow rate of the condenser is determined according to the difference. Of the first control valve and the second control valve so as to increase the refrigerant flow rate, and when the detected value is larger than the allowable compression ratio, the refrigerant flow rate of the condenser is changed according to the difference. A method for controlling a cooling device, wherein the opening degrees of the first control valve and the second control valve are adjusted so as to reduce the ratio of the refrigerant flow rate in the bypass path.
【請求項8】圧縮機と、凝縮器と、該凝縮器に送風する
風量制御可能な室外側送風機と、蒸発器と、該蒸発器に
送風する室内側送風機と、前記圧縮機からの冷媒を前記
凝縮器に導く第1経路と、前記凝縮器からの冷媒を前記
蒸発器に導く第2経路と、該経路の中間に設けた開度可
変膨張弁と、前記蒸発器からの冷媒を前記圧縮機に導く
第3経路と、該第3経路内の冷媒の過熱度を検出する過
熱度センサと、前記圧縮機の吐出圧力と吸入圧力との比
を検出する圧縮比センサと、前記圧縮比センサ並びに前
記過熱度センサからの信号に基づいて、前記開度可変膨
張弁の開度並びに前記室外側送風機の送風量を制御する
制御装置部とからなる冷却装置の制御方法であって、 前記圧縮比センサの検出値が当該圧縮機が動作できるた
めの最低圧縮比である許容圧縮比より小さい場合はその
差に応じて前記室外側送風機の送風量を減らし、前記検
出値が前記許容圧縮比より高い場合はその差に応じて前
記室外側送風機の送風量を増やすことを特徴とする冷却
装置の制御方法。
8. A compressor, a condenser, an outdoor blower capable of controlling the amount of air blown to the condenser, an evaporator, an indoor blower that blows air to the evaporator, and a refrigerant from the compressor. A first path leading to the condenser, a second path guiding the refrigerant from the condenser to the evaporator, a variable opening expansion valve provided in the middle of the path, and a refrigerant compressing the refrigerant from the evaporator. Path leading to the compressor, a superheat sensor for detecting the superheat degree of the refrigerant in the third path, a compression ratio sensor for detecting the ratio between the discharge pressure and the suction pressure of the compressor, and the compression ratio sensor. And a control method of a cooling device comprising a controller for controlling the opening of the variable opening expansion valve and the amount of air blown by the outdoor blower based on a signal from the superheat sensor, wherein the compression ratio The value detected by the sensor is the minimum compression ratio for the compressor to operate. When the detected value is higher than the allowable compression ratio, the amount of air blown by the outdoor blower is increased according to the difference when the detected value is smaller than the allowable compression ratio. A method for controlling a cooling device.
JP63204450A 1988-08-17 1988-08-17 Cooling device and its control method Expired - Lifetime JP2517071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63204450A JP2517071B2 (en) 1988-08-17 1988-08-17 Cooling device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63204450A JP2517071B2 (en) 1988-08-17 1988-08-17 Cooling device and its control method

Publications (2)

Publication Number Publication Date
JPH0252955A JPH0252955A (en) 1990-02-22
JP2517071B2 true JP2517071B2 (en) 1996-07-24

Family

ID=16490729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63204450A Expired - Lifetime JP2517071B2 (en) 1988-08-17 1988-08-17 Cooling device and its control method

Country Status (1)

Country Link
JP (1) JP2517071B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864619A (en) * 2015-06-19 2015-08-26 苏州医电神空调设备工程有限公司 Refrigerating system with stepless regulation return air temperature
WO2023106020A1 (en) * 2021-12-06 2023-06-15 株式会社デンソー Heat pump cycle device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079815A (en) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Heat source side unit, air-conditioner, and air conditioning system
JP5109971B2 (en) * 2008-12-26 2012-12-26 ダイキン工業株式会社 Air conditioner
JP5972024B2 (en) * 2012-04-25 2016-08-17 三菱電機株式会社 Refrigeration equipment
EP3246637B1 (en) * 2015-01-16 2021-06-16 Mitsubishi Electric Corporation Refrigeration cycle device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133569A (en) * 1982-02-03 1983-08-09 株式会社日立製作所 Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864619A (en) * 2015-06-19 2015-08-26 苏州医电神空调设备工程有限公司 Refrigerating system with stepless regulation return air temperature
CN104864619B (en) * 2015-06-19 2017-12-22 苏州医电神空调设备工程有限公司 Can step-less adjustment suction temperature refrigeration system
WO2023106020A1 (en) * 2021-12-06 2023-06-15 株式会社デンソー Heat pump cycle device
JP7622878B2 (en) 2021-12-06 2025-01-28 株式会社デンソー Heat pump cycle equipment

Also Published As

Publication number Publication date
JPH0252955A (en) 1990-02-22

Similar Documents

Publication Publication Date Title
US5168715A (en) Cooling apparatus and control method thereof
US7559207B2 (en) Method for refrigerant pressure control in refrigeration systems
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
EP2313709B1 (en) Chiller with setpoint adjustment
JPH068703B2 (en) Air conditioner
EP0355180B1 (en) Cooling apparatus and control method
US6711909B2 (en) Outdoor fan control system of air conditioner and control method thereof
US20050257539A1 (en) Air conditioner and method for controlling operation thereof
JP2557577B2 (en) Air conditioner
JP2517071B2 (en) Cooling device and its control method
JPH04110576A (en) Heat pump type air conditioner
JP2003314854A (en) Air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP3996321B2 (en) Air conditioner and its control method
CN217465169U (en) Drying apparatus
JP4409316B2 (en) Cooling system
JPH04363554A (en) Controlling method for blower of air-cool type refrigerator
CA2672747C (en) Forced-air cross-defrost type air-conditioning system
JP4012892B2 (en) Air conditioner
JP2000266399A (en) Indoor heat exchanger structure for air conditioner
US20230131781A1 (en) Refrigeration cycle apparatus
KR100197684B1 (en) Controlling circuit for cooling material of airconditioner
JPH03164661A (en) Air conditioner
CN120332962A (en) Heat pump system and control method thereof
JPH02171562A (en) Freezing cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13